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ABSTRACT

With the recent societal impact of COVID-19, companies and gov-

ernment agencies alike have turned to thermal camera based skin

temperature sensing technology to help screen for fever. However,

the cost and deployment restrictions limit the wide use of these

thermal sensing technologies. In this work, we present SIFTER, a

low-cost system based on a RGB-thermal camera for continuous

fever screening of multiple people. This system detects and tracks

heads in the RGB and thermal domains and constructs thermal

heat map models for each tracked person, and classifies people as

having or not having fever. SIFTER can obtain key temperature

features of heads in-situ at a distance and produce fever screening

predictions in real-time, significantly improving screening through-

put while minimizing disruption to normal activities. In our clinic

deployment, SIFTER measurement error is within 0.4◦F at 2 meters
and around 0.6◦F at 3.5 meters. In comparison, most infrared ther-
mal scanners on the market costing several thousand dollars have

around 1◦F measurement error measured within 0.5 meters.SIFTER

can achieve 100% true positive rate with 22.5% false positive rate

without requiring any human interaction, greatly outperforming

our baseline [1], which sees a false positive rate of 78.5%.

1 INTRODUCTION

Thermal cameras have recently gained exposure as a novel sen-

sor capable of sensing temperature in a variety of applications.

Originally developed for military applications, thermal cameras

have been commercialized to impact a wider field of applications.

Typically, these applications for thermal cameras do not require

extremely precise measurements, such as for detecting gas and ther-

mal leaks in buildings [2]. However, with the recent disruption of

society due to COVID-19 [3], companies and government agencies

have tried to leverage thermal cameras to measure accurate skin

temperature for fever screening. While fever is not always a symp-

tom of COVID-19, the ability to screen a subset of carriers from a

large population is still extremely valuable. It can help prevent the

spread of diseases such as COVID-19, or even seasonal flu. It is a

valuable tool to help prevent future pandemics.

In a pandemic, fever screening systems are needed in a wide vari-

ety of public applications. Some applications require fever screening

systems to handle high throughput, often with multiple entrances,

including hospitals, universities, transportation hubs, and commer-

cial buildings. Some applications requires a low cost system. In all

of these applications, cost, accurate and high throughput as well as

convenience are important considerations. Current fever screening

Figure 1: ColumbiaDoctors - Midtown deployment — Left:

nurse measuring a patient’s temperature using infrared

thermometer (used as ground truth); Right: SIFTER system

running in the reception entrance (next to the nurse).

systems that are designed for high throughput are not low cost,

while a low cost system are not capable of high throughput.

There are two major types of fever detection systems: non-

contact infrared thermometry devices (NCIT), and infrared ther-

mography (IRT) systems. Studies such as [4, 5] have shown the

potential of NCIT systems for fever screening. However, NCIT de-

vices have certain drawbacks, most notably that an employee is

required to be in close proximity to the patient. This increases risk

of exposure to the employee and can require significant human ef-

fort. On the other hand, current IRT systems require specific criteria

to be met for accurate temperature measurements, such as distance

to camera and acclimation to indoor temperature. Furthermore,

employees with specialized training are needed to operate and/or

interpret results of the temperature measurements. More recently,

research studies seeking to automate the screening of febrile hu-

mans [6–8] have encountered a number of challenges that limit full

automation. These systems require the face to be fully shown and

close to the camera no farther away than 10 to 50 cm [9].

The first challenge to better enable automatic screening of febrile

humans is that the measurements should be robust to conditions

that are not in the system’s control. First, skin temperature is largely

dependent on the ambient environment. For people who have not

yet been acclimated to the indoor environment, temperature mea-

surements will not be consistent [10]. Second, distance from thermal
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camera can can cause differences in thermal measurements. Third,

measurements of a single person may change in the presence of

multiple people. Although these conditions can sometimes be con-

trolled through protocols, improving measurement robustness to

these conditions brings advantages to the screening efficiency and

enforcement of protocol.

Another significant challenge preventing automatic measure-

ments is the accurate selection of temperature features. There are

variations in skin temperature for different regions of the face,

meaning that aggregate statistics will change depending on which

regions of the face are visible to the thermal camera. Many current

IRT systems utilize mean or maximum facial temperature, which

can vary even for the same person depending on facial perspective

or facial coverings (such as face masks, glasses, or hats). Other sys-

tems which detect facial landmarks may also have difficulties when

certain facial features are covered. Furthermore, certain regions of

the face are more predictive of actual body temperature, and thus

accurate temperature feature extraction is critical.

In this work, we present SIFTER, a low-cost system based on a

RGB-thermal camera for autonomous continuous fever screening of

multiple people. SIFTER handles the above challenges in its design,

and achieves the following key contributions:

(1) Robust and in-situ temperaturemeasurements:Weper-

form studies to reduce the effects of distance on tempera-

ture measurements, thus drastically increasing the operating

distance range of the fever screening system. In addition to

improving measurement accuracy at different ranges, SIFTER

increases measurement throughput by removing the require-

ments for the subject to stand directly in front of the in-situ

thermal camera for a prolonged period. This also reduces

the disruption to people’s normal activities, and helps to

bring their lives back to normal. Furthermore, we studied

the effects of cold outdoor temperatures on temperature

measurements, and offer a method to flag these people for

additional screening after acclimating to the indoor environ-

ment. In addition to protocols for enforcing acclimation, this

allows systems to detect people who have not yet acclimated

to indoor temperatures. Finally, we investigate the effects

of multiple measurements in a single frame on temperature

estimation accuracy.

(2) Accurate Thermal Feature Selection: Rather than rely

on aggregate statistics to estimate temperature, we model

thermal features by mapping temperatures onto a 3D head

model. This enables two important ideas: first, detected ther-

mal features are robust to changes in facial perspective, and

second, facial temperature features can be selected directly

from the 3D head model, without needing to train a network

to specifically target regions of the face. We demonstrate

improved accuracy over pre-trained models and advantages

in precision and recall over baseline model [1].

(3) Design for Ease of Deployment:We designed the system

to be low cost, easily deployable, and usable in both low and

high throughput settings. SIFTER uses the 399 USD FLIR One

Pro with a Jetson Nano, to keep the hardware cost less than

500 USD per unit. We developed a software library to deploy

on the Jetson Nano, which enables automatic interfacing

with the FLIR One Pro, encryption and transmission of RGB

and thermal images, and configuration for cloud services.

The cloud server is designed to provide temperature esti-

mation and fever screening as a service for multiple clients,

thus reducing direct cost of the system to the client.

