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ABSTRACT

Agricultural irrigation is a major consumer of freshwater. Current

irrigation systems used in the field are not efficient, since they are

mainly based on soil moisture sensors’ measurement and growers’

experience, but not future soil moisture loss. It is hard to predict

soil moisture loss, as it depends on a variety of factors, such as soil

texture, weather and plants’ characteristics. To improve irrigation

efficiency, this paper presentsDRLIC, a deep reinforcement learning

(DRL)-based irrigation system. DRLIC uses a neural network (DRL

control agent) to learn an optimal control policy that takes both

current soil moisture measurement and future soil moisture loss

into account. We define an irrigation reward function that facilitates

the control agent to learn from past experience. Sometimes, our

DRL control agent may output an unsafe action (e.g., irrigating

too much water or too little). To prevent any possible damage to

plants’ health, we adopt a safe mechanism that leverages a soil

moisture predictor to estimate each action’s performance. If it is

unsafe, we will perform a relatively-conservative action instead.

Finally, we develop a real-world irrigation system that is composed

of sprinklers, sensing and control nodes, and a wireless network.

We deploy DRLIC in our testbed composed of six almond trees.

Through a 15-day in-field experiment, we find that DRLIC can save

up to 9.52% of water over a widely-used irrigation scheme.

1 INTRODUCTION

Agriculture is a major consumer of ground and surface water in the

United States, accounting for approximately 80% of the Nation’s

consumptive water use and over 90% in many Western states1.

California’s 2019 almond acreage is estimated at 1,530,000 acres,

and almond irrigation is estimated to consume roughly 195.26

billion gallons per year [4, 5]. With a historic drought afflicting the

Western states, it is imperative to improve the irrigation efficiency

for saving our limited freshwater reserve. This work is focused on

the irrigation efficiency of almond orchards.

The primary goal of agricultural irrigation is to guarantee the

trees’ health and maximize production. To do so, the trees’ soil

moisture should be maintained with a range between the Field

Capacity (FC) level and the Management Allowable Depletion

(MAD) level. If the soil moisture is lower than the MAD level, the

almond trees will turn brown or even die. If the soil moisture is

higher than the FC level, excess water in the soil will reduce the

movement of oxygen, impacting the ability of the tree to take in

water and nutrients. Both FC and MAD levels can be determined

by the type of plants and soil. For a specific orchard, we need to

know the soil type. We can then find the FC and MAD levels for a

specific soil type by referring to a manual [6].

1Irrigation Water Use: https://www.ers.usda.gov/

To maintain the soil moisture between the MAD and FC range,

the sprinklers need to be opened every day or several days, depend-

ing on the soil moisture change. Due to the high evaporation loss in

California, daily irrigation is recommended by the Almond Board

of California [6] and used in some existing irrigation systems [7, 8].

Current micro-sprinkler irrigation systems normally irrigate plants

at night, since irrigating during the day causes higher evapora-

tive water loss (14-19%) [9]. Therefore, the irrigation scheduling

problem is to decide the irrigation water volume for each sprinkler

to guarantee that the soil moisture will be still within the MAD

and FC range at next irrigation time. The decision is based on the

current soil moisture level and the predicted soil moisture loss of

next day. The latter is determined by soil type, local weather, and

plants’ properties (e.g., the root’s length and the number of leaves).

The irrigation’s goal is to irrigate the trees with a proper amount

of water, so that the soil moisture will be still above the MAD level

at the next irrigation time.

Optimal irrigation control strategies should model the soil mois-

ture loss that will be experienced before the next irrigation time. If

we have such a soil moisture prediction model, conventional Model

Predictive Control (MPC) methods can be used to decide the optimal

amount of water to irrigate. However, the performance of these

methods relies highly on the accuracy of the soil moisture prediction

model [10, 11]. It is hard to obtain an accurate model for an almond

orchard, because the soil moisture is affected by many factors,

including soil type, topography and surrounding environment (e.g.,

ambient temperature, humidity, and solar radiation intensity), and

internal transpiration from plants [12]. In addition, customized soil

moisture models are required for different orchards, limiting the

scalability of MPC-based methods. Due to the above two limitations,

MPC-based methods have not been used in orchards.

