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ABSTRACT

This paper proposes Group-In, a wireless scanning system to detect

static or mobile people groups in indoor or outdoor environments.

Group-In collects only wireless traces from the Bluetooth-enabled

mobile devices for group inference. The key problem addressed

in this work is to detect not only static groups but also moving

groups with a multi-phased approach based only noisy wireless

Received Signal Strength Indicator (RSSIs) observed by multiple

wireless scanners without localization support. We propose new

centralized and decentralized schemes to process the sparse and

noisy wireless data, and leverage graph-based clustering techniques

for group detection from short-term and long-term aspects. Group-

In provides two outcomes: 1) group detection in short time intervals

such as two minutes and 2) long-term linkages such as a month. To

verify the performance, we conduct two experimental studies. One

consists of 27 controlled scenarios in the lab environments. The

other is a real-world scenario where we place Bluetooth scanners

in an office environment, and employees carry beacons for more

than one month. Both the controlled and real-world experiments

result in high accuracy group detection in short time intervals

and sampling liberties in terms of the Jaccard index and pairwise

similarity coefficient.
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1 INTRODUCTION

There has been increasing interest in recognizing [16, 38] human

mobility behaviors to create smarter future environments. In partic-

ular, group detection is beneficial for various domains. For instance,

accurate real-time and offline group detection can be helpful in the

following scenarios.

• Crowd management: The group mobility behaviors heavily

affect crowd dynamics [32]. Smart cities develop strategies based

on knowledge of groups for improved congestion avoidance,

evacuation planning, and demand management.

• Retail scenarios: Retailers can promote their products based on

groups in shopping malls, as suggested in [33]. Understanding

customer profiles (e.g., singles or couples) results in improved

recommendation systems.

(a) Finding groups in urban areas.
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Figure 1: Inferring static and mobile groups using wireless

scanners.

• Evacuation modeling: As movements of people in groups [32]

are affected by group interests rather than individuals’ move-

ment decisions; simulations can leverage data provided by group

detection.

• Social isolation detection: Group detection can be useful to

analyze social engagement or isolation. For instance, to monitor

the elderly in assisted living places for their interactions [16].

Different than the typical proximity-based group detection, we

regard “group" in this work as an indicator of people spending time

together. For example, people are sitting together for a tea break

(and thus forming a static group), or people are visiting a place by

walking together (forming a moving group).

Most of the existing video-based or wireless approaches consider

high-accuracy localization [14], which may require a vast amount

of data collection during calibration, training, and operation phases.

Other methods that leverage wireless access points mostly suffer

from long coverage ranges. For instance, being in the same hotspot

area is considered as an encounter [25, 26]. On the other hand,

long ranges such as 100m cause coarse granularity. Lastly, some

approaches rely on mobile sensing data collection [33]. These ap-

proaches depend on existing user incentives for active usage of apps

as well as battery and data consumption. Group-In does not require

high-accuracy localization, smartphone information, whereas it

still provides fine-grained group inference.

We propose the Group-In system for finding groups using only

wireless traces from people’s mobile devices, as shown in Fig. 1b.

The system leverages a distributed wireless data collection mecha-

nism with multiple scanners. The scanners detect different mobile

devices in their vicinity and extract the RSSI values, which are esti-

mated measures for the power level of the received signals by the

scanners. The system uses these measures and accurately detects

the existence of groups in shorter (e.g., in a city square) or more

extended periods (e.g., a working week at an office where people
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spend most of their day). Group-In is applicable in a wide range of

scenarios. The proposed design can be used in small environments

such as a room, whereas one can scale the system to larger environ-

ments (e.g., city-scale). Furthermore, Group-In does not require a

data collection or environment-specific calibration phase, while nei-

ther relying on expensive and potentially privacy-invading systems

that depend on camera feeds. Small changes in configurations (such

as the scanner locations) do not affect Group-In algorithms. We

observe that Group-In produces accurate results in many different

lab setups (scanner placement schemes, group mobility behaviors)

using the same parameters for the algorithms without any config-

uration change. Thus, it is a very flexible and easy-to-use system

that is useful in temporary (e.g., festivals) or permanent (e.g., office

rooms) setups without much effort of following strict deployment,

configuration, or testing schemes.

There exist two key technical challenges for accurately detecting

both static and dynamic moving groups: (1) processing sparse and

noisy wireless data and (2) combining data from multiple scanners

in the environment. The first challenge arises from the nature of

radio-frequency (RF) signals, mainly for reasons such as wireless

data loss due to interference, scanners missing the Bluetooth (BT)

advertisement packets, and the inactivity of user devices to pre-

serve battery power. The second challenge arises due to scanners

having partial views of their environments with limited wireless

coverage. Data sparsity results in different and changing numbers of

dimensions for the wireless trajectories of mobile devices. Thus, one

cannot merely compare the trajectory distances or apply clustering

algorithms to achieve high accuracy group detection.

This paper proposes a step-by-step approach that consists of the

wireless scanning with multiple observers, preprocessing steps, cen-

tralized and decentralized analytics, group detection, and long-term

linkage analysis. We propose new analytics algorithms considering

static/mobile group detection aspects. The centralized computing

approach aggregates the RSSI data in the back-end server and cre-

ates a graph using pairwise distances of wireless trajectories. In

decentralized computing, each scanner creates its results through

wireless trajectory comparisons, and later these results are uni-

fied. Both centralized and decentralized computing can analyze

data from different mobile devices with varying numbers of scan-

ners data and accurately classify groups, even if the data is sparse

and noisy. Centralized computing provides higher accuracy group

monitoring, whereas decentralized computing enables keeping the

collected data in the devices and collecting only the result messages

of the scanners in the server. Centralized setups of Group-In can be

beneficial when the system operates in wireless local area networks

controlled by a wireless provider such as a university or elderly care

center where registered people can be traced accurately. Decen-

tralized setups enable large-scale scenarios where many scanners

collect the data, or bandwidth usage is expensive/limited. For ap-

plications such as city-wide monitoring, the decentralized setup

enables most of the processing of many wireless packets on the

devices and Group-In can still provide accurate group monitoring in

large-scale. In the group detection step, Group-In feeds the outputs

of the algorithms to the graph clustering algorithms. In the last step,

Group-In finds long-term linkages by aggregating the group detec-

tion outputs over a more extended period. The long-term linkage

outputs can be given as inputs for social studies.