(4) Fever Screening Optimization: We present variant gradi-

ent boosting method using asymmetric loss functions to tar-

get high temperature measurements in this fever screening

application. We compared these variations against a number

of other models and baseline methods, and demonstrate im-

provements in temperature estimation and fever screening.

On a six month dataset collected from amulti-speciality med-

ical practice, we achieved errors within 0.4◦F at a distance
of 2 meters and 0.6◦F at a distance of 3.5 meters.

2 RELATEDWORKS

Non-contact skin temperature sensing methods with thermal cam-

eras are becoming more common for detecting diseases such as

COVID-19. Researchers [1, 11, 12] have presented pipelines for

autonomously measuring thermal features using thermal cameras.

Further, many commercial companies have also developed thermal

camera based solutions for fever detection, which is traditionally

accomplished by thermometer, clinical records or genetic methods.

However, there are a number of challenges which inhibit adoption

of these temperature sensing systems, including the overall cost of

the system and deployment restrictions.

Deployment cost is critical in many situations. Existing systems

typically rely on higher end thermal sensors, to ensure some level

of measurement quality. For example, thermal camera companies

such as FLIR and Thermoteknix have begun developing systems for

detecting fever in populations to combat the spread of COVID-19.

These systems have been deployed in public places by government

agencies, such as airports, as well as in workplaces by big companies

such as Amazon. Wuhan Guide Infrared Co. sold out thousands of

skin temperature screening systems in two weeks for deployment

in airports, railway stations, etc, with price ranges from $5, 000
to $30, 000 1. However, for many scenarios such as workspaces,

classrooms, and shared residences, it may be infeasible to deploy

such expensive systems. In these cases, it is imperative that low-cost

versions be able to perform quality measurements.

Minimizing the number of sensors is one method for reducing

overall cost, and can be achieved by deploying the thermal camera

at a distance to increase field of view. With a larger field of view,

a thermal sensor is able to capture measurements from more peo-

ple [13], thus reducing the need for additional sensors. However,

the downside is the decrease in resolution; thus, it is important to

have a system which can recover quality measurements at longer

distances. Prior works have additional challenges in deployment

restrictions: spatial camera restrictions and restrictions of subject

behavior. For spatial restrictions, prior works typically require the

camera to be placed in a location where people can easily be de-

tected, such as in front of a desk [1] or at standing eye level for fever

1https://www.forbes.com/sites/jeremybogaisky/2020/02/10/we-are-running-as-
fast-as-we-can-coronavirus-sparks-surge-in-demand-for-infrared-fever-detection-
equipment/
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Figure 2: Block diagram of the fever screening pipeline.

detection systems 2. For many scenarios such as mass transit and

classrooms, it may be infeasible to deploy such a setup; thus, a better

system should have the flexibility of various spatial deployments.

As required by many prior systems, subject behavior is also

controlled. In [1, 11], users are required to face forward to allow

the thermal camera to easily detect facial features. In various skin

temperature screening systems, users are required to stand in front

of the thermal camera. Controlling subject behavior is unnatural,

and will not only increase the time and labor costs but also limit

the application of the system. Thus, a better system should be able

to continuously screen multiple people in view and in-situ, without

active participation from human subjects.

To address these issues, we developed a system which utilizes

smaller numbers of low cost sensors, can run continuously and in

different environmental conditions, and can screen multiple people

simultaneously without requiring active participation. This system

detects and tracks multi-person heads, estimates head orientation,

reduces thermal measurement errors, and maps facial thermal fea-

tures at-scale to 3D point-cloud head model to enable fever screen-

ing. Because SIFTER is low-cost, easily installed, non-intrusive, and

robust in a variety of conditions, SIFTER is a critical step towards

realizing systems and applications to create healthier city [14–27]

and building environments [28–35].

3 FEVER SCREENING PIPELINE

The goal of this fever screening pipeline is to estimate skin tem-

perature features for multiple occupants, given a stream of RGB

and thermal images that are noisy, low-resolution, uncalibrated

and without opportunistic observations of partial facial features, to

classify febrile humans. SIFTER’s fever screening pipeline consists

of six blocks, including: head detection, orientation regression, dis-

tance estimation, emissivity correction, matching and tracking, and

model mapping. Initially, the RGB and thermal images are passed

through an object detection pipeline trained to detect heads of all

people in view. From the detected RGB and thermal heads, we es-

timate orientation, correct for emissivity, and estimate distance

from the sensor. The thermal and RGB heads are then matched

and tracked with previous frames. Orientation and thermal data is

used to map skin temperature features onto a 3D point-cloud head

model. An illustration of the different components of SIFTER’s fever

screening pipeline is shown in Figure 2. The hardware used in this

2https://www.reuters.com/article/us-health-coronavirus-amazon-com-
cameras/exclusive-amazon-deploys-thermal-cameras-at-warehouses-to-scan-
for-fevers-faster-idUSKBN2200HT

Figure 3: RGB and thermal datasets used for training the

head detection network.

system to capture RGB and thermal images is a common low-cost

RGB-thermal camera, FLIR ONE Pro.

3.1 Head Detection

To our knowledge, there are no open source networks trained specif-

ically to detect faces or heads in thermal images. For SIFTER, one

requirement is the detection of heads in both the thermal and RGB

images. To verify that existing networks [36–38] are unable to de-

tect faces or heads in RGB and thermal images, we performed an

empirical study using YOLOv3 [39], a popular detection network.

Our study showed that the pre-trained network does not perform

well on RGB or thermal images. For RGB images, networks are

trained on a large number of classes, to improve versatility. How-

ever, there is no class which includes the front and back of heads;

thus, YOLO is not pre-trained to detect heads from the back. Fur-

ther, standard datasets [40] do not include thermal images, which

not only removes color information, but also removes landmarks

or features important for identifying faces. Finally, due to the cur-

rent pandemic, most people are wearing face masks, which is not

included in popular image datasets, reducing the accuracy of pre-

trained models even further.

To address this issue, we explored two options: pre-existing

datasets, and a custom labeled dataset. For pre-existing datasets, we

utilize the head dataset from the South China University of Tech-

nology (SCUT) [41], consisting of over 100,000 labeled bounding

boxes of heads from different directions. This dataset was chosen

over another head dataset [42] due to similarities in environmen-

tal conditions. The SCUT dataset is taken inside classrooms in a

university, which is similar to the indoor settings in our application.

Secondly, we considered a custom labeled dataset, which carries

two advantages. For RGB images, we can provide examples which

are similar to our anticipated conditions, such as image quality

and facial coverings. In addition to RGB images, we also chose to

incorporate labeled thermal images, as this would help a network

recognize heads in the thermal domain. We deployed SIFTER in a

local restaurant to collect over 100 hours of images, and hand labeled

1000 images each of RGB and thermal images. More information

about this deployment is described in Section 5.1.