The irrigation systems currently used in orchards are ET-based

or sensor-based control methods. Evapotranspiration (ET) is an

estimate of moisture lost from soil, subject to weather factors such

as wind, temperature, humidity, and solar irradiance. All these

weather factors are being measured by weather stations. Local ET

value is also publicly available [13] and updated every hour. Based

on the ET values since the last irrigation time, ET-based irrigation

controllers start the sprinklers to compensate for the soil moisture

loss. However, they do not consider the soil moisture loss of next

day before the next irrigation time. If the soil moisture loss in the

last day does not equal the soil moisture loss that will happen in the

next day, ET-based irrigation may under-irrigate or over-irrigate.

In addition, a safe margin of water [14] is normally added, making

ET-based methods over-irrigate in most cases [7].

With accurate soil moisture sensors, irrigation controllers can

react directly to the soil moisture level [7]. The commonly-used

controllers are "rule-based", in which a certain amount of water

will be supplied once soil moisture deficiency is detected. However,

parameters for the time and the amount to irrigate are generally
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Figure 1: The various levels of the soil

water content [1].
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Figure 2: How plant production (growth)

is affected by soil water content [2].
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Figure 3: Relationship between available

water capacity and soil texture [3].

tuned by growers by their experience. Without predicting how

much water will be lost, sensor-based irrigation normally does not

systematically take into account future weather information, such

as rain and wind in next day.

To solve the limitations of the above existing irrigation schemes,

we develop DRLIC, a practical Deep Reinforcement Learning (DRL)-

based irrigation system, which automatically learns an optimal

irrigation control policy by exploring different control actions. In

DRLIC, a control agent observes the state of the environment, and

chooses an action based on a control policy. After applying the ac-

tion, the environment transits to a next state and the agent receives a

reward to its action. The goal of learning is to maximize the expected

cumulative discounted reward. DRLIC’s control agent uses a neural

network to learn its control policy. The neural network maps "raw"

observations to the irrigation decision for the next day. The state

includes the weather information (e.g., ET and Precipitation) of

today and next day.

To minimize the irrigation water consumption while not impact-

ing the trees’ health, we design a reward function that considers

three specific situations. If the soil moisture result is higher than

the FC level or lower than the MAD level, we will give the control

agent a negative reward. If the soil moisture result is within the

MAD and FC range, we will give the control agent a positive reward

inversely proportional to the water consumption.

Ideally, DRLIC’s control agent should be trained in a real orchard

of almond trees. However, due to the long irrigation interval (one

day in our case), the control agent can only explore 365 control

actions per year. It will take 384 years to train a converged control

agent. Therefore, to speed up the training process, we train our

control agent in a customized soil-water simulator. The simulator

is calibrated by the 2-month soil moisture data of six almond trees

and can generate sufficient training data for DRLIC using 10-year

weather data.

Working as an irrigation controller in the field, the control agent

maymeet some states that it has not seen during training, especially

for the control agent trained in a simulated environment. In this

situation, the control agent may make a poor decision that violates

plants’ health, i.e., making the soil moisture level lower than the

MAD level or higher than the FC level. To handle the gap between

the simulated environment and the real orchard, we design a safe

irrigation mechanism. If DRLIC’s control agent outputs an unwise

action, instead of executing that action, we use the ET-basedmethod

to generate another action. We use the soil moisture model of our

soil-water simulator to verify whether an action is safe or not.

To evaluate the performance of DRLIC, we build an irrigation

testbed with micro-sprinklers currently used in almond orchards.

Six almond trees are planted in two raise-beds. Each tree has a sens-

ing and control node, composed of an independently-controllable

micro-sprinkler and a soil moisture measurement set (two sensors

deployed at different depths in the soil). Each node can send its

sensing data to our server via IEEE 802.15.4 wireless transmission,

and receive irrigation commands from the server.

We have deployed our testbed in the field and collected soil

moisture data from six sensing and control nodes for more than

three months. We use 2-month data to train our soil moisture

simulator and 0.5-month data to validate its accuracy. After training

DRLIC’s control agent, we have deployed the controller in our

testbed for 15 days. Experiment results demonstrate that DRLIC

can reduce the water usage by 9.52% over the ET-based control

method, without damaging the almond tree health.

We summarize the main contributions of this paper as follows:

• We design DRLIC, a DRL-based irrigation method for agri-

cultural water usage saving.

• A set of techniques have been proposed to transform DRLIC

into a practical irrigation system, including our customized

design of DRL states and reward for optimal irrigation, a

validated soil moisture simulator for fast DRL training, and

a safe irrigation module.

• We build an irrigation testbed with customized sensing and

actuation nodes, and six almond trees.

• Extensive experiments in our testbed show the effectiveness

of DRLIC.