2 RELATEDWORK

Most studies related to human mobility analytics (more specifically

group detection) belong to one of the three categories: 1) video-

based detection, 2) wireless activity-based detection, 3) detection

using data from smartphone apps or social networks. We regard

data from smartphone apps and social networks as user data as

these applications require user-specific data collection. In contrast,

the first two categories do not require people to download an app or

sign up for a service. On the other hand, user data availability allows

applications beyond group detection, such as social interaction

analytics or friendship detection. In this section, let us discuss some

of the recent significant advancements.

Video-based group detection: There have been various studies

leveraging video footages to extract crowd information, and some

focus on detecting groups. Ge et al. [14] and Solera et al. [34]

propose detecting groups by clustering movement trajectories ex-

tracted from video footage (hierarchical and correlation clustering).

Moussaïd et al. [32] analyze the effects of group behaviors of pedes-

trians to crowd dynamics. Their analysis for pedestrians observed

by cameras in a commercial street shows that up to 70% of people

are moving in groups, including couples, families, or friends, and

the group sizes follow a Poisson distribution. Since video-based

crowd behavior learning needs labeled video datasets, the study

in [5] aims to generate synthetic labels and combine them with

real videos. While Group-In also has a clustering-based approach,

it does not require camera deployment or training using labeled

video datasets.

Wireless activity-based groupdetection:There exist recent stud-

ies related to “device-less” wireless detection of people in indoor

environments. Guo et al. [16] propose an approach to find the ex-

istence of people and estimating the density of people in a room,

walking speed, and direction based on Wi-Fi channel state informa-

tion (CSI). CSI-based approaches analyze channel properties of the

communication links which are affected by the vicinity of people

or objects. Their approach leverages semi-supervised learning for

environments such as rooms in assisted living places. Adib et al. [1]

propose the WiTrack2.0 system for tracking moving or static users

with up to 10m range for indoor localization using wireless signal

reflections. The Freesense system by Xin et al. [40] performs indoor

detection by identifying phase differences between the amplitude

waveforms of multiple antennas. The CrowdProbe system by Hong

et al. [18] obtains Wi-Fi probe requests and performs a Hidden

Markov Model-based algorithm to detect crowd movement in a

multi-floor museum.

Larsen et al. [26] analyze data from BT scanners during a music

festival to detect groups and understand the overall network struc-

ture. Kostakos et al. [25] analyze the encounters between people

in urban areas. They deploy BT scanners in Bath, UK, and analyze

brief vs. persistent encounters in the city. Both of the approaches

by Larsen et al. and Kostakos et al. consider sparse deployment of

scanners and assume that people might be in the group when the

same scanner scans them. Weppner et al. [39] collect Wi-Fi and BT

data with a subset of video data to analyze group density and flow

by calibrating estimations with a few ground truth points. The ma-

jority of localization estimates (90%) are between 5 and 11 m of their

ground truth location. Jamil et al. [19] use BT data to analyze groups
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during the Hajj pilgrimage with a hybrid participatory approach

combining GPS data from few, “leader” smartphones and Bluetooth

Low Energy (BLE) beacon data from the majority of participants.

Brockmann et al. [3] perform the detection of persons in a queue

using BLE data. Solmaz and Wu [35] propose detecting group and

individual walking behaviors using BT scanners. The detection is

limited to the movement detection (i.e., excluding waiting times or

static groups) where people need to follow a particular path and

move directly from one scanner to another.

Our approach contributes to wireless-activity based group de-

tection. Most of the studies above are limited to either specified

areas where groups need to have a specific movement behavior or

groups are limited to a restricted area. On the other hand, Group-

In can be used in various indoor/outdoor areas for stream-based

(near-real-time) detection without specific environmental limita-

tions. Moreover, Group-In can differentiate people who belong to

different groups while being scanned by the same scanner(s).

User data-driven group detection: The GruMon system by Sen

et al. [33] uses smartphone sensors for tracking group behaviors

based on the fusion of accelerometer, barometer and Wi-Fi location

(extracted based on Wi-Fi access point locations). The detection

time can be as short as 5 to 10 min. Jayarajah et al. [20] apply Gru-

Mon to understand the effects of the groups on people’s behaviors,

including mobility patterns, responsiveness to phone calls, and app

usage. Kaur et al. [23] collect Wi-Fi data and web query logs of

users in a large shopping center to map semantic similarity across

cyber and physical behaviors for future location prediction. Sonta

et al. [36] use plug load energy sensor data to detect the social

network of occupants in a commercial building. Yu and Han [41]

propose the Grace mobile app for iOS platforms, which recognizes

proximity between two devices using BT RSSI. Their approach rec-

ognizes groups when the group members are well separated from

others and face to face with each other.

Sociophone [27] and SocialWeaver [29] are smartphone applica-

tions to track interactions (conversations) for deeper social analysis.

Canzian and Musolesi propose Mood-Traces [4], which aims to

detect depression states based on social group interactions using

smartphones’ GPS data. Mehrotra and Musolesi [31] extend this

study by automatically extracting mobility features using a deep

autoencoder. D’Silva et al. [8] analyze the role of humanmobility dy-

namics in the retail business survival in cities using transportation

data and crowd-sourced data from location-based social networks.

Yuan et al. [43] extract human mobility patterns by leveraging so-

cial media data. The proposed approach can be useful for location

recommendation services, such as services for local event recom-

mendations. Yu et al. [42] analyze user location data to construct a

user graph based on their spatial-temporal interactions and learn

user representations from the graph. Du et al. [9] combine mobile

sensing using smartphones with Wi-Fi signals to detect moving,

static groups, and their structures such as pairwise leader/follower

relationship. Jiang et al. [22] propose activity-based humanmobility

detection focusing on tour patterns and trip-chaining behaviors

with call detail record (CDR) data. There have been various studies

related to the usage of CDRs. Although the localization resolution

of these datasets is rather low, they are considered for city planning

and optimizing transportation services.