As a baseline for head detection, we explored image process-

ing methods for identifying heads, especially in the thermal do-

main. One possibility for identifying heads in the thermal domain

is by identifying bodies with high temperatures compared to the

background. However, there are possibilities for high temperature
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Figure 4: Model of thermal radiation captured by the sensor.

sources which are part of the environment, which may result in a

high false positive rate.

From our own tests, we determined that YOLOmeets the require-

ments for accuracy and has low latency. We trained YOLO using

the SCUT head dataset as well as the custom RGB and thermal

image dataset in different strategies, Figure 3. After training, the

detection network outputs bounding boxes of heads in the RGB and

thermal images, which are further processed for head orientation

and thermal calibration.

3.2 True Temperature Estimation

The main sensor in common thermal cameras, as well as in the FLIR

ONE Pro, is a microbolometer focal plane array, consisting of a

number of pixels which sense radiation. Each pixel, similar to visible

light camera pixels, senses radiation in a conical area visible through

the lens of the camera. Typically, the sensor is calibrated after

manufacturing to eliminate sources of error due to pixel variance.

However, the sensors are calibrated against a blackbodywith known

radiance; most surfaces in the real world are not close to blackbody

radiators. These sensors are prone to multiple sources of error due

to the differences between real world environments and laboratory

settings. For our system, there are two primary sources of error

that we seek to minimize: surface emissivity, and spot-size effect.

Reducing the effects of these phenomena is critical to robustly

estimating the true temperature.

3.2.1 Emissivity. The radiation energy measured by the sensor

is not equivalent to the radiation energy given off by the measured

surface. The first reason is the emissivity of the surface; most sur-

faces do not emit 100% of the radiation energy, but instead also

reflect energy from the surrounding environment. The second rea-

son is due to transmittance; the medium which the radiation travels

through can lead to attenuation, while introducing radiation en-

ergy from the atmosphere. Thus, it is critical to correct for these

phenomena to recover a more accurate measurement.

Figure 4 illustrates the transmission of radiation energy from a

surface to the sensor. Radiation energy emitted from the surface

consists of a linear combination of the energy of the body𝑊𝑜𝑏 𝑗 , and

the energy of the reflection𝑊𝑟𝑒 𝑓 𝑙 (typically surrounding surfaces).

The critical parameter is emissivity of the surface 𝜖 , which for

human skin is between 0.95 and 0.98.
After the radiation energy leaves the surface, atmospheric energy

𝑊𝑎𝑡𝑚 is introduced as a linear combination with parameter 𝜏 . This
parameter is the atmospheric transmittance, which is dependent

on a number of factors including the distance between the surface

and the sensor, and environmental conditions such as the humidity.

Figure 5: Distance estimation method using the size of the

bounding box to estimate distance.

The total radiation energy received by the sensor is thus:

𝑊𝑡𝑜𝑡 = 𝜖𝜏𝑊𝑜𝑏 𝑗 + (1 − 𝜖)𝜏𝑊𝑟𝑒 𝑓 𝑙 + (1 − 𝜏)𝑊𝑎𝑡𝑚

Temperature can be related to radiation energy by the Stefan-

Boltzmann law:𝑊 = 𝜎𝑇 4, where 𝜎 is the Stefan-Boltzmann con-

stant. Previous works [43] have shown that humidity and temper-

ature change atmospheric transmittance heavily only when the

distance between the body and sensor is on orders of hundreds of

meters. However, our system is intended for distances of less than

5 meters, where distance has a much larger impact than humidity

and temperature. After measuring the ambient temperature and

estimating the atmospheric transmittance according to [43], we can

recover the original temperature 𝑇𝑜𝑏 𝑗 of the surface:

𝑇𝑜𝑏 𝑗 =
4

√
𝑊𝑡𝑜𝑡 − (1 − 𝜖)𝜏𝜎𝑇 4

𝑟𝑒 𝑓 𝑙
− (1 − 𝜏)𝜎𝑇 4𝑎𝑡𝑚

𝜖𝜏𝜎

3.2.2 Distance Estimation. A thermographic camera measures

the temperature of objects by sensing infrared radiation. The spot-

size effect influences the measured radiation; the measured temper-

ature of human skin changes with distance from the thermographic

camera. Because the FLIR One Pro camera doesn’t measure depth,

we require a method to estimate distance from captured RGB and

thermal images.

Our method to estimate the distance from the FLIR camera is

primarily based on perspective projection (the observation that the

further away the object is from the camera, the smaller the object

area is in the image). Figure 5 shows the area-based estimation

method, assuming that the lens is a small hole. The definition of

horizontal field of view (HFOV) and vertical field of view (VFOV) for

an RGB lens is HFOV = 2 arctan(𝑤/𝑓 ) and VFOV = 2 arctan(𝑤/𝑓 ),
where𝑤 refers to the dimension and 𝑓 is the focal length. The two
large rectangles are the view plane of the camera at different dis-

tances, and the small rectangle in the view plane is the bounding

box of one detected head. According to the proportional relation-

ship between the actual distance and the pixel distance, and the

definition of HFOV and VFOV:

𝐻/2 = 𝑤𝐻 = 𝐷 × tan(HFOV/2), 𝐻𝑏 = 2𝑤𝐻 × ℎ𝑏/ℎ

𝑉 /2 = 𝑤𝑉 = 𝐷 × tan(VFOV/2), 𝑉𝑏 = 2𝑤𝑉 × 𝑣𝑏/𝑣

The actual area size of object is constant: 𝑆𝑏 = 𝑉𝑏𝐻𝑏 = constant.

Then we can derive the following formula, and roughly estimate 𝐷 ,
the distance from camera to view plane, once the average constant

is trained through multiple ground truth measurements:

𝑣𝑏ℎ𝑏𝐷
2 = constant
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The distance𝑅, distance from camera to object, is calculated through

Pythagorean Theorem, where 𝑥𝑏 , 𝑦𝑏 are the central coordinates of
bounding box:

𝑅2 = 𝑋 2
𝑏 + 𝑌

2
𝑏 + 𝐷

2 = (
𝑥𝑏
ℎ
× 𝐻 )2 + (

𝑦𝑏
𝑣
×𝑉 )2 + 𝐷2

To minimize bias in the RGB domain, we also compute the distance

𝑅 from the thermal domain and apply stereo vision [44] to calculate

the final distance.