2 IRRIGATION PROBLEM

Soil Water Content Parameters. Soil is a plant’s water reservoir.

Water can fill up to 35% of the space in soil. Soil water content

is the amount of water in the soil, which is often measured as a

percentage of water by volume (%) or by inches of water per foot

of root (in/ft). Soil moisture sensors are used to measure the soil

water content (%) at one location in the soil. For a tree with a root

of several feet, multiple soil moisture sensors may be deployed

in different depths along with the root. The root is divided into a

certain number of pieces. A soil moisture sensor is deployed at the

middle point of each piece. The soil water content of the tree can be

calculated as𝑉 =
∑𝑀

𝑗=1 𝜑 𝑗 ∗𝑑 𝑗 , where𝑀 is the number of moisture
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sensors installed at different depths (M is 2 in our experiments); 𝜑 𝑗

is the reading measured by the 𝑗th soil moisture sensor; and 𝑑 𝑗 is
the depth that the 𝑗th moisture sensor covers. If such a set of soil
moisture sensors are used to measure the soil water content of a

region, they will be deployed under a typical tree that has similar

soil water content with most of the trees in the region.

A healthy plant’s root must be within a sufficient supply of water.

Figure 1 shows two critical levels of soil water content for plants’

health [1]. 1) If the soil water content is below the Permanent

Wilting Point (PWP), plants cannot suck necessary moisture out of

the soil. Keeping soil below the PWP level for an extended period

of time will cause plants to wilt or eventually die. 2) If the soil

water content of a tree is above Field Capacity (FC), the soil has an

over-abundance of water, which will cause water waste and rotting

of the root over time (impacting the trees’ health). Therefore, the

goal of irrigation systems is to maintain soil water content between

the PWP level and the FC level.

For fruit trees like almond, production is the major goal of

irrigation. Tomaximize the production, we need to maintain the soil

water content above the Management Allowable Depletion (MAD)

level, instead of the PWP level. Figure 2 depicts the relationship

between soil water content and plant production for almond trees

[2]. The curve and the MAD level may be different for different

fruits. From Figure 2, we can see that the MAD level for almond

trees is the median value (50%) between the FC level and the PWP

level. Therefore, almond trees can achieve their maximum production,

as long as we maintain the soil water content above the MAD level.

How to Determine these Parameters in an Orchard? The

soil water content range between the FC level and the PWP level is

the Available Water holding Capacity (AWC) of the soil. As shown

in Figure 3, different soil types have different AWCs [3]. The soil’s

AWC may be affected by its texture, presence and abundance of

rock fragments, and its depth and layers. The soil’s AWC increases

as it becomes finer-textured from sands to loam [3], and the soil’s

AWC decreases as it contains more clay from loam to clay [3].

The AWC of a tree, 𝑉𝑎𝑤𝑐 , can be calculated as 𝑉𝑎𝑤𝑐 = 𝜎𝑎𝑤𝑐 ∗
𝐷 𝑓 𝑜𝑜𝑡 , where 𝜎𝑎𝑤𝑐 is the soil’s AWC and 𝐷 𝑓 𝑜𝑜𝑡 is the tree’s root

depth in the unit of feet. The AWC for different soil types, 𝜎𝑎𝑤𝑐 ,
can be found in [3].

The PWP level for a soil type, 𝑉𝑝𝑤𝑝 , can also be calculated as

𝑉𝑝𝑤𝑝 = 𝜑𝑝𝑤𝑝 ∗ 𝐷𝑖𝑛𝑐ℎ , where 𝜑𝑝𝑤𝑝 is the soil moisture content at

the wilting point of that soil type and 𝐷𝑖𝑛𝑐ℎ are the root depth of

the plant in the unit of inches. 𝜑𝑝𝑤𝑝 for a specific soil type can be

found in [3].

Based on the above two parameter (𝑉𝑎𝑤𝑐 and𝑉𝑝𝑤𝑝 ), we can also

obtain the FC level as 𝑉𝑓 𝑐 = 𝑉𝑎𝑤𝑐 + 𝑉𝑝𝑤𝑝 , and the MAD level as

𝑉𝑚𝑎𝑑 = 𝛼 ∗𝑉𝑎𝑤𝑐 +𝑉𝑝𝑤𝑝 , where 𝛼 is set to 50% for almond trees.

