
Demo Abstract: Human Activity Detection with Loose-Fitting
Smart Jacket

Qi Lin†‡, Yuezhong Wu†‡, Jun Liu†, Wen Hu†‡, Mahbub Hassan†‡

†University of New South Wales
‡Data61 CSIRO

(firstname.lastname)@unsw.edu.au

ABSTRACT

We demonstrate a human activity detectionwith casual loose-fitting

smart garment system. By employing a new type of highly sensitive,

stretchable, optical transparent and low-cost strain sensor and a

deep learning model enabled by CNN-LSTM, the loose-fitting jacket

is able to recognize 5 activities with 90.9% accuracywhen the system

is trained with the user data, and 73.5% accuracy when an unseen

user wears the smart jacket, which is comparable with tight-fitting

smart garment system. In the demonstration, we will showcase

activity recognition of three activities: walk, sit, and stand.
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1 INTRODUCTION

Electronics miniaturization and advancements in textile technology

have enabled integration of various types of sensors into textiles and

fabrics ushering in an era of E-Textiles or so called smart garments.

Posture or activity detection via smart garments has become a hot

topic of research in recent years [2, 4–6, 9, 11]. A fundamental

challenge facing smart-garment-based posture detection is the high

level of sensor signal noise caused due to the movement of the

garment relative to the skin. The problem can be largely addressed

by tight fitting of the garment, which is why the current smart

garment products focus on socks, undergarments, gloves, and tight-

fitting cuts for shirts and pants. However, for the smart garment

industry to really take off, accurate activities detection solutions

must be devised for the casual loose-fitting garments as well.

Facing this challenge, we developed a smart garment system by

attach four piezo-resistive strain sensors on a casual loose-fitting

jacket. Thanks to newly-designed transparent, low-cost and highly

sensitive mircocracks-based strain sensors and a deep neural net-

work, the loose-fitting jacket is able to recognize 5 activities with

90.9% accuracy when the system is trained with the user data, and

73.5% accuracy when an unseen user wears the smart jacket.

In this demonstration, we will showcase the activity detection

on both participants with trained data and unseen participants with

3 activities: walk, sit and stand.

2 TECHNICAL DETAILS

The processing pipeline of the smart garment system is shown in

Figure 1. The sensing unit for comprised of piezoresistive sensor,

amplifying circuit and data logger as shown in Figure 2. A newly-

Figure 1: The processing pipeline of the smart garment sys-

tem.

Figure 2: A sensing unit.

developed stretchable and wearable piezo-resistive strain sensors

based on flexible and conductive polymer nanocomposites were

mounted onto loose-fitting cloths. It features stretchable, trans-

parent, low-cost and high sensitivity. The sensitivity between the

stretched length and corresponding resistance changes can be com-

puted to be 306 kΩ/mm, which is approximately 150 times more
sensitive than the sensor used in previous works [9].

We use the SensorTag manufactured by Texas Instruments1 to

capture the strain measurements from the sensor. The data logger

SensorTag features a Cortex-M4 microcontroller, and a 2.4 GHz low

power radio transceiver that supports both Bluetooth Low Energy

and IEEE 802.15.4.To log the resistance changes of strain sensors, we

designed and implemented an amplification circuit to convert the

resistance changes into voltage changes. The stretch levels can be

thereby captured by a 12-bit on-board Analog-to-Digital Converter

(ADC) of the SensorTag within its dynamic ranges. The sampling

rate for the ADC is 128 Hz. Finally, the ADC voltage readings will

be stored in the on-board flash memory of the SensorTag for off-line

analysis.

We selected two joint locations, shoulder and elbow, as well

as two non-joint locations, waist and abdomen, and attached our

sensing units onto a L size jacket for male as shown in Figure 3.

We implemented three signal pre-processing algorithms for E-

Jacket: synchronization, noise filtering, and segmentation. All sens-

ing units attached on the smart garment are synchronized using

1SensorTag: http://www.ti.com/ww/en/wireless_connectivity/sensortag2015
/index.html
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Figure 3: Smart garment prototype with 4 sensor locations.

a time-slotted channel hopping-based (TSCH) [3] time synchro-

nization mechanism. After raw signal captured, we firstly apply

a Butterworth band pass filter with cut off frequency from 0.5 Hz

to 10 Hz to remove irrelevant energy, as the useful human motion

usually lies below 10 Hz [8]. We then apply sliding windows with

50% overlapping and the size of 4 seconds to segment strain signals.

Our deep learning model is a combination of a Convolutional

Neural Network (CNN) and a Long Short-Term Memory (LSTM) re-

current network (CNN-LSTM) [1, 10], which generally fits a human

activity recognition task.

The structure of the CNN-LSTMmodel is depicted in Figure 4.We

reshape input data from the 1d sequence to 2d matrix before feeding

them to the model. Firstly, we employ a two 1d-convolutional layers

on the input data so that we can extract robust features. A max

pooling layer is applied to extract the most important features from

the output feature map of the convoluational layers. The flatten

layer reshapes the featuremap frommax pooling layer to a 1d vector

which can be considered as a 1d time series data. The last two layers

are fully connected layers. We implement the ReLu activation in

the second last fully connected layer, and Softmax activation in

the last fully connected layer, which will output the class labels.

We insert two dropout layers after the second convolutional layer

and the LSTM layer respectively. The dropout rate is empirically

selected to be 0.5, which means that 50% of input units will be set

to be zeros.

3 DEMONSTRATION

In this demonstration, we will only showcase the prediction of

three activities: sit, stand, and walk, with smart garment system in

Figure 12. The training will be done with three participants before

the demonstration. At least one participant out of three will attend

the demonstration session. The demonstration with this participant

will showcase the activity recognition when a user trains the smart

garment system before use. Random participants will be invited

to wear the smart garment to showcase the activity recognition

when a new user uses the smart garment system without training.

Apparently, the first case is expected to have higher accuracy than

the second case.
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Figure 4: The CNN-LSTM model structure of E-Jacket.
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