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ABSTRACT

Sensitivity of WiFi channel measurements to the transceiver place-

ment is a major limitation for on-demand deployment of device-free

WiFi sensing in environments where the transmitting/receiving

devices may move. Using publicly available datasets, we show that

even slight deviations of transmitter/receiver placements from the

reference values can degrade device-free gesture recognition ac-

curacy significantly. We design a convolutional autoencoder to

translate WiFi spectrograms from arbitrary receiver placements to

a reference placement configuration in a given area of interest with

minimal human effort. Our experiments with the public datasets

reveal that the proposed autoencoder can successfully reduce WiFi

measurement variability caused by transmitter/receiver movement,

which ultimately increases gesture recognition accuracy by up to

58%.
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1 INTRODUCTION

Device free wireless sensing has emerged as a promising alterna-

tive to the wearable paradigms. In spite of tremendous research

effort in localization, activity recognition and healthcare applica-

tions, current models are still far from real world implementations.

WiFi enabled IoT device’s locomotion can negatively affect model’s

performance.

Sensitivity of WiFi channel measurements to the deployment

configuration (i.e. position of sender and receiver w.r.t the user)

is known as one of the key limitation of current WiFi device-free

sensing. As a result, most WiFi sensing systems requires operating

in the same configuration all the time [5].Had the sender and/or

receiver configurations been altered or the user followed a different

path, the captured features (i.e. spectrogram) will be different. The

reason behind this is that spectrograms are mainly capturing the

rate of change in wireless paths lengths [3]. Limited by this, sys-

tems trained on these features are required to either assume fixed

configuration (such as fixed sender and receiver setup in a corridor

environment [5]) or do re-training for every new configuration

which is not practical.

2 MOTIVATION & PROPOSAL

In the literature, two generic approaches were followed to resolve

this problem. The first one is to learn a configuration-independent

model that able to work across various configuration . Examples

include EI [1] that uses training data from multiple domains to

learn configuration independent representations. This requires col-

lecting data from numerous configurational changes (≥ 22 [1])

before the model can generalize. The second approach is to perform

translation to/from a reference configuration. In this direction, we

find CrossSense [6] that translates ( or “roams”) the model itself

using data from new configuration and transfer learning techniques

requiring retraining, albeit with low overhead, in new configura-

tions. Another way is to translate the actual wireless measurements

directly.WiAg[4] that constructs virtual samples in all possible tar-

get configurations given the actual samples and the gesture shape in

the reference configuration. Consequently, classifiers in all possible

configuration can be built and trained on virtual samples however

this requires the support of wearable IMU to capture data.

Inspired by this and in line with translation techniques, our

approach to counter the limitations is developing a system that

answers the questions of " What will spectrogram look like when

we change the configuration from X to Y?". At the core of this

system is automatic translation of the spectrogram to the target

configuration using deep convolutional autoencoder. Figure 1 il-

lustrates the concept of our proposal in one example application

scenario in which user controls IoT WiFi-enabled devices in smart

home using touchless gestures. A translation model would enable

a reference classifier to be used for newly installed devices with

a new configuration (a) or tolerate configuration changes of an

existing devices (b).
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Figure 1: Proposed sensing and inference pipeline

3 EXPERIMENTS

We are using a publicly available dataset provided by [7] and se-

lected 4 activities (Push&Pull, Sweep, Clap and Swipe) performed

by multiple users in an enclosed environment. The Channel State
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Figure 2: Classification Results

Figure 3: Translated Image

Information (CSI) is captured synchronously by 6 receivers placed

in fixed positions in the environment. We use spectrogram image

generated from the CSI data as the input for our deep model.

Among 6 receivers, we are taking one receiver, 𝑅3𝑥 as a reference
receiver where the considerable multi paths from wireless link are

received. Our notation 𝑅1𝑥–>𝑅
3
𝑥 shows the translation from source

location 𝑅1𝑥 to reference location 𝑅3𝑥 . Maximum 𝑅𝑥 −𝑇𝑥 distance is

2 m and receiver locations are apart 0.9 m to 2.8 m.