How to Use these Parameters for Irrigation? The goal of

irrigation is to maintain the soil water content of plants between the

FC level and the MAD level. To correctly set an irrigation system,

we need to know the soil’ AWC in the orchard and the PWP level

(𝑉𝑎𝑤𝑐 and𝑉𝑝𝑤𝑝 ). We can determine these two parameters based on

the above method, as long as we know the soil type. If the orchard is

large, the soil type varies in space and these two parameters change

too. We need to adapt the setting of these two parameters in the

irrigation system accordingly.
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Figure 4: DRLIC System Architecture.

How Many Valves to Control in an Orchard? Ideally, the

sprinkler for each tree should be individually controlled, since the

ET of each tree in an orchard varies from 0.12 to 0.20 inches [15].

Moreover, the soil type also varies spatially in an orchard [6], e.g.,

there are 10 soil type differences with soil clay loam accounting for

from 45.6% to 54.7% and 0 to 8 percent slopes in a 60-acre orchard

of California 2. However, there are around 75-125 almond trees in

one acre, it is costly to deploy a soil moisture sensor under each

tree. Thus, an orchard is normally divided into several irrigation

regions based on the similarity of soil texture. A valve is used in

each irrigation region to control all the sprinklers. The irrigation

problem of a large orchard is to control a number of valves. This

paper is focused on irrigation scheduling, but not field partitioning.

A simple way to partition an orchard into several irrigation regions

is to survey the soil samples across the orchard using an auger.

Growers normally conduct the survey for other purposes too, such

as planning the density of trees and fertilizing the trees.

3 DRLIC SYSTEM DESIGN

In this section, we first give an overview of DRLIC. We model

the irrigation problem as a Markov decision process. We design a

DRL-based irrigation scheme and a safe irrigation module.

3.1 Overview

Figure 4 shows the system architecture of DRLIC, which is com-

posed of two key components, i.e., a wireless network of sensing

and actuation sprinkler nodes, and a DRL-based control algorithm.

For an almond orchard, we install the sensing and actuation

node for each irrigation region. One sensing and actuation node

is equipped with a set of soil moisture sensors that are deployed

at different depths in the soil. Sensing data is transmitted to the

base station via an IEEE 802.15.4 network. The Base Station collects

the data from DRLIC nodes and sends them to a local server using

Wi-Fi. These sensing data collected from all DRLIC nodes creates a

“snapshot” of the soil moisture readings𝜑𝑡 across the entire orchard.

2Soil Map: https://casoilresource.lawr.ucdavis.edu/gmap/
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On the server, the DRL-based irrigation control agent makes

irrigation decisions based on the soil moisture sensors’ readings,

ET and weather data from local weather stations. It provides the

optimal irrigation schedule for all DRLIC nodes. The objective of

DRLIC is to minimize the total irrigation water consumption while

meeting the requirement of almond health. The server will send the

generated irrigation schedules 𝐴𝑡 to all DRLIC nodes. By receiving

a command, a node may open its sprinkler by a latching solenoid

with two relays. The implementation details of the nodes will be

introduced in Section 4.

3.2 MDP and DRL for Irrigation

We adopt the daily irrigation scheme, i.e., the irrigation starts at

11 PM every day. Each time, the controller decides how long to

open each sprinkler to guarantee that the soil water content will

be still within the MAD and FC range tomorrow night. The future

soil water content is determined by the current soil water content,

the irrigated water volume, the trees’ water absorption, and soil

water loss (caused by runoff, percolation and ET). Such a sequential

decision-making problem can be formulated as a Markov Decision

Process (MDP), modeled as <S, A, T, R>, where

• S is a finite set of states, which includes sensed moisture

level from orchard and weather data from local station.

• A is a finite set of irrigation actions for all control valves.

• T is the state transition function defined as T : S ×A → S.

The soil water content at next time step is determined by

current soil water content and the irrigation action.

• R is the reward function defined as S ×A→R,which qualifies

the performance of a control action.

Based on the above MDP-based irrigation problem formulation, we

will find an optimal control policy 𝜋 (𝑠)∗ : S → A, which maximizes

the accumulative reward R. We cannot apply conventional tools

(e.g., dynamic programming) to search for the optimal control

policy, because the state transition function is hard to analytically

characterize. In this paper, we consider an RL-based approach

to generating irrigation control algorithms. Unlike previous ap-

proaches that use pre-defined rules in heuristic algorithms, our

approach will learn an irrigation policy from observations.

DRL is a data-driven learning method. It has been widely applied

inmany control applications [16–20]. DRL learns an optimal control

policy through interacting with the environment. At each time step

𝑡 , the control agent selects an action 𝐴𝑡 = 𝑎, given the current state
𝑆𝑡 = 𝑠 , based on its policy 𝜋𝜃 .