Indoor localization techniques, including wireless triangulation

or CSI, require extensive data collection and environment-specific

calibration [37]. The proposed Group-In approach explores the

possibilities without trilateration or location extraction, assuming

accurate people localization is not available. On the other hand,

the proposed schemes in this paper could apply to the data coming

from different sensors (e.g., GPS).

Group-In uses only the information coming from wireless scan-

ners, and it does not require users to provide data or sign up for a

social network service. Furthermore, Group-In can also function

as a stream-based service and produce outputs at short time in-

tervals. The basic requirements of Group-In do not include the

active participation of people or data collection from social me-

dia or telecommunication service providers. Lastly, Group-In can

be scaled to large areas (e.g., smart cities) by the deployment of

low-cost wireless scanners.

Studies mentioned above require high accuracy localization of

individuals through GPS and cameras, or they make coarse assump-

tions for groups such as being connected to the same Wi-Fi hotspot

as a direct indication of groups. Group-In provides group inference

with high accuracy and spatiotemporal resolution without these

requirements or assumptions.

3 GROUP DETECTION PROBLEM

There exist two main challenges for accurately detecting groups

from wireless traces: (1) Processing sparse and noisy data and (2)

combining data from multiple scanners.

3.1 Sparse and Noisy Data

We make our initial observations in the lab environment where

three BT scanners are at the corners of a conference room (of

size 100 m2) and two groups of BLE beacons (simulating people,

where P denotes a person) are in two different places in the room.
The distance between the two static people groups is 6 m. Fig. 2

shows the raw RSSI values received by each of the scanners from

4 beacons where P1 and P2 belong to one group and P5 and P6
belong to another. This figure provides an initial perspective on

the problem of group detection due to the visibly noisy and sparse

nature of the raw values.

In Fig. 2, there is a line between two consecutive seconds, both of

which have measurements from a beacon. We observe that the lines

rarely appear (especially for Scanner 1 and 2), meaning the scanners

do not receive packets in most of the seconds. The reason can be the

channel-hopping scanners that miss the BT advertising channels.

Furthermore, even in the case of scanners have measurements

from all four beacons (beacons are all in the wireless range), their

observation data is not only sparse but also has different densities.

For instance, the data from Scanner 3 has a higher density compared

to the data from Scanner 2. Lastly, the RSSI values are noisy, as

previously explicitly observed for BT signals [12].

3.2 Combining Data from Multiple Scanners

One major aspect to consider is the mobility of the groups. As a

simple example, the movement of a person who goes from point

X to point Y is different from the movement of another person

who goes from point Y to point X during the same time interval.
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Figure 2: Raw RSSIs during the controlled experiments for three scanners detecting four beacons (P1, P2, P5, P6).

Figure 3: Sampled (with 30 sec) and normalized RSSIs during controlled experiments for three scanners detecting four beacons

(P1, P2, P5, P6).

Fig. 1b shows the expected results of the group detection with a

simple illustration. In this figure, people P1, . . . , P5 are in the same
group, moving in the trajectory shown with the arrow, whereas P6
should not be listed in the same group. She is momentarily very

close to the group, although people’s movement trajectories suggest

otherwise. In addition, there exists a static group with the people

P9, . . . , P17. Multiple wireless scanners are in the vicinity. Although
not illustrated in this figure, each scanner has a wireless range

(e.g., 30 m), and people may enter in or move out of the range of a

scanner during their movement.

To capture the difference between movement trajectories, an

accurate system needs to divide expected the time interval of group

detection into shorter discrete time frames (e.g., 5 sec), and consider

the difference between wireless traces for each time frame. Later,

the comparison results stand for the overall time interval. Second,

the intuitive approach of clustering directly on the time frame data

does not solve the group detection problem since this approach

assumes that the scanners detect the people at every time frame.

In practice, this is not the case, as some of the devices are out of

the scanners’ wireless range. For an observed mobile device, one

may consider the wireless data for this device from each scanner

as another dimension for the data collected from the device. If we

imagine all devices’ data in such multi-dimensional space, inferring

groups, or even comparing two people’s trajectories is not a straight-

forward problem since the traces may have different (number of)

dimensions. The proposed approach aims to tackle these challenges.

4 GROUP-IN APPROACH

Fig. 4 shows the overall functional view of the approach to solve the

group detection problem through a list of sub-tasks (steps) shown

as separate boxes. While centralized computing and decentralized

computing share a set of these sub-tasks, they differ in particu-

lar for pairwise comparisons. Moreover, the physical place of the

computation differs, such that in centralized computing, scanners

send continuous time-series data directly to the back-end server.

For decentralized computing, the scanners can perform the pre-

processing steps and RSSI trace comparison themselves. Let us

now describe each step, starting from wireless scanning (left) to

long-term linkage (right).

4.1 Wireless Scanning with Multiple Observers

In the initial phase of our approach, multiple wireless scanners

receive wireless packets from people’s mobile devices. The scanners

do not necessarily cover all devices of the people in the surrounding.

Fig. 5 shows four simple example wireless scanner scenarios,

which may lead to success or failure for the group detection. In all

cases, we consider two groups walking in parallel with the shown

distances from the wireless scanners. Case 1 illustrates why Group-

In needs multiple scanners such that the single scanner may not

capture the difference between the person (single-person group)

and the two-people group as they have both distance d to the
scanner. Considering the groups move through the trajectories in

parallel, using a single scanner may result in a group consisting

of three people over the time interval. As shown in Case 2, two
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Figure 4: A functional view of the Group-In approach having processing steps starting from the left (wireless scanning) and

ends on the right (group detection and long-term linkage).
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Figure 5: Wireless scanner deployment scenarios.

scanners may also lead to failure as the two groups’ distances to

both scanners always remain similar. There exist three scanners in

Case 3. However, their locations are next to each other. In this case,

each scanner may provide similar RSSI levels, and the combination

of the observations of three scanners may result in a single group.