3.3 Head Orientation

The RGB and thermal images capture only a certain perspective of

each head, which can cause issues for landmark detection networks,

and cascaded CNNs [45]. Since the ultimate goal is to use thermal

values of specific areas of the face to perform fever detection, a

correspondence between the pixel values and parts of the face

is required. This correspondence can be determined by utilizing

the head orientation. Specifically, the pitch, roll, and yaw of each

head is sufficient to determine the correspondence. We start with

a neural network implementation FSA-Net [46]. FSA-Net takes a

single image as input, predicts head poses based on regression and

feature aggregation, and output pitch, roll and yaw of each head in

the image.

The main challenge with integrating this network into this sys-

tem is three-fold. First, many of the detected heads are not directly

facing the camera. The original FSA-Net trained on the 300W-LP

dataset [47] only estimates orientations within 100 degrees (refer-

ence is straight forward), meaning that some images of the side head

and most of the back head will not produce an estimate. However,

side views of a face can still provide important thermal information.

Second, due to current circumstances, many people are wearing

masks, which are not included in the original training sets for FSA-

Net. Lastly, there are differences in the image quality between the

original training sets and the FLIR One camera, which can cause a

loss in orientation accuracy.

To increase the orientation estimation capability of the FSA-

Net, we hand labeled a custom dataset of head images at various

pitch and yaw angles. Similar to the head detection network, we

hand labeled 1000 images of heads with orientation taken from

the restaurant deployment of SIFTER, which gives a variety of

orientation angles, many examples of people wearing facemasks,

and similar image quality. After retraining FSA-Net with this new

dataset, we noted an increase in orientation accuracy especially

for people wearing masks, and for angles outside the original 100

degree field. We also noted that accuracy suffers for angles where

the majority of the face is covered by hair; this is potentially due

to the fact that key identifying features for estimating orientation

(such as the nose, eyes) are not present for angles towards the back

of the head.

3.4 Matching and Tracking

Once head orientation has been extracted from RGB images, and

thermal correction has been done on thermal images, it is important

to match temperatures from the thermal images onto the corre-

sponding location on the face in the RGB image. Furthermore, this

information should be tracked across successive frames to construct

time dependent information, which may be important for reducing

error and potential future applications.

The difficulty in matching is that due to perspective changes

between the thermal and RGB cameras, the same person will not

appear in the same location in both images. Further, in the case of

the FLIR ONE Pro camera, the field of view and image resolution

are different between the two cameras. To successfully match heads

in the RGB and thermal images, we first calibrate the images in both

domains to correct the distortion. After calibration, we compare

the number of detected heads in two images. If the numbers are

equal, RGB heads and thermal heads are corresponded in order

from left to right on the image. Because the lenses are facing the

same direction and the relative positional relationships of people

are same. However, if the numbers are not equal, there is a missed

or wrongly detected head. We use Euclidean distance from the

bounding box centroids to determine the closest match and remove

the unmatched heads. Although there is significant potential to

improve this matching algorithm, this is out of the scope of this

work. In practice, this matching method achieves 94% accuracy rate.

The current framerate of our system is limited due to the transfer

of images to the cloud for analysis. Due to this limitation, popular

tracking algorithms that rely on low object displacement such as

optical flow are not reliable. For our application, we implemented a

Kalman filter based on the centroids of the bounding boxes in each

frame. This method allows tracking of heads in the RGB domain

across multiple frames. Although there are more complex methods

for tracking that do not rely on high framerate and may be more

reliable (such as particle filtering), in practice, the Kalman filter

provides enough accuracy in tracking for our application.

Lastly, we combine matching and tracking. For each pair of RGB

and thermal images, the bounding boxes of heads are matched. In

consecutive frames, a Kalman filter is used to track the centroids of

bounding boxes in the RGB domain only. The one set of matched

and tracked bounding boxes corresponds to a single person in

multiple frames, and is passed on to model mapping to produce a

3D thermal model.

3.5 Mapping Features to 3D Head Model

Before thermal features can be extracted for skin temperature esti-

mation, we need to determine a mapping of the thermal image to a

facial model. For instance, if we want to use the left cheek region

in the fever classification model, we need to track the pixels that

correspond to the left cheek in the thermal image.

We can utilize the thermal image with the orientation informa-

tion to project values onto a head model. For the head model, we

chose a standard 3D point cloud model, which we will project our

thermal values onto. The computation for keeping track of the

thermal values is done in the C++ Point Cloud Library.

To map the thermal values from the thermal image to the point

cloud model, we first need to determine the points on the head

model which are visible from the camera. The orientation predicted

by the orientation network in Section 3.3 provides the angle dif-

ference between the orientation of the head with respect to the

camera. This angle difference can be converted to a normal vector

of the form �𝑛 = 〈𝑛1, 𝑛2, 𝑛3〉.
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Figure 6: Mapping thermal features onto a 3D point cloud.

To increase speed, the point cloud is bisected along a plane

intersecting the center of the point cloud. The equation of the plane

can be defined as:

𝑛1 (𝑥 − 𝑥0) + 𝑛2 (𝑦 − 𝑦0) + 𝑛3 (𝑧 − 𝑧0) + 𝐷 = 0

where 𝐷 = 0 assuming the point cloud is centered at the origin.

Only the points above the plane are considered to be visible by

the camera. A more refined selection of points can be done by

raytracing from the camera location; however, this increases the

computation time significantly. Once the points have been selected,

the mapping between the 2D thermal image and the 3D points can

be done in two ways. We first project the 3D points onto the prior

defined 2D plane. Let the point we want to project be defined as:

𝑝 = (𝑥,𝑦, 𝑧), then the projected point can be computed as follows:

𝑝𝑝𝑟𝑜 𝑗 = 𝑝 − �𝑛 ∗ �𝑛 · �𝑝

A change of basis changes this plane into the Cartesian coordinate

space by using the transformation matrix𝑀 :

𝑀 =

⎡⎢⎢⎢⎢⎣
𝑛1𝑥 𝑛2𝑥 𝑛3𝑥
𝑛1𝑦 𝑛2𝑦 𝑛3𝑦
𝑛1𝑧 𝑛2𝑧 𝑛3𝑧

⎤⎥⎥⎥⎥⎦
After the change of basis, the points will be aligned along one of

the Cartesian axes (𝑥); thus, the thermal image can be fit onto the
projected points by first finding the minimum and maximum of the

other two axes, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥 . Each point corresponds to

a pixel in the thermal image (𝑝𝑥 , 𝑝𝑦 ) as in the equation:

𝑝𝑦 =
(𝑦 −𝑚𝑖𝑛𝑦) ∗𝑤𝑖𝑑𝑡ℎ

𝑚𝑎𝑥𝑦 −𝑚𝑖𝑛𝑦

𝑝𝑧 =
(𝑧 −𝑚𝑖𝑛𝑧) ∗ ℎ𝑒𝑖𝑔ℎ𝑡

𝑚𝑎𝑥𝑧 −𝑚𝑖𝑛𝑧

In addition, to help reduce noise in the pixel values, we combine ob-

servations with previous measurements. The temperature estimates

for each point on the head model is saved, and new measurements

are averaged to produce new temperature estimates. The overview

of thermal feature mapping is shown in Figure 6.