𝑎 ∼ 𝜋𝜃 (𝑎 |𝑠) = P(𝐴𝑡 |𝑆𝑡 = 𝑠 ;𝜃 ) (1)

In DRL, the control policy is approximated by a neural network

parameterized by 𝜃 [21]. When the control agent takes the action

𝑎, a state transition 𝑆𝑡+1 = 𝑠 ′ occurs based the system dynamics 𝑓𝜃
(Equation 2), and the control agent receives a reward 𝑅𝑡+1 = 𝑟 .

𝑠 ′ ∼ 𝑓𝜃 (𝑠, 𝑎) = P(𝑆𝑡+1 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) (2)

𝜃∗ = argmax
𝜃
E𝜋𝜃 [𝑟 ] (3)

Due to the Markov property, both reward and state transition

depend only on the previous state. DRL then finds a policy 𝜋𝜃 that

maximizes the expected reward (Equation 3).

DRLIC Agent

State s Action a

Observe state s

Reward r

Neural Network

Soil-water System

Figure 5: Deep Reinforcement Learning in DRLIC.

Why do we use DRL for irrigation control?

• DRL learns an optimal irrigation control policy directly from

data, without using any pre-programmed control rules or

explicit assumptions about the soil-water environment.

• DRL allows us to use domain knowledge to train an irrigation

control agent (a neural network) without labeled data.

• The generalization ability of the neural network enables

the control agent to better handle the dynamically-varying

weather and ET data.

3.3 Deep Reinforcement Learning in DRLIC

Figure 5 summarizes the DRL architecture of DRLIC. The irrigation

control policy (DRLIC Agent) is derived from training a neural

network. The agent takes a set of information as input, including

current soil water content, today’s weather data (e.g., ET and pre-

cipitation), and the predicted weather data for tomorrow. Based

on the input, the agent outputs the best action, i.e., the amount of

water to irrigate. Until the next day at 11 PM, the resulting soil

water content is observed and passed back to the agent to calculate

a reward. The agent uses the reward to update the parameters of

the neural network for better irrigation control performance. Next,

we introduce the design of each DRLIC component.

3.3.1 State in DRLIC. The state in our irrigation MDP model con-

tains the information of three parts. (a) Sensed state, which is the

soil water content measured by DRLIC nodes. (b) Weather-related

state, which includes the current and predicted state variables

from weather station. (c) Time-related state, which is about date

information.

Sensed State. The soil water content of each irrigation region,

calculated by Equation 6 using sensor reading 𝜑 from DRLIC node.

Weather-related State. It is a vector containing the weather in-

formation of current day and next day: ET (inch), Precipitation

(inch), maximum, average, minimum Temperature (◦F), maximum,

average, minimum Humidity (%), average Solar Radiation (Ly/day),

average Wind Speed (mph), Predicted ET by Equation 16 (inch),

and forecasted Precipitation (inch) from local weather station.

Time-related State. Date including the month. The soil moisture

may vary in different months.

3.3.2 Action in DRLIC. Based on the current state outlined above,

our irrigation scheduling is to find the best amount of water to

irrigate (inch), which can maintain plant health (or maximize pro-

duction) with minimum water consumption. The action is a vector

that contains the water amount to irrigate for each irrigation region

in an orchard. When the agent outputs an action, we will convert

the amount of irrigation water to the open time duration (td) 𝑡𝑑𝑖
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for i𝑡ℎ micro-sprinkler. It is calculated as 𝑡𝑑𝑖 = 𝑎𝑖/𝐼 , where 𝐼 is
the irrigation rate. We set 𝐼 to 0.018 inch/min according to the

specifications of the micro-sprinklers used in our testbed.

3.3.3 Reward in DRLIC. We define the reward function to express

our objective of achieving good plant health with minimum water

consumption. Both plant health and water consumption should be

incorporated in the reward function. As we know from Section 2,

to achieve the maximum production of almond trees, we need to

maintain the soil water content between the MAD level and FC

level. We use the soil water content deviation from these two levels

as a proxy for plant health.