On the other hand, as shown in Case 4, if the scanners have a certain

distance to each other, they might detect the groups correctly as the

distancesd2−d4 andd3−d5 are distinct. Case 1 practically represents
a sparse deployment as there exists only one scanner in the vicinity

of the two groups (although there may be scanners far from the

area, whereas Case 3 represents a very dense deployment where

the distances between the scanners themselves become negligible.

Deploying more scanners are necessary in this case. Hence, both

sparse and very dense deployments with less than three scanners

may lead to inaccuracy or inefficiency. Although Group-In does not

localize mobile devices or apply triangulation (as the collected data

can have any number of dimensions), its performance may decrease

if the deployment of scanners is too sparse or dense. This problem

also exists for typical localization approaches [28]. Although there

is no single global scheme reached for optimal node placement,

various methods exist in the literature [21].

In the Group-In system, the wireless scanners constantly search

for wireless packets from mobile devices in the vicinity. The re-

ceived packets have a respective identifier for the device (i.e., device

ID), which is captured and hashed by the scanner. The hashing

provides anonymity to the device ID (e.g., MAC address of a smart-

phone). Along with the device ID, the scanner can extract RSSI

levels and (in some cases) reference RSSI values. Reference RSSI

is defined as the expected RSSI level when the device is 1 m away

from the scanner. The scanner stores the extracted information

from the device with the following format which we name as the

wireless packet (WP ):

WP =< Time,RSSI ,Re f RSSI ,DeviceID, ScannerID > (1)

4.2 Preprocessing Steps

Let us briefly describe the preprocessing steps, which are necessary

to make the system function as expected. Current Group-In imple-

mentation uses some of the well-known methods for sampling and

normalization.

Sampling: We define a sampling time Δt which is a fixed short
time frame parameter (e.g., 1, 5, 10, 30, or 60 sec). For each unique

pair (DeviceID, ScannerID), all RSSI values ofWPs belonging to
Δt are sampled. The RSSI values represent a continuous time series
data from RSSI1 to RSSIn . Sampling can be performed using median
or mean operators. By default we use median:

MRsi
Pj
(Δt) =M{(RSSI1), (RSSI2), . . . , (RSSIn )}, (2)

MRRsi
Pj
(Δt) =M{(Re f RSSI1), . . . , (Re f RSSIn )}, (3)

where MR and MRR denote median RSSI and median reference
RSSI respectively. si denotes a scanner with index i and Pj denotes
the device of the person with index j who is identified by DeviceID.
The output of the sampling step is the discrete time series data that

is used in the following steps.

RSSI normalization: Different devices often show varying RSSI

characteristics depending on the used radio chip, amplifier, antenna,

and case [13]. For our experiments, we leverage simple heuristics of
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min-max normalization (on a scale of 0 and 1) and the Re f RSSI con-
tained in the Bluetooth advertisement packets for the BLE beacons.

For each beacon, the simple usage of Re f RSSI consists of having
a global average (expected) Re f RSSI , comparing with Re f RSSI of
the measurement, and adjusting (shifting) the corresponding RSSI
based on this difference. For cases when the devices are hetero-

geneous, and Re f RSSI is not available, different approaches, such
as the method presented in [24] based on RSSI ratios or a device

model database with Re f RSSI can be applied.
Preprocessing outputs: Outputs of the RSSI normalization step

are a set of wireless traces. We define a wireless traceWT as the
following triple:

WT (Δt) = (si , Pj ,N(MRsi
Pj
(Δt),MRRsi

Pj
(Δt))), (4)

where N denotes the normalization function usingMR (and if ap-
plicable MRR). A wireless trace packet is denoted asWT si

Pj
given

scanner si and device of the person Pj . WT (Δt).scanner = si ,

WT (Δt).person = Pj ,WT si
Pj
(Δt).NRSSI denote the three selectors

for scanner ID, person ID, and the normalized RSSI respectively.

Initial observation: Fig. 3 is the observed result after these pre-

processing steps (compare to the raw RSSIs in Fig. 2). We observe

that the measurements of the different devices become more appar-

ent compared to the raw measurements. The values from P1 and
P2 seem similar in Scanner 1 and 2, whereas they are distinct for
Scanner 3. On the other hand, the two groups (P1-P2 and P5-P6) are
still not visibly different.

4.3 Centralized Computing

Centralized computing begins with creation of wireless fingerprints

(WF ) which are trajectories of wireless traces. For a given time
interval T ,WF is given by:

WFPj (T ) =
{(
WTPj [1](Δt1), . . . ,WTPj [k](Δt1)

)
,

(
WTPj [1](Δt2),WTPj [2](Δt2), . . . ,WTPj [l](Δt2)

)
,

. . .(
WTPj [1](Δtx ),WTPj [2](Δtx ), . . . ,WTPj [m](Δtx )

)}
,

(5)

where 0 ≤ k, l,m ≤ n and n is the number of scanners.T consists of
a set of sampling times (Δt), where T = {Δt1,Δt2, . . . ,Δtx }. Here,
we define an ordered list of wireless traces for every sampling time

Δt based on the normalized RSSI values as follows:

WTPj [1](Δt).NRSSI ≥WTPj [2](Δt).NRSSI ≥ . . . (6)

such thatWTPj [1](Δt) points to the wireless trace with highest
NRSSI .WF is a set of these ordered lists for all Δt ∈ T . The ordered
list can be empty, meaning that there is no observation for Pj at the
particular sampling time.WFPj (Δt) ⊆WFPj (T ) denotes the list of
WT s for a given sampling time (a row in Eq. 5).
For fingerprint distance aggregation step, the first algorithm we

propose is calledMulti-Dimensional RSSI Distances (MDD). Algo-
rithm 1 computes the distance (shifted in linear proximity domain

based on the log-distance path loss model [6]) between two people’s

WF s for a sampling time Δt in the existence of lacking scanner
data (i.e., the different number of dimensions). In this algorithm,

the first iteration computes the maximum possible distance be-

tween NRSSIs considering the number of scanners that are present
for the sampling time Δt , which corresponds to the number of
dimensions. The second iteration computes the distance in this

multi-dimensional space. For each dimension i , following possibili-
ties exist: both Pa and Pb are observed by si , only Pa is observed,
or only Pb is observed. Based on these possibilities, iteration aggre-
gates the shifted NRSSI differences. The algorithm has a parameter
ζ , which is empirically set as the maximum possible distance based
on dimensions (100 < ζ ≤ 101). The output of this algorithm is
the pairwise distance (denoted as Φab (Δt)) for the sampling time.
Through the aggregation of all sampling times of a time interval T ,
the following equation calculatesMDD for T as follows:

MDDab (T ) =
∑Γab (T )
Δt Φab (Δt)
|Γab (T )|

for a � b, (7)

Γab (T ) is the set of sampling times (Δt ∈ T ), where at least one
of Pa and Pb hasWF (Δt) (i.e., scanners observe at least one of them
even though there is no observation for the other person).

Algorithm 1:Multi-dimensional RSSI distance

Input :W FPa (Δt ),W FPb (Δt ): Wireless fingerprints
Input :n: Number of scanners during T
Input :ζ (parameter): Max possible distance
Output :Φab (Δt ): Pairwise distance.

1 ψ ← 0; //Max possible distanceψ during Δt
2 ξ ← 0; //Number of dimensions at Δt
3 for i , i = 1, 2, . . . , ξ do
4 //Iterate number of dimensions during Δt
5 if ∃WTPa [i](Δt ) ∨ ∃WTPb [i](Δt ) then
6 ψ ← ψ + (ζ ∗ ζ );
7 ξ ← ξ + 1;

8 end

9 end

10 ψ ←
√
ψ ;

11 //Multi-dimensional distance computation:

12 μab ← 0;

13 for i , i = 1, 2, . . . , n do
14 x ← 0; //Temporary variable;

15 if ∃WT
si
Pa
(Δt ) ∧ ∃WT

si
Pb
(Δt ) then

16 x =

				10WT
si
Pa

(Δt ).NRSSI − 10WT
si
Pb

(Δt ).NRSSI
				;

17 else if ∃WT
si
Pa
(Δt ) then

18 x = 10
WT

si
Pa

(Δt ).NRSSI
;

19 else if ∃WT
si
Pb
(Δt ) then

20 x = 10
WT

si
Pb

(Δt ).NRSSI
;

21 μab ← μab + x ;

22 end

23 if
√
μab ≥ ψ then

24 return
ψ
ξ
;

25 else

26 return
√
μab
ψ ∗ξ ;

The second algorithm is based on creating matching scores of

two wireless fingerprints in terms of their scanner orders, from

higher NRSSI to lower as previously shown in Eq. 5 and Eq. 6.
This algorithm has a parameter υ = (υ[1],υ[2], . . . ,υ[n]) (e.g., υ =
[5, 2, 1] if n = 3) which is called match score vector. This parameter
weighs the matching scanner IDs according to their order inWF .
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Algorithm 2:Match score of wireless fingerprints

Input :W FPa (Δt ),W FPb (Δt )
Input :n: Number of scanners during ΔT
Input :υ (parameter): Match score vector
Output :δab (Δt ): Fingerprint-match score

1 η ← 0; //Max possible match score η during T

2 for i , i = 1, 2, ...n do
3 η ← η + υ[i];
4 end

5 //Fingerprint match score computation:

6 μab ← 0;

7 for i , i = 1, 2, . . . , n do
8 if ∃WTPa [i](Δt ) ∧ ∃WTPb [i](Δt ) then
9 ifWTPa [i](Δt ).scanner=WTPa [i](Δt ).scanner then
10 μab ← μab + υ[i];
11 end

12 end

13 end

14 return
μab
η ;

We propose Algorithm 2 using υ for pairwise fingerprint match
scores for time interval T between Pa and Pb . In this algorithm
(for each Δt ), the first iteration computes the maximum possible
matching score based on the given υ and the number of scanners
n in the sampling time. The second iteration walks through the
two ordered lists of Pa and Pb at the same time. If both haveWT s
in the given index i and if both of the traces come from the same
scanner, then it is regarded as a match and the corresponding match

value υ[i] is given from the vector. For instance, if both Pa and Pb
haveWT s from all scanners n and if their orders (from highest
NRSSI to lowest) are the same, the result of the second iteration is
equal to the result of the first iteration (maximum possible match

score). The ratio between the actual match score and the maximum

possible match score gives the output δab (Δt) that is the pairwise
fingerprint-match score for the sampling time.

The aggregatedWireless FingerprintMatch (WFM) (for the time
interval T ) between the pair is given by:

WFMab (T ) =
∑Θab (T )
Δt δab (Δt)
|Θab (T )|

for a � b . (8)

Θab (T ) is the set of sampling times (Δt ∈ T ) where both Pa and
Pb haveWF (i.e., scanners observe both of them).WFM does not
aggregate the sampling times that only one device hasWF since
the relative closeness of the unobserved person to the scanners is

unknown.

4.4 Decentralized Computing

One of the main obstacles of group detection is the dimensional

difference problem: How can we compare twoWF s in the case of
lacking scanners?

In the RSSI trace comparison step of the decentralized comput-

ing, each scanner deals with its data independently. The main idea

is that each scanner has its point of view; in other words, perception,

which is possibly different from the view of another scanner. This

perception of a scanner has a partial view of the world. Later, out-

puts of all scanners for the time interval T are combined to create
a multi-scanner graph and have a global view.

The decentralized scheme allows performing the computation

on the scanner devices or nearby computation units. In this case,

Experiments Controlled Real-world

# BT traces ∼80K ∼10M
# people/beacons {4, 7, 8} 14

# BT scanners 3 3

# different rooms {1, 2, 4} 4

Expected # of groups {1, 2, 3, 4} 6

Advertising interval [0.1,1]sec 0.1sec

Transmission power [-4, -12]dBm -4dBm

# of different setups 27 1

Data duration ∼5 hours ∼25 days
BT data storage ∼23.5MB ∼2.2GB
# parameter trials-WFM 10 1

# param. trials-Group detection 10 1

Table 1: Information related to the experiments.

the task of each scanner is to perform the trace comparison locally.

