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ABSTRACT

MDLdroid is a novel decentralized mobile deep learning framework,

which enables resource-aware on-device collaborative learning for

personal mobile sensing applications. To address resource limita-

tion, MDLdroid uses a chain-directed Synchronous Stochastic Gra-

dient Descent (ChainSGD-reduce) approach to effectively reduce

overhead among multiple devices. In addition, MDLdroid includes

an agent-based multi-goal reinforcement learning mechanism to

balance resources in a fair and efficient manner. Real-world experi-

ments demonstrate that our model training on off-the-shelf mobile

devices achieves 2x to 3.5x faster than single-device training, and

1.5x faster than the master-slave approach.
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1 INTRODUCTION

Personal mobile sensing is fast permeating our daily lives to enable

activity monitoring, healthcare and rehabilitation. Combined with

Deep Learning (DL), these applications have achieved significant

success in recent years.

Personal sensing data are significantly privacy-sensitive as the

data contain a variety of human motion, biological contexts and

identification information. Different from conventional cloud-based

approaches, running deep learning on devices can be an ideal so-

lution to effectively preserve sensing data privacy without being

transmitted over the public network [6]. Besides, personal mobile

sensing applications are mostly user-specific and highly affected

by environment [4]. Continually training a local model with new

data is a fundamental requirement. In practice, continually trans-

mitting sensing data to the server and downloading model updates

for training can incur fast battery drain and considerable latency

for mobile devices especially when the network connection is un-

stable or broken. By contrast, continuous on-device training can

enable quick local model inference and update response without

exposing data [5]. Since data collection is costly in reality, Google’s

Federated Learning [2] offers not only complete data privacy but

also better model robustness based on multiple user data. However,

continuous local changes may seriously affect the performance

of a global model generated by Federated Learning. In addition,
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Figure 1: MDLdroid Architecture consists of three-stage pro-

cesses: 1) user model configuration input; 2) network scan &

build; 3) model training & task scheduling.

deploying Federated Learning on a local server, e.g., edge server,

may quickly reach the bottleneck due to resource constraint [3]

and serious failure by attacks [1].

This paper proposes MDLdroid, a novel decentralized Mobile

Deep Learning framework to enable resource-aware on-device col-

laborative learning for personal mobile sensing applications. The

key idea is to decentralize the Synchronous Stochastic Gradient

Descent algorithm running on a single device to multiple devices

with dynamic chain-directed model aggregation. MDLdroid targets

to fully operate on multiple off-the-shelf Android smartphones

connected in a mesh network, and achieve high training accuracy

and reliable execution of the state-of-the-art DL models.

MDLdroid defines two implication models. The individual model

is used for an individual who has sufficient personal data and mul-

tiple mobile devices to offer shared resources. The data can only be

safely distributed to the given mobile devices verified by the same

identity (e.g., Google account). The non-individual model is applied

for a group of people to explore specific local sensing features. The

data will be strictly kept on device to preserve data privacy, and

only the model gradient parameters of each individual will be ex-

changed to improve model robustness. Moreover, MDLdroid can

be potentially used in many multi-user sensing scenarios, such as

specific family behaviour recognition in a smart home.

2 SYSTEM OVERVIEW

Figure 1 demonstrates the architecture of MDLdroid. Since MDL-

droid is designed to operate full-scale DL on Android based on a

mesh network, we employ both Bluetooth Low Energy (BLE) and

Bluetooth Socket (BS) to build the mesh network due to accessi-

bility and low energy consumption. In principle, any on-device

mesh-based protocol can be applied. In the first stage, users in-

put different model configurations based on their demand to train

models. MDLdroid uses two combined network topology in the sec-

ond stage. The BS-based mesh topology is applied to perform the

decentralized model aggregation between devices in the training

stage, while the BLE-based tree topology is used for the centralized

325

2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)

DOI 10.1109/IPSN48710.2020.00-24



Master MA

� � �

Figure 2: Model aggregation structure comparison: Cen-

tralSGD vs. NeighborSGD vs. ChainSGD

resource condition monitoring in the task scheduling stage. In the

third stage, each device is required to continually report resource

condition to a mobile agent (MA). Once all training tasks request

the model aggregation for each iteration, the Chain-scheduler on

the MA can manage the resource-efficiency scheduling paths as a

chain-directed graph. When model aggregation of each iteration

are completed, a copy of the aggregated model parameters will be

resource-aware broadcasted to all devices for the next iteration. Fi-

nally, once training is completed, a global model will be distributed

to all devices via broadcasting for model inference Especially, MDL-

droid can also reload a pre-trained model to continually train with

new local sensing data.

To reducememory overhead and latency, we propose a ChainSGD-

reduce approach with a mesh-based decentralized topology. In this

approach, the number of neighbors is constantly managed as one

for every model aggregation to achieve a minimal-peak in mem-

ory and communication overhead. Our approach also includes an

agent-based reinforcement learning Chain-scheduler to schedule

the neighbor aggregation task as a dynamic chain-directed graph in

a resource efficiency way. Compared with centralized graph (Cen-

tralSGD) and decentralized neighbor graph (NeighborSGD), Figure

2 demonstrates that the major differences of ChainSGD-reduce are

twofold: 1) the model aggregation is managed only with one of

neighbors at a time; 2) the order of the aggregation tasks is dynam-

ically scheduled depending on the real-time resource condition of

device.

3 EVALUATION AND IMPLEMENTATION

We fully implement MDLdroid on off-the-shelf smartphones based

on modified DL4J libraries. In particular, we essentially modify

DL4J to enable the proposed ChainSGD-reduce approach on device.

With minor model configurations, MDLdroid is fully compatible

with a range of DL models without scaling down the model. Figure

3a plots a screenshot in which user customizes model configuration

such as the parameters for certain datasets, customized hidden layer

structures, and the required number of training devices. Figure 3b

plots a screenshot during an execution of training on 9 smartphones

using MDLdroid. The MA device scans all nearby devices, and

build a BLE mesh network. The black dash lines represent the

BLE connections between MA and training devices for resource

condition monitoring. The yellow lines indicates a particular chain-

directed model aggregation process via BS.

To evaluate MDLdroid, we use standard Convolutional Neural

Network (CNN)models since CNN can be used to effectively process

multi-channel sensing data. We evaluate the training performance

using 6 public datasets, containing diverse personal mobile sensing
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Figure 3: Experiment screenshot. (a) User model input; (b)

Training execution screenshot

data. Results show that MDLdroid achieves high training accu-

racy which is comparable to the state-of-the-art accuracy, speeds

up training by 2x to 3.5x compared to the single-device baseline

and 1.5x compared to Federated Learning. In addition, MDLdroid

reduces latency overhead due to busy condition by 23% and 53%

compared to Tree-scheduler in the Tree-Allreduce approach and

Ring-scheduler in the Ring-Allreduce approach, respectively. More-

over, MDLdroid reduces the variance in battery consumption among

devices by 40% compared to Tree-scheduler.

4 CONCLUSION AND FUTUREWORK

In this work, we present MDLdroid, a novel decentralized mobile

DL framework to enable resource-aware on-device collaborative

learning for personal mobile sensing applications without central

server support, which achieves a reliable state-of-the-art model

training accuracy, low resource overhead, low latency for model

inference and update. we plan to embed the MDLdroid into mobile

OS to offer automatic background training, and develop a wider

variety of applications to fully explore the capability of MDLdroid

in our future work.
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