To minimize water consumption while not affecting the plant

health, we consider three situations in the design of the reward,

as shown in Equation 5. First, when the soil water content (𝑉𝑖 ) for
i𝑡ℎ irrigation region is higher than the FC (𝑉𝑓 𝑐 ) level, the irrigated
water is more than the plants’ need. In this case, the plants’ health

is affected by over-irrigated water, and water consumption is too

high. Second, when 𝑉𝑖 is between 𝑉𝑓 𝑐 and 𝑉𝑚𝑎𝑑 , the plants are in

good health. In this case, we strive to maintain the𝑉𝑖 close to𝑉𝑚𝑎𝑑
to save water, so we give a reward inversely proportional to the

water consumption. Third, when 𝑉𝑖 is lower than 𝑉𝑚𝑎𝑑 , the plants

are under water stress. The plants’ health is significantly impacted,

proportional to the distance between 𝑉𝑖 and 𝑉𝑚𝑎𝑑 .

By considering the above three situations, our reward function

is defined as follows:

𝑅 = −

𝑁∑
𝑖=1

𝑅𝑖 (4)

𝑅𝑖 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝜆1 ∗ (𝑉𝑖 −𝑉𝑓 𝑐 ) + 𝜇1 ∗ 𝑎𝑖 , 𝑉𝑖 > 𝑉𝑓 𝑐

𝜇2 ∗ 𝑎𝑖 , 𝑉𝑓 𝑐 > 𝑉𝑖 > 𝑉𝑚𝑎𝑑

𝜆3 ∗ (𝑉𝑚𝑎𝑑 −𝑉𝑖 ) + 𝜇3 ∗ 𝑎𝑖 , 𝑉𝑖 < 𝑉𝑚𝑎𝑑

(5)

𝑉 =
∑𝑀

𝑗=1 𝜑 𝑗 ∗ 𝑑 𝑗 (6)

𝑉𝑚𝑎𝑑 = 𝛼 ∗𝑉𝑎𝑤𝑐 +𝑉𝑝𝑤𝑝 (7)

𝑉𝑓 𝑐 = 𝑉𝑎𝑤𝑐 +𝑉𝑝𝑤𝑝 (8)

𝑉𝑝𝑤𝑝 = 𝜑𝑝𝑤𝑝 ∗ 𝐷𝑖𝑛𝑐ℎ (9)

𝑉𝑎𝑤𝑐 = 𝜎𝑎𝑤𝑐 ∗ 𝐷 𝑓 𝑜𝑜𝑡 (10)

where 𝑁 is the number of irrigation regions in one orchard. 𝑎 is
the amount of water from the RL agent. 𝜎𝑎𝑤𝑐 and 𝜑𝑝𝑤𝑝 are set by

referring to the manual of California Almond Board [6] based on

our specific soil type in our testbed. Equations 6, 7, 8, 9 and 10 have

been introduced in Section 2.

In our current implementation, the parameters of our reward

function are set to the values shown in Table 1, based on the

specifications of our testbed. The parameters in Equation 5 (i.e.,

𝜆1, 𝜇1, 𝜇2, 𝜆3 and 𝜇3) are set to the best values that provide the
best rewards during training. Their values are set by grid search,

which will be introduced in detail in Section 5. The values of these

parameters in Table 1 confirm with our design goal of the reward

function. First, when 𝑉𝑖 is larger than 𝑉𝑓 𝑐 , we give penalties due
to both plants’ health and water consumption (𝜆1 = 3, but 𝜇1 = 8).

Table 1: Parameter Setting in Reward.

Parameter Value Parameter Value
𝜆1 3 𝛼 50 (%)
𝜇1 8 𝐷𝑖𝑛𝑐ℎ , 𝐷 𝑓 𝑜𝑜𝑡 23.62 inches, 1.97 (feet)
𝜇2 3 𝑑 11.81 (inches)
𝜆3 10 𝜑𝑝𝑤𝑝 10 (%)
𝜇3 1 𝜎𝑎𝑤𝑐 2.4 (in./ft.)

Second, when 𝑉𝑖 is lower than 𝑉𝑚𝑎𝑑 , we give a higher penalty due

to plants’ health (𝜆3 = 10, but 𝜇3 = 1).

3.4 DRLIC Training

3.4.1 Policy Gradient Optimization. In the above DRL framework,

a variety of policy gradient algorithms can be used to train the

irrigation control agent. Policy gradient algorithms achieve the

objective in Equation 3 by computing an estimate of the policy

gradient and optimizing the objective through stochastic gradient

ascent (Equation 11).

𝜃 ← 𝜃 + 𝛼 �𝜃 E𝜋𝜃 [𝑟 ] (11)

In this work, we use proximal policy optimization (PPO) [22],

which has been successfully applied in many applications such as

navigation [23] and games [24]. PPO is known to be stable and

robust to hyperparameters and network architectures [22].