3.6 Fever Detection

With constructed 3D head models, we can choose which regions

of the face to use as features for estimating temperature and fever

Figure 7: Block diagram of SIFTER architecture.

screening. The area around the temples and the forehead can be

measured to estimate body temperature and detect fever [48, 49].

Furthermore, we utilize a temporal thermometer to collect ground

truth which measures forehead and temple skin temperature. For

these reasons, we extract temperature statistics from three regions:

left temple, right temple, and forehead. We calculate average, me-

dian and maximum temperature values for these three regions as

the thermal features for temperature estimation and fever screen-

ing.

4 SYSTEM ARCHITECTURE

We designed the SIFTER with three components: a sensor node, a

cloud server, and a client, as shown in Figure 7.

4.1 Sensor Node

The sensor node is responsible for capturing RGB-thermal images,

encrypting the images, and transmitting the images to the cloud

server for processing. Once the system has been deployed, the

sensor node is able to run continuously without human intervention

to prevent any potential exchange of bacteria or viruses. There are

two criteria which are emphasized to improve deployability in

different environments: cost and configuration.

To minimize cost of deployment, the sensor node is composed

of two main components: a FLIR One Pro thermal camera, and an

NVIDIA Jetson Nano board. The FLIR One Pro thermal camera is

significantly lower cost than most commercial thermal cameras,

which often cost upwards of $1, 000. In addition, the Jetson Nano
board replaces the typical mobile device interface for the FLIR One

Pro to further reduce the cost of each individual sensor node.

To reduce the overhead of deployment, a software library was

developed for the Jetson Nano to continuously receive thermal and

RGB images from the FLIR One Pro, encrypt the images, and trans-

mit the images securely to a cloud server for processing. Features

of this library include parsing of raw data from the FLIR One Pro,

encryption of the thermal and RGB images, and configuration files

for quick setup for communicating with the server.
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(a) Yaw angle. (b) Pitch angle.

Figure 8: Average yaw and pitch angle prediction error at

different yaw and pitch angle displacements.

4.2 Cloud Server

After image data is transmitted from the sensor node to the cloud

server, the cloud server is responsible for decrypting and decoding

the image, running the processing pipeline, saving results in the file

system or database, and serving the web client. One major benefit

of the cloud server is the ability to provide temperature estimation

and fever screening from RGB and thermal images as a service,

which can reduce the cost to the client significantly.

The cloud server consists of a Flask back-end server, a Redis

in-memory database and a Node.js web server. Flask is a python

library that can handle image data sent from sensor node. This

flask back-end server handles the image data and calls the image

processing pipeline. The Node.js web server serves the web client.

Image data and detection results are shared between the flask back-

end server and web client using the Redis in-memory database. Our

cloud infrastructure can be deployed on a typical server or through

common hosting services, like Amazon AWS. In the restaurant

deployment, we deployed a cloud server in a desktop computer,

with an Intel i5 CPU, 8G RAM and Nvidia TitanX GPU. In the

medical practice deployment, a cloud server is deployed in a Google

Cloud Platform (GCP) Compute Engine instance, with 4 virtual CPU

cores, 32G RAM and an Nvidia P100 GPU.

4.3 Web Client

The web client is a website opened on another device that enables

clients, such as hospital employees, to monitor images collected

from the sensor node and the fever screening results from the

system pipeline in real-time. The web client consists of a Node.js

web server and a client side. The Node.js web server is part of the

cloud server and is hosted in the GCP Compute Engine instance, in

which the Node.js is a open source javascript run-time environment.

On the client side a web page is served giving clients the capability

to monitor real-time RGB-thermal images, and historical images.

Hospital employees can also delete both raw images and detection

results through the interface if requested by a patient, in accordance

to the terms of the IRB for this project.

5 MICRO-BENCHMARKS

We first evaluate the individual components of the fever screening

pipeline to demonstrate the system’s ability to accurately select

and extract thermal features. An early prototype of SIFTER was

deployed in a local restaurant to gather images for training the

various models in the fever screening pipeline.

Figure 9: Absolute distance estimation error of the described

area method on the dataset at different distances.

5.1 Local Restaurant

To gather preliminary images for training, an early prototype was

deployed in a local restaurant. The system ran continuously for

3 weeks, more than 30 000 images have been gathered. A portion

of these images were labeled to train and evaluate early pipeline

models in SIFTER, including the YOLO head detection model and

FSA-Net head orientation detection model.

5.2 Head Detection

As described in Section 3.1, we primarily focus on detecting heads

by training YOLO [39] on different datasets, namely the SCUT head

dataset [41] and a custom labeled RGB and thermal dataset taken

from images at the local restaurant deployment. By incorporating

both RGB and thermal images in the training data, we allow YOLO

to learn head features from both image domains. Datasets were

balanced to not provide bias towards either domain.

We compared YOLO trained with different datasets. The network

was first trained with the SCUT head dataset only, to determine

precision, recall, and intersection over union (IOU) for RGB im-

ages. Next, we trained YOLO with interleaved RGB and thermal

images to improve performance on detecting heads in the thermal

domain. When trained with both types of images, YOLO was found

to perform better on both RGB and thermal images in precision,

recall, and IOU, as shown in Table 1. Note that all models trained

and tested in Table 1 include images from the SCUT dataset and

the restaurant dataset. We see that there is relatively little change

in performance in the RGB domain. However, there is a significant

Test on RGB Set Precision Recall IOU

YOLO with RGB 97.0% 92.1% 72.8%
YOLO with RGB-Thermal 99.0% 98.0% 80.3%

Test on Thermal Set Precision Recall IOU

YOLO with RGB 99.8% 8.7% 18.8%
YOLO with RGB-Thermal 98.0% 99.0% 83.9%

Table 1: Precision, recall, and IOU on RGB and thermal test

sets when training on different training sets.
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Figure 10: Real-time images available to hospital staff displaying detected people and fever screening estimates.

improvement in recall in the thermal domain, due to the addition

of thermal images in the training set.