Thus, the problem of comparing RSSI data with different dimensions

does not apply to this scheme as the wireless data for a scanner has

only one dimension. For a scanner s , aggregated pairwise distance
between every pair (Pa and Pb ) is called the Single PerceptionResult
(SPR), which is defined as follows:

dab (Δt) =
			10WT s

Pa
(Δt ).NRSSI − 10WT s

Pb
(Δt ).NRSSI

			 , (9)

SPRab (T ) =
∑Θab (T )
Δt dab (Δt)
|Θab (T )|

for a � b, (10)

where Θab (T ) is the set of sampling times (Δt ∈ T ) where both Pa
and Pb haveWT in scanner s (i.e., s observes both of them).

SPRs of all observed pairs are encapsulated in a message and
sent to the back-end server for finding the Unified Perception Result

(UPR), which is defined as follows:

UPRab (T ) = 1 −
∑Sab (T )
s SPRs

ab
(T )

|Sab (T )| ∗ Ω
for a � b, (11)

where Sab (T ) is the set of scanners that have SPRab . Ω represents
the maximum possible SPR and it can be calculated considering
maximum possible NRSSI difference or set empirically. UPRs are
used as the edge weights of the multi-scanner graph.

4.5 Group Detection

We define a graph G = (V , E,w), where V = {v1,v2, . . . ,vn } is
the set of vertices and n is the number of people observed by the
scanners during time interval T , E ⊆ VxV is the set of edges, and
w : E → R+ is the weight function. As a vertex of the graph

represents the device of a person, the vertex representing Pa is
denoted as va and wab denotes edge weight with vb . The edge
weight values can be given byMDD,WFM , orUPR. Larger weight
values indicate matching fingerprints.

Checking the edge weight between two people is not sufficient

to decide if they belong to a group since the group characteristics

differ from the pairwise relations. As a simple example, considering

three people Pa, Pb , Pc , the valueswab andwbc can be large while
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Table 2: The algorithms used in the experiments and the ranges for parameter values. The algorithms and their places as part

of the approach are in Fig. 4 (except the Girvan-Newman, DBScan, or MeanShift, which are used for comparison).

Analytics algorithms Approach phases Parameters Parameter trial values

DenGraph Group detection Cluster distance (0, 1]
HCS Group detection Min edge weight - Threshold (0, 1], (0, 1.5]
MaxClique Group detection Min edge weight - Threshold (0, 1], (0, 1.5]
WFM Fingerprint trajectory match υ: Match score vector [[3, 100], [2, 25], [1, 5]]
MDD Fingerprint trajectory match ζ : Max distance parameter 7 (empirical)

Benchmark algorithms

Girvan-Newman Graph clustering (after WFM) - -

DBScan Clustering preprocessed data ϵ : Epsilon (0,1]

MeanShift Clustering preprocessed data Kernel (0,1]

wac is small. The subject of group characteristics is studied exten-

sively, considering various measures such as intra- and inter-group

distances and betweenness centrality.

For the group detection step, we apply three graph clustering

algorithms that are also in past studies related to social networks.

The first is called density-based community detection algorithm

(DenGraph [11]), which is a modification of the well-known density-

based spatial clustering of applications with noise (DBScan [10])

algorithm. The main difference of DenGraph is that it performs

clustering on graph models. The other two clustering techniques

used are Highly Connected Subgraphs (HCS [17]) and Maximal

Cliques (MaxClique [30]). These two clustering algorithms are sim-

ilar to each other in the sense that they both generate connected

subgraphs. HCS is a less constrained version of MaxClique where

the enumerated subgraphs do not need to be fully connected. The

clustering algorithms run in different time intervals and output

cluster labels for each vertex. Each label represents a group, and

we classify vertices with the same labels as a group.

4.6 Long-Term Linkages

While the groups dynamically change over time, Group-In saves the

group information for every time interval in the group database. The

long-term linkage step involves several statistical group analysis.

First, Group-In analyzes the closeness of two people based on the

number of time intervals (T s) that they are listed in the same group
in the database and the number of time intervals where both of them

are present. Based on the ratio between the two values, it estimates

a long-term linkage value. Having the linkage values between every

pair results in the long-term linkage graph. The resulting graph

for long periods can be given as an input for the analysis of the

social relationship networks by social scientists, which may lead

to the development of new ways to improve interactions between

people in areas such as a campus or an office environment. For

instance, in an office environment, the face to face interactions

of different teams can be compared, and further assistance can be

given to more socially isolated people. Group-In long-term link-

age statistics can be used as one of the parameters for analyzing

these relationships. Moreover, Group-In creates long-term group

statistics. These statistics involve the number of detected people,

the number of individuals vs. groups, distribution of group sizes,

and the ratio between the number of detected people and inferred

groups.

BT scanners

Gateway BLE beacons

(a) Some devices used in the experiments.

BT 
signals 

Network 
gateway

Back-end 
server

BT scanners

Dashboard
(web interface)

Data 
reporting

Office 
setup

BT 
signals 

(b) Illustration of theGroup-In system setup.

Figure 6: Experimental setup: Devices and placement.

5 EXPERIMENTAL EVALUATION

5.1 System Setup

Fig. 6b illustrates the basic system setup of Group-In. The setup

consists of three wireless scanners deployed in an area with the ca-

pability to receive packets from people’s mobile devices. Distances

between the scanners are ∼10 m. The wireless scanners can per-
form computation on the devices or send their raw measurements

to a back-end server through the network gateway. The back-end

server has data brokering and analytics modules as well as storage

capability using a NoSQL database (CouchDB), where the wireless

traces are indexed based on their timestamps. Group-In visualizes

the offline or real-time results coming from the server on the web

dashboard.