PPO minimizes the loss function in Equation 12, which is equiv-

alent to maximizing the Monte Carlo estimate of rewards with

regularization. The advantage function 𝐴𝑡 given by Equation 13

is used to estimate the relative benefit of taking an action from a

given state.

𝐿𝑃𝑃𝑂 (𝜃 ) = −Ê𝑡 [𝑚𝑖𝑛(𝑤𝑡 (𝜃 )𝐴𝑡 , 𝑐𝑙𝑖𝑝 (𝑤𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡 )] (12)

𝐴𝑡 =
∞∑
𝑖=0

𝛾𝑖𝑟𝑡+𝑖 (13)

𝑤𝑡 (𝜃 ) =
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 )
(14)

In Equation 14, 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) is the policy being updated with the loss
function and 𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 ) is the policy that was used to collect data
with environment interaction. As the data collection policy differs

from the policy being updated, it introduces a distribution shift.

The ratio𝑤𝑡 (𝜃 ) corrects for this drift using importance sampling.
The ratio of two probabilities can blow up to large numbers and

destabilize training, so the ratio is clipped with 𝜖 .

3.4.2 Data Collection and Preprocessing. On day 𝑡 , theDRLIC agent

observes a state 𝑠 (e.g., moisture level), and then chooses an action
(water amount). After applying the action, the soil-water environ-

ment’s state transits to 𝑠𝑡+1 next day and the agent receives a reward
𝑟 . After that, a data pair (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) can be collected. We conduct

data normalization by subtracting the mean of the states/action and

dividing by the standard deviation. We use 10-year weather data

(2010-2020) to generate the data pairs in our dataset, which will be

used to train our DRLIC agent.

3.4.3 Training Process. Ideally, DRLIC’s control agent should be

trained in an orchard of almond trees. A well-trained DRL agent

needs 384 years to converge due to the long control interval of

irrigation systems. It is impossible to train DRLIC agent in an

orchard. A feasible solution is to refer to a high-fidelity simulator.
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Algorithm 1: DRLIC Training Algorithm

Input: State s, Action a, Reward r, an initialized policy, 𝜋𝜃 ;
Output: A trained irrigation control agent ;

1 for i=0,..., # Episodes do

2 State← Soil-water environment

3 𝜃𝑜𝑙𝑑←𝜃 ;

4 for t = 0, ..., Steps do

5 𝑎𝑡 = 𝜋𝜃 (𝑠𝑡 );

6 𝑠𝑡+1, 𝑟𝑡+1 = 𝑒𝑛𝑣 .𝑠𝑡𝑒𝑝 (𝑎𝑡 );

7 Compute 𝐴𝑡 ;

8 With minibatch of size M;

9 𝜃←𝜃 − 𝛼�𝜃𝐿𝑃𝑃𝑂 (𝜃 ) ;

However, there are no such simulators available in the soil-water

domain. Then we decide to leverage a data-driven simulator to

speed up the training process. We employ the soil water content

predictor introduced in Section 3.5 as our soil-water simulator. The

simulator allows DRLIC to "experience" the weather of 10 years in

several minutes.

The training procedure of DRLIC is outlined in Algorithm 1.

We train DRLIC using 1000 episodes and length of an episode as

30 days. For each episode, we can collect 30 training data pair

(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) under different weather data and leverage Equation
12 to optimize the objective in Equation 3 through stochastic gradi-

ent ascent. The training ends once Algorithm 1 converges: at the

end of each episode the total reward obtained is compared with

the previous total. If the current episode reward does not change

by ± 3%, we consider the policy has converged. If the policy does

not converge, the training will continue up to a maximum of 100

training iterations (# episodes = 100). After the training, we will

deploy the trained DRLIC agent into the real almond orchard.

When we are given a new environment (e.g., a new orchard),

we first need to collect the real-world irrigation data of new envi-

ronment by existing controller (e.g., ET-based control) to build a

soil water content predictor to describe the water balance in the

root zone soil. Then we leverage the soil water content predictor to

speed up the training process, after that, we deploy the well-trained

DRLIC agent for this new orchard.

3.5 Safe Mechanism for Irrigation

Wedesign a safemechanism that integrates the RL and ET controller

in a coupled close-loop. Figure 6 illustrates the workflow of safe

mechanism, with the following key elements. (i) Different from

the pure RL framework, we introduce a safety moisture condition

detector to evaluate whether the RL algorithm outputs a safe action.