For the inference model,[CNN+GRU] based classification module

proposed by [7] is used. Figure 2 shows the range of accuracies

from each source receiver to the reference receiver and classification

accuracy.

We have tested the classification model first with the untrans-

lated images (untranslated) from source location resulting 20% to

45% accuracy for the classifier trained with images from reference

location.

Then, the translator is trained with Push & Pull activity only

(translated_1) preventing other activities to be unseen to the trans-

lator model. 𝑅2𝑥 to 𝑅3𝑥 translated images provide 58% of accuracy

performing better than the untranslated data. This is a cost saving

as only one activity is used for training. However, the baseline

accuracy is high as 78% when the classifier is using 𝑅3𝑥 samples

itself. In Figure 3 , we have included the translated image obtained

for the best performing transceiver pair (𝑅2𝑥 –> 𝑅3𝑥 SSI = 0.482).

4 CONCLUSION AND FUTUREWORKS

In this work, we are trying to address the tremendous effort in

model retraining and recollection of data in wireless sensing based

large scale human activity recognition models with the support of

deep learning based translation model.

To the best of our knowledge, our work is the first to address ex-

plicit configuration to configuration translation in wireless sensing

using deep learning

Our preliminary results act as a proof-of-concept for the future

works but not without the limitations. Our deep translation module

requires the human intervention for activity labeling and pair-

ing.This is to be improved with GAN architecture. Similar works

including Mic2Mic[2] demonstrated the applicability in improved

GAN architectures for non-paired domain to domain feature trans-

lations in other application areas.

ACKNOWLEDGMENTS

We would like to acknowledge the authors of Widar 3.0 [7] for mak-

ing available their data set publicly. This work is partially funded

by a CISCO Research Center University Grant.

REFERENCES
[1] Wenjun Jiang, Chenglin Miao, Fenglong Ma, Shuochao Yao, YaqingWang, Ye Yuan,

Hongfei Xue, Chen Song, Xin Ma, Dimitrios Koutsonikolas, et al. 2018. Towards
environment independent device free human activity recognition. In Proceedings
of the 24th Annual International Conference on Mobile Computing and Networking.
ACM, 289–304.

[2] Akhil Mathur, Anton Isopoussu, Fahim Kawsar, Nadia Berthouze, and Nicholas D.
Lane. 2019. MIC2MIC: Using cycle-consistent generative adversarial networks
to overcome microphone variability in speech systems. IPSN 2019 - Proceedings
of the 2019 Information Processing in Sensor Networks (2019), 169–180. https:
//doi.org/10.1145/3302506.3310398

[3] Kun Qian, ChenshuWu, Zheng Yang, Yunhao Liu, and Kyle Jamieson. 2017. Widar:
Decimeter-level passive tracking via velocity monitoring with commodity Wi-
Fi. In Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc
Networking and Computing. 1–10.

[4] Aditya Virmani and Muhammad Shahzad. 2017. Position and orientation agnostic
gesture recognition using wifi. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services. 252–264.

[5] Wei Wang, Alex X Liu, and Muhammad Shahzad. 2016. Gait recognition using wifi
signals. In Proceedings of the 2016 ACM International Joint Conference on Pervasive
and Ubiquitous Computing. 363–373.

[6] Jie Zhang and Zheng Wang. [n.d.]. CrossSense : Towards Cross-Site and Large-
Scale WiFi Sensing. ([n. d.]).

[7] Yue Zheng, Yi Zhang, Kun Qian, Guidong Zhang, Yunhao Liu, Chenshu Wu, and
Zheng Yang. 2019. Zero-Effort Cross-Domain Gesture Recognition with Wi-Fi.
(2019), 313–325. https://doi.org/10.1145/3307334.3326081

336