5.2 Experimental Settings

We conduct two experimental studies for testing the group infer-

ence accuracy in various settings. The first is a set of controlled

lab experiments, with devices shown in Fig. 6a. We conduct the

controlled experiments through short data collection campaigns

(each has about 10 min duration). The second is a real-world ex-

periment in an office environment, with 14 employees for more

than one month. The controlled experiments consist of 27 different

settings. These settings include having beacons placed in 1, 2, or

4 rooms, where 4, 7, or 8 beacons are distributed. The parameter

values of these experiments (summarized in Table 1) aim to cover

different scenarios including detecting people in different rooms,

groups in the same room, detecting static/mobile groups, differen-

tiating movement trajectories (e.g., Group 1 and 2 in Fig. 1b), and

detecting groups with gradually shorter distances to each other

(from 10 to 1 m). In the second (real-world) experiment, 12 people

work in four rooms in the vicinity of the scanners, and two people

are visitors from distant rooms. The employees stick BLE beacons
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Figure 7: The results of the office scenario (centralized). Top:

controlled, bottom: real-world.

Figure 8: The results of the office scenario (decentralized).

Top: controlled, bottom: real-world.

to their access badges that they carry for a month. We labeled the

controlled and real-world datasets with ground truth information

where the groups of the devices are known based on static/mobile

placements or working places of the employees.

Table 2 lists the algorithms that we use in the analysis. We test

the proposed approach using DenGraph, HCS, MaxClique for group

detection step, and WFM and MDD for trajectory matching step

(previously shown in Fig. 4). The approach is compared against

applications of the popular clustering algorithms DBScan [10] and

MeanShift [7] directly after the preprocessing steps. Furthermore,

we test Girvan-Newman [15] (shown as ’G-N’ in figures) for com-

parison as it is a community detection algorithm popularly used

for graph data and social network analysis. Girvan-Newman (G-

N) algorithm uses the output graph from the fingerprint distance

aggregation step using WFM. Each algorithm calibrates itself by

stochastic trials of 10 parameter values inside the given ranges (pa-

rameter trial values in Table 2). The results in the controlled exper-

iments are cross-validated using 20% of the training data. We apply

the learned parameter values from the controlled experiments to

Figure 9: The results of the fingerprint trajectory match al-

gorithms for the office scenario (controlled).

Figure 10: The results of the straight-walking scenario. Top:

centralized, bottom: decentralized.

the real-world setup without any training. Unless otherwise stated,

the default values in the experiments are Δt = 5 sec andT = 120 sec
using WFM and HCS for the centralized computing and UPR and

HCS for the decentralized computing.

We use two accuracymetrics: 1) Pairwise similarity coefficient and

2) The Jaccard index. The pairwise coefficient is a result of pairwise

comparisons for all pairs present at T . It is calculated as
TP +TN

C(|P |, 2)
where C(|P |, 2) is the pair combinations among the people P . TP
(true positives) is the number of pairs in the same groups who are

classified with the same labels. TN (true negatives) is the number
of pairs in different groups who are classified with different labels.

The Jaccard index is given by J (A,B) = |A∩B |
|A∪B | , |A∪B | = |P |. For the

Jaccard index, we first recursively match every observed group with

the ground truth group which has the largest intersection (most

number of shared members). Then, for every person, we check if the

person is classified with the correct label (the ground truth label) to

find the size of the intersection set |A∩B |. As a benchmark one can
consider the random placement of people into groups. Considering

having 4 groups in the controlled scenarios and 6 groups in the

real-world scenario, a random guess may result in about 16-25%

accuracy in most of the cases for both of the metrics.
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Figure 11: The results of the random-walk scenario. Top: cen-

tralized, bottom: decentralized.

5.3 Experimental Results

This subsection starts with the experimental results for the office

scenario where we analyze Group-In for office setups and the mo-

bile scenario where we simulate different movements of groups.

We also analyze the effects of the distance between two groups

by placing the groups gradually closer in the controlled environ-

ment. Furthermore, we include the real-time and offline monitoring

interface and long-term analysis results from our real-world exper-

iment. Lastly, we include our remarks and discuss the limitations

we observed during the experiments.

Results from the office scenario: The first set of results we in-

clude from the controlled and real-world experiments. The first

one simulates an office environment, whereas the second uses data

collected from employees during their daily work schedules. The

scanners’ positions are the same for both experiments. There exist

four office rooms and two corridors in between, where one scan-

ner is in a room, and two scanners are on the corridors. For the

controlled setup, seven beacons (mimicking seven people) are dis-

tributed into up to four groups and statically placed to the rooms.

The results in Fig. 7, Fig. 8 and Fig. 9 compare pairwise (left) and

Jaccard (right) accuracy of the centralized and decentralized com-

puting w.r.t. different sampling times.

Fig. 7 shows the results of centralized computing. DenGraph,

HCS, andMaxClique achieve more than 90% accuracy for controlled

experiments with 30 or 60 sec sampling times. On the other hand,

DBScan and MaxClique provide relatively higher accuracy com-

pared to Girvan-Newman.Moreover, results demonstrate that graph

clustering algorithms that use WFM (HCS, MaxClique, DenGraph)

have higher accuracy than directly applying clustering algorithms

(DBScan and MeanShift) in both the controlled and real-world se-

tups.

Fig. 8 presents the accuracy results of decentralized computing.

Decentralized computing achieves high accuracy in controlled ex-

periments. For example, HCS achieves 98% accuracy with Δt =
30 sec. Besides, the accuracy of the decentralized computing in the

real-world has a low accuracy (about 60%) where group detection

algorithms perform similarly, and Girvan-Newman has even lower

Figure 12: The precision results. Top: centralized, bottom: de-

centralized.

pairwise accuracy. The sparse deployment of the scanners can cause

this inaccuracy. In the real-world setup, some scanners classify peo-

ple in two separate rooms in the same group if both of these rooms

are distant from the scanner. Fig. 9 presents the results of using

match scores (WFM) and multi-dimensional distances (MDD) (both

with HCS). Both approaches produce high accuracy, especially with

the increased sampling times, whereas the WFM approach achieves

slightly higher accuracy.