5.3 Head Orientation

As described in Section 3.3, the pre-trained FSA-Net implementa-

tion did not meet accuracy requirements. One major change is the

inclusion of face masks, which greatly affects features that are used

by FSA-Net to estimate orientation. We hand labeled orientation for

over 500 head bounding boxes from the restaurant dataset, and re-

trained and evaluated FSA-Net. As shown in Figure 8, the retrained

FSA-Net significantly reduces error in yaw and pitch angles. Note

that the last axis, roll, is not shown as this angle varies the least,

and the pre-trained version already achieves a low prediction error.

5.4 Distance Estimation

As described in Section 3.2.2, we estimate distance from the area of

the bounding boxes in the RGB and thermal images. For training

data, we labeled over 500 heads with ground truth distances. After

training, we evaluated the method on 25% of the dataset, as shown

in Figure 9.With bounding boxes up to 3.5 meters away, our method

achieves an average accuracy of 0.064 meters. Intuitively, the error
and variance increases at larger distances. More advanced methods

can be utilized in future works to further reduce distance error.

5.5 Matching and Tracking

To evaluate matching and tracking accuracy, we selected 500 frames

from the restaurant dataset and labeled bounding boxes with a

unique ID, which associates bounding boxes across successive RGB

and thermal frames. This simple methods can achieve a 94.4% accu-

racy in mathcing and 91.3% accuracy in tracking, respectively. Al-

though these methods are acceptable for the restaurant and medical

practice deployments (with few people in each frame), we recognize

that more complex environments (especially greater numbers of

people in frame) will require more complex methods to improve

both matching and tracking accuracy.

6 REAL-WORLD EVALUATION

To evaluate the temperature estimation and fever screening capa-

bilities of SIFTER, we conducted a real world user study to com-

pare SIFTER with the clinically validated Withings Thermo NCIT3.

We received IRB approval to deploy SIFTER on the ground floor

practice in a large multi-speciality medical practice, Name redacted

for double blind submission. Over the course of six months, we col-

lected a dataset consisting of measurements from over 4000 people

with SIFTER and the Withings Thermo NCIT.

6.1 Medical Practice Deployment Dataset

In the medical practice deployment at ColumbiaDoctors - Midtown,

patients enter through a single entrance either from the outside,

or from a different floor in the medical practice. The patients ap-

proach the reception desk, which enables SIFTER to record multiple

measurements at different distances, as shown in Figure 10. An on-

site nurse records the ground truth temperature with the Withings

Thermo NCIT shown in Figure 1, which is not in view of SIFTER.

Our dataset consists of the following features:

(1) SIFTERTemperature Features.Average, median andmax-

imum temperatures are recorded for the forehead, left temple,

and right temple regions for each detected person. These

features are extracted from the 3D head model described in

Section 3.5.

(2) Baseline Temperature Features. For comparison, we also

collected baseline temperature features commonly used by

other fever screening systems, including maximum and av-

erage temperature of the entire face.

(3) Distance. As described in Section 3.2.2, distance for each

detected person is estimated and stored as a feature.

(4) Acclimation.Whether a person is acclimated to the indoor

environment also affects skin temperature. In this deploy-

ment, a person can enter the ground floor practice from

either the outside or from a different floor. Both of these

3Withings Thermo: https://www.withings.com/us/en/thermo
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Figure 11: ROC curves for different regression models.

routes are visible to SIFTER, so an acclimation feature can

be assigned to each person.

(5) Delay. For people who are not yet acclimated to the indoor

environment, the skin temperature may change between

successive measurements. To adjust for this temporal change,

we add a delay feature, which is the time between the SIFTER

measurements and the ground truth measurement.

(6) Outside Temperature. The effects of temperature acclima-

tion on skin temperature depend on both the outside and

inside environments. We also correspond each temperature

measurement with the current outside temperature to ac-

count for this effect.

(7) Ground Truth.An onsite nurse measures ground truth tem-

perature using the Withings Thermo NCIT. This measure-

ment is saved along with a timestamp, which is associated

with the SIFTER measurements. This measurement acts as

the label for machine learning regression.

6.2 Fever Screening Study

To evaluate the potential screening capabilities of SIFTER, we imple-

mented and trained a number of different models to measure fever

screening performance. We explored two categories of models:

(1) SIFTER Regression Models:We implement and train lin-

ear regression, random forest and gradient boosting models

using SIFTER temperature features to predict ground truth

temperature.

(2) BaselineModels:We also implement baseline models, aver-

age, maximum, and Li et al. [1] to compare against the SIFTER

models. These models use the baseline features, such as av-

erage and maximum facial temperature, rather than the fea-

tures extracted from the 3D head models. For Li et al., we

train a linear regression model on the average and maximum

facial temperatures. Li et al. is an important baseline as it

represents prior works that utilize statistics on the entire

facial region, rather than on specific facial features.

(a) Light GBM 5x asymmetric

loss with balance point thresh-

old.

(b) Light GBM 5x asymmetric

loss with 100% true positive rate

(recall) threshold.

Figure 12: Fever prediction confusion matrices.

In addition to the standard regression models, we also explored

the performance of a few custom gradient boosting models. While

training regression models such as random forest with depth 10, we

noticed through inspection a general underestimation of predicted

temperature for higher ground truth temperature values. While this

is an undesirable characteristic, it also provides an opportunity to

potentially improve febrile human detection. The intuition is that

measurements with higher ground truth temperatures are closer to

the decision boundary, and thus having more accurate estimations

for these temperatures will improve the decision boundary.

To improve estimation of high ground truth temperature mea-

surements, we designed asymmetric loss functions to give greater

penalty for underestimation of predicted temperature. We found

empirically that asymmetric L2 loss improved ability to discrim-

inate febrile humans. To implement asymmetric loss, we utilize

LightGBM, a gradient boosting library which allows definition of

loss. We define the asymmetric L2 loss, where 𝑓 (𝑥) is the ground

truth and 𝑓 (𝑥) is the prediction as follows:

𝐿𝑖 =

{
𝛼 (𝑓 (𝑥) − 𝑓 (𝑥))2 𝑓 (𝑥) − 𝑓 (𝑥) ≤ 0

(𝑓 (𝑥) − 𝑓 (𝑥))2 𝑓 (𝑥) − 𝑓 (𝑥) > 0

𝛼 is a tunable parameter that defines what factor we asymmet-

rically penalize temperature underestimation. We found that the

mean temperature estimates are closer to ground truth for high

ground truth temperatures for Light GBM with 2𝑥 and 5𝑥 penalty
than with Random Forest with Depth 10.