Results from the mobile scenarios: Our second set of results

target the evaluation of Group-In for mobile scenarios where the

groups move frequently. In the first mobile scenario, we divide the

beacons into two groups, and each group of beacons is carried by a

person who walks straight (back and forth movements) between

two corners of a square-shaped 100 sqm room. Each person starts

from the opposite corner and walks with a similar walking pace

(about 2 m/sec). The results in Fig. 10 show that centralized com-

puting with the graph clustering algorithms achieves up to 98%

accuracy with 5 sec optimal sampling time. MaxClique achieves

the highest Jaccard accuracy. On the other hand, direct cluster-

ing (DBScan and MeanShift) fails to detect mobile groups. Besides,

decentralized computing is not able to capture the movement of

groups, as it can only perform up to 70% pairwise accuracy for 1 sec

and 5 sec sampling times. The low accuracy is a result of single

scanners not being able to differentiate two people walking back

and forth in the same room on the same straight line (e.g., 10m)

in short durations. In more extended and more realistic scenarios,

decentralized computing may result in better accuracy.

In the second mobile scenario, we two groups of people walk

randomly in the room (based on Random Waypoint Model [2]). As

shown in Fig. 11, the accuracy of the second scenario is slightly

lower as this mobile scenario is more dynamic than the previous

(straight-walking) scenario. However, the results are still consistent

with the previous scenario. For centralized computing, the graph

clustering algorithms have higher accuracy than the direct clus-

tering approaches and Girvan-Newman. Moreover, 5 sec sampling

time is optimal, and it results in more than 80% accuracy for both

centralized and decentralized computing.
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Precision results: Our third set of results evaluate the precision

of the proposed approach. We divide beacons into two groups and

observe the effects of distance between the groups by gradually

decreasing the distance from 10m to 1m. Fig. 12 shows the accuracy

w.r.t. the distances. Most of the clustering algorithms successfully

detect groups in most cases if the distance is more than or equal to

4 m. In the case of very dense crowds, this may lead to a limitation if

two groups always stay close to each other during the time interval.

Visualizing group detection and long-term linkage results:

The results of the group detection are visualized in the Group-In’s

live web interface, as shown in Fig. 13a. Through this interface,

group detection results such as the number of people, number of

groups, and the sizes of each group can be monitored. The live

interface provides real-time and offline visualization.

The last set of results includes the long-term linkage evaluation

in the real-world setup with the information of people’s rooms,

working groups, and their project groups during the experiment

duration. In Fig. 13b, the nodes representing people who share

the same room have the same color and shape. The edge weights

denote the linkage (see Section 4.6). We observe that the linkage

values of people who share the same rooms are mostly higher. In

addition, Group-In is able to capture the relation of P6 with P1
and P2. Although P6 is a visitor member located outside of these
four rooms, These three people belong to the same working group

and spend time together. The other external member, P14, is ob-
served separately from this group. P14 does not interact with other
group members due to working in separate projects. For a better un-

derstanding of the physical proximity-based interactions, Fig. 13b

shows the edge weights of a person with others in different rooms,

whereas the people in the same rooms already have high linkage

values due to being close to each other in the working place.

Remarks on the experiments: Overall, Group-In can produce

highly accurate group detection results in the short time intervals.

The proposed approach successfully works with the sparse and

noisy wireless data and changing number of dimensions. More-

over, although the experimented scenarios are very different from

each other, we can apply the same set of parameters (without any

training) and achieve high accuracy results in almost all scenarios.

The only exception we observe is when the distance between clus-

ters is persistently short (1 or 2 m). Lastly, the long-term linkage

graph generated by Group-In can reflect the real conditions of the

working environment considering room setups and project groups.

Limitations: The limitations are observedmainly for decentralized

computing. In particular, when the relatively stable mobility behav-

iors exist in a real-world office environment or the straight-walk

scenario, the performance of the decentralized is significantly lower

than the centralized computing. Furthermore, when two groups are

too close to each other (e.g., 2 m apart) and not moving, the system

may merge the two groups and regard them as only one group.

We conducted the experiments using homogeneous BLE beacon

devices. In the future applications, a possible limitation is the device

heterogeneity [13]. One can learn the characteristics of various

devices and incorporate for improved accuracy in real-world setups

where people use different wearables or smartphones. Moreover,

multiple hardware from the same person (e.g., smartwatch and

smartphone) can be considered in the future.

(a) A view from Group-In’s live web interface for group inference.
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(b) Long-term linkage of 14 people from 1 month-long analysis.

Figure 13: Group-In live dashboard and long-term linkage

analysis results.

Lastly, the real-world experiment does not have very accurate

ground-truth data. However, it has rather partial ground-truth data

where the employees’ working places and their expected move-

ments are known. The long-term tracking of the people’s move-

ment for using cameras (e.g, body-worn cameras) can improve the

accuracy results. At the same time, it may cause an invasion of

privacy in an office environment. Therefore, we considered many

controlled scenarios with different setups and group mobility be-

haviors. In one of the controlled scenarios, we conducted tests in the

same environment by placing the devices in their expected rooms

and observed that when employees are in their rooms, the system

achieves close to 100% accuracy. Although this alone does not prove

high accuracy when employees do spontaneous daily movements,

it indicates that in the case of ground-truth, the accuracy can be

even higher.

6 CONCLUSION

This paper proposes the Group-In system for group detection from

wireless traces. Different from most indoor/outdoor localization

approaches, which require extensive calibration efforts, Group-In
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does not aim high-accuracy localization and tracking of people’s ex-

act positions. On the other hand, it provides fast and accurate group

detection results in real-time and offline. Moreover, the granularity

of Group-In is better than existing group detection approaches,

which assume that people can be in a group if the same scanner

observes them. Our experiments in the lab scenarios and the real-

world office environment provide confidence for Group-In’s future

usage in various urban environments such as campus environments,

offices, museums, theme parks, and festivals.
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