To evaluate fever screening, we modified the label of the med-

ical practice deployment dataset. The Center for Disease Control

and Prevention (CDC) threshold for fever is 100.4◦F. However, we
choose a more conservative threshold: 98.6◦F to minimize the false
negative rate to ensure that close to all people who actually have

fevers are detected. We labelled the ground truth measurements

above 98.6◦F with a 1 to indicate fever, and measurements at or
below 98.6◦F with a 0 (indicating normal temperature). For overall
evaluation, we remove occupants who are not acclimated to the in-

door environment, as this has a substantial impact on the accuracy

of the fever screening system. We present and discuss possibilities

for detecting non-acclimated occupants in Section 6.2.3.

For this evaluation, each model was trained and evaluated on a

75% : 25% train and test split on the medical practice deployment

dataset. We compared all of the described models on a receiver op-

erating characteristic curve (ROC curve) by sweeping the threshold
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Figure 13: Temperature estimation error comparison be-

tween Random Forest (Depth 10), Light GBM with dou-

ble and 5x asymmetric loss for different measurement dis-

tances.

temperature to understand the screening capabilities of each model.

As shown in Figure 11, the best performing models are the Light

GBM models with asymmetric loss functions, followed by Light

GBM with symmetric L2 loss and Random Forest with depth 10.

This suggests that by focusing on improving temperature estima-

tion accuracy for high ground truth temperature data, we are able

to improve the ability of these models to screen for febrile humans.

In Figures 12a and 12b, we show the confusion matrix for fever

screening using Light GBM with 5x asymmetric penalty and thresh-

olds at the balance point and at 100% recall. If we select the balance

point, or𝑚𝑎𝑥 𝑇𝑃𝑅 − 𝐹𝑃𝑅 where TPR and FPR are the true positive

rate and false positive rate respectively, we are able to achieve an

89.3% recall with 62.5% precision for 5x asymmetric penalty. To

reduce the spread of virus, we aim to detect all febrile humans,

even if we need to sacrifice the false positive rate. We can oper-

ate SIFTER at different operating points, and can optimize for 100%

TPR. At 100% TPR, meaning we correctly classify all potentially

febrile people, our system can achieve 22.5% FPR using Light GBM

with 5x asymmetric penalty. In comparison, the baseline methods

can only achieve 100% TPR by greatly sacrificing FPR. The baseline

average, maximum and Li et al. achieve FPR of 79%, 81%, and 78.5%.
Although a 22.5% FPR may seem high, we note that people who

are detected to have a fever, will likely undergo further screening

by health professionals or more accurate systems to confirm our

measurement. Although this requires another stage of screening,

our system still has the potential to significantly reduce human

intervention for the majority of people without symptoms.

6.2.1 Distance Performance. In addition to the overall evaluation,

we also studied characteristics of the medical practice deployment

dataset. For this purpose, we created five different datasets each

consisting of a subset of the main dataset:Whole Dataset, consist-

ing of the entire dataset; Indoor Dataset, consisting of only people

acclimated to the indoor environment; Outdoor Dataset, consisting

of only people not acclimated to the indoor environment; Single

Dataset, consisting of people who are measured independently;

Multiple Dataset, consisting of people who are measured with other

people in view of the sensor. We also divided the dataset by distance

ranges to study the effects of distance on measurement accuracy.

Figure 14: Mean Absolute Error of regression and baseline

model temperature predictions ondatasets including and ex-

cluding people not acclimated to the indoor environment.

Since the distance from the RGB-thermal camera has a signifi-

cant effect on the measured temperatures, it is critical to evaluate

the effect of distance on the predicted temperature accuracy. We

tested three of the best performing regression models on varying

distances, Random Forest with depth 10, Light GBM with double

asymmetric loss and with 5x asymmetric loss. As shown in Fig-

ure 13, the two GBM models increase temperature estimation error

over the random forest model, on average by less than 0.1◦F for
both models. Another important observation is that temperature

estimation error is relatively stable below 2 meters, while typical

infrared thermometers only support 10 to 50 centimeters [9].

6.2.2 Performance on Whole vs. Indoor Dataset. As recommended

by ISO 13154:2017 [50], measurements are better standardized when

people are acclimated to the indoor environment. To better study

this phenomenon, we compare model performance when including

or excluding people who are not acclimated to the indoor environ-

ment. During our deployment of SIFTER at the medical practice,

the average outdoor temperature was 38 F compared to an average

indoor temperature of 72 F, suggesting that people not acclimated

to indoor temperatures may result in biased measurements.

As shown in Figure 14, each model’s temperature MAE improves

by 14.7%, 13.3%, 18.0%, 9.6%, and 14.7%, respectively, when using
the indoor dataset vs. the whole dataset. As expected, the results

indicate that the inclusion of measurements of people who are not

acclimated to the indoor temperature reduces the ability for models

to predict temperature. Baseline and averagemodels achieve greater

than 1 degree MAE on both datasets, and are not shown.

6.2.3 Improving Outdoor Acclimation Dataset Accuracy. One major

challenge in automated fever screening systems is enforcement of

acclimation to indoor environments. People who are screened be-

fore acclimation to the indoor environment will not be standardized

with the indoor acclimated population, and as seen in Figure 14,

results in higher errors between prediction and ground truth. Clas-

sification of acclimation can help in automated systems requir-

ing acclimation to the indoor environment. Once detected, non-

acclimated people can be flagged directly for a secondary screening,

or made to wait for a certain time duration. We first explore im-

proving the accuracy of temperature prediction by using ambient

temperature and delay features. The intuition is that by improving

temperature prediction, we can better differentiate whether people

are acclimated to the indoor environment.
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Figure 15: Mean Absolute Error of regression and baseline

model temperature predictions using different feature sets.

As shown in Figure 15, adding ambient temperature and delay

features reduces temperature prediction error across all five regres-

sion models by 38.8%, 25.3%, 37.8%, 3.8%, and 1.6%. Random forest

and gradient boosting methods benefit the most from the additional

features. Using our best performing model, gradient boosting, we

proceeded to apply a threshold to predict whether a person is accli-

mated with the addition of ambient temperature and delay features.

As shown in Table 2, the addition of outdoor ambient tempera-

ture provides an improvement in recall and F1 score for prediction

of non-acclimation, while the addition of delay reduces both recall

and F1 score. This suggests that while outdoor ambient tempera-

ture is useful for classifying acclimation, delay is only useful for

predicting temperature. One explanation for this discrepancy is

that delay does not have an effect on skin temperature of indoor

acclimated people, but can help predict skin temperature changes

as people acclimate to indoor environments.

Features Precision Recall F1

No Extra Features 0.777 0.925 0.844
Outdoor Temperature 0.763 0.984 0.859
Outdoor Temperature, Delay 0.847 0.806 0.826

Table 2: Comparison of precision, recall, F1 score of the

GBDT model on acclimation classification using different

feature sets (default: distance, thermal features).

6.2.4 Performance with Multiple People. Another recommendation

by ISO 13154:2017 [50] is to screen with only a single person at a

time to minimize effects of multiple heat sources on the sensor’s

measurement accuracy. To better understand this effect, we com-

pare the model performance with a single person or multiple people

in the frame. We trained and evaluated the models on a 75% : 25%

train test split on the whole dataset, and divided the evaluation re-

sults by number of people in frame. As shown in Figure 16, the MAE

on the single dataset shows an improvement of 21.4%, 19.9%, 39.5%,
3.2%, and 3.3%, respectively, over the multiple dataset. However,
with the additional error in multiple dataset, the overall error is still

one order of magnitude less than the error of infrared-thermometer

used in market which have an error of ±4◦F 4

4https://en.wikipedia.org/wiki/Infrared_thermometer

Figure 16: Mean Absolute Error of regression and baseline

model temperature predictions on datasets of single person

and multiple person measurements.

6.3 Processing time

A low response time, i.e.,the time from the image captured by the

RGB-thermal camera to the result shown on the client, is important

to the real deployment. We measured the total image processing

time for a single frame, which includes the entire pipeline men-

tioned in Section 3.

The average processing time in our local restaurant and hospital

deployments are about 0.25 seconds and 0.231 seconds respectively,
which is on par with a typical person’s reaction time. The hospital

deployment has a lower latency because the server it connects to

utilizes a faster GPU. We note that a latency of even a few seconds

is acceptable for our application because it typically takes a few

seconds for a subject to walk across the observation window.

7 DISCUSSION

Deployment Considerations: NCITs, as well as IRT systems, are

becoming more common in non-clinical settings to help combat

the spread of COVID-19. However, they are not considered the

gold standard for detecting fever in comparison with in-ear ther-

mometers, oral thermometers, or axillary thermometers. Thus, one

important factor is how to maximize the effectiveness of SIFTER

in different environments while minimizing cost as an first-stage

screening tool.

The primary consideration is the classical precision-recall trade-

off. Reducing false negatives allows for identifying a higher per-

centage of febrile humans, at the cost of falsely detecting more

non-febrile humans. This would require more people to undergo a

second-stage screening. On the other hand, reducing false positives

reduces the number of people required to undergo a second-stage

screening, at the expense of missing the detection of more febrile

humans. Depending on the deployment, there may be a greater

need for minimizing either false positives or false negatives.

SIFTER currently utilizes Light GBMwith 5x asymmetric penalty.

The threshold value that determines the boundary of febrile and

non-febrile humans is set to first minimize false negatives, and

second minimize false positives. This setting is more useful in low

throughput settings such as small business and retail, where a first

screen can reduce the number of people required to be screened

with a secondary measurement. However, the threshold value can

be raised for high throughput settings such as transportation hubs

or commercial buildings to reduce the burden on administrators for
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a secondary screening. SIFTER allows the setting of this threshold

value to allow the end users to choose an appropriate value for the

deployment setting.

SIFTER requires a cloud server to process its pipeline, which

leads to potential privacy concerns. SIFTER is intended for use at

entrances and specific parts of buildings, rather than as a general-

purpose surveillance camera throughout the building. For instance,

the hospital where we conducted our study allowed us to deploy

our system at its entrance with full knowledge of data locations.

To preserve privacy, SIFTER does not store images on the server

for more than 600 seconds and only saves bounding boxes and low

resolution thermal images. In the future, we plan to improve pri-

vacy by moving major parts of our pipeline onto the edge, thereby

removing the need to transmit raw data to a third-party server.

Procedure: As explored in Sections 6.2.2 and 6.2.4, there are four

important factors that can affect temperature measurements: indoor

environment acclimation, distance, presence of multiple people,

and skin visibility. ISO 13154:2017 [50] recommends ensuring that

people to be screened are acclimated to the indoor environment, are

at a certain distance from the sensor, are screened one at a time, and

relevant skin regions are visible to enable accurate measurements.

For automated fever screening systems, enforcement of these

protocols is an important challenge. For indoor acclimation, we of-

fer a method for helping to detect people who are not acclimated to

the indoor environment in Section 6.2.3; however, this method is not

applicable in all situations. For instance, people who have mostly

acclimated to the indoor environment may not be distinguishable

from fully acclimated people. In these situations, an extension to

SIFTER that tracks a person’s duration indoors to determine envi-

ronment acclimation will provide additional robustness.

In Section 6.2.4, we noted that the temperature estimate errors

in the presence of multiple people are not drastically different than

for single person measurements, although there is an increase in

error. One potential consequence of this study is a tradeoff between

speed and accuracy. If multiple people can be screened at once,

the throughput can be increased; however, there will likely be a

sacrifice in accuracy. SIFTER provides a signal describing whether

a single or multiple people are detected, which can be utilized by

the client depending on the appropriate setting.

Distance is another critical parameter, and is usually enforced in

modern IRT systems by placing a marker on the floor at the desired

distance. As described in Section 6.2, distance has an effect on esti-

mated temperature, although these errors can be mitigated by using

distance as a feature to temperature models. This improvement in

accuracy over distance reduces the need for occupants to directly

position themselves for the sensor, thus reducing overall screen

time and increasing throughput.

Finally, SIFTER and IRT systems in general require visibility

of skin regions to measure temperature. In certain cases where

relevant skin regions are not visible (such as due to facial coverings),

we noted that this can be easily detectedwhen facial region statistics

fall below a definitive temperature threshold (∼ 85 F). SIFTER also

provides a signal noting these cases.

8 CONCLUSION

In this work, we demonstrate SIFTER, a low-cost system for continu-

ously screening of people for fever without any human interaction.

The thermal images are calibrated with a data-driven spot-size ef-

fect model to reduce the fundamental errors of thermal camera, and

head orientation is estimated from RGB images with a retrained

FSA-Net on a hand labeled restaurant dataset. The bounding boxes

are matched between RGB and thermal images, and the calibrated

thermal data is mapped onto a 3D point-cloud head model. We

deployed SIFTER in two locations, a local restaurant and a medical

practice. In our evaluations of this system on real patients in the

medical practice, our system is able to achieve 100% TPR with only

22.5% FPR for screening occupants. This system can be used as an

initial screening step (followed by additional screening of positive

cases) to significantly reduce human labor cost of screening and

social interaction.
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