(ii) If so, the action goes to the RL agent, who will be in charge of

irrigation control. (iii) Otherwise, wewill use an ET-based controller

to generate an action for that control cycle. (iv) DRLIC will the RL

agent for the future control cycles. We now introduce the soil water

content predictor and safety condition detector.

Soil Water Content Predictor. To enable early detection of an

unsafe action, we design a soil water content predictor to predict

the moisture trend after taking an action. Then we design a safe

condition detector to detect almond health penalty 𝑝 (𝑡). The idea
is to detect whether the damage metric for an almond tree is higher

ET-based 
Controller

Agent

State s
Environment 

(Soil-water system)
Action a

Observe state s

Reward r

Safety Condition
Detector

Bad

Normal

Safe Mechanism

Figure 6: Reinforcement Learning with Safe Mechanism.

Table 2: Coefficients of Predictor for Each Tree.

c1 c2 c3 b R2 NRMSE

Tree1 0.973 0.288 -0.103 0.003 0.982 0.062

Tree2 0.937 0.325 -0.121 0.013 0.985 0.071

than a threshold. If so, the detector will command DRLIC to switch

from RL to ET-based controller.

We design a soil water content predictor to describe the water

balance in the root zone soil. The variations of water storage in the

soil are caused by both inflows (irrigation and precipitation) and

outflows (evapotranspiration). This leads to the following mathe-

matical expression:

𝑉𝑖,𝑡+1 = 𝑐1 ∗𝑉𝑖,𝑡 + 𝑐2 ∗ (𝐴𝑖,𝑡 + 𝑃𝑡 ) + 𝑐3 ∗ 𝐸𝑡 + 𝑏 (15)

𝐸𝑡 = Γ𝑐 ∗ 𝑅𝐴 ∗𝑇𝐷 (1/2) ∗ (𝑇𝑡 + 17.8
◦𝐶) (16)

where 𝑉𝑖,𝑡+1 denotes the predicted moisture level in the root zone
for 𝑖th irrigation region after taking the action from RL, 𝐸𝑡 and
𝑃𝑡 are the plants’ ET and the measured rainfall. In time period 𝑡 ,
and 𝐴𝑖,𝑡 is the irrigation amount for 𝑖th irrigation region. 𝑐1, 𝑐2,
and 𝑐3 are coefficients. It is assumed in this work that runoff and
water percolation are proportional to soil moisture level [25–27]

in Equation 15. All the coefficients can be determined by means of

system identification techniques [28]. All variables are normally

expressed in inches.

The weather data can be get from local weather station. For

𝐸𝑇 , we adopt the simple calculation model established in [29]. As
shown in Equation 16, where Γ𝑐 is a crop-specific parameter. RA
stands for extraterrestrial radiation, which is in the same unit as

𝐸𝑡 . 𝑇𝐷 denotes the annual average daily temperature difference,

which can be derived from local meteorological data, and 𝑇𝑡 is the
average outdoor temperature during the 𝑡 th time period.
Safety Condition Detector.We employ the difference between

predicted moisture level and lower bound as a detector to estimate

the almond tree damage. As explained in Section 2, MAD is the

lower bound. Then we use
∑𝑁
𝑖=1 (𝑉𝑚𝑎𝑑 −𝑉𝑖,𝑡+1) as a safety condi-

tion detector, 𝑉𝑖,𝑡+1 denotes the predicted moisture level from 𝑖th
irrigation region for 𝑡 timestep. 𝑉𝑚𝑎𝑑 is the water content lower

bound. DRLIC will evoke ET-based controller once safety condition

detector detects the dangerous irrigation action.

Parameter Learning of our Soil Water Content Predictor.

We leverage the designed testbed to collect the irrigation amount of

almond trees for 2 months. The ET value for each day is collected

from a local weather station [13] and the moisture level for each
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Figure 7: Testbed and Microsprinkler Irrigation System.

tree is collected by the designed DRLIC node. Then the linear least

square method was applied to estimate the coefficients. 𝑅2 is used to

explain the strength of the relationship between the moisture level

and related factors. Normalized root-mean-square error (NRMSE)

is used as a goodness-of-fit measure for predictors. The results are

shown in Table 2, we can see that the 𝑅2 is close to 1 indicating that
the irrigation, ET and precipitation have a strong relationship with

soil water content for the tree. The NRMSE is less than 0.1 which

means that the predictor can achieve accurate prediction for soil

water content.

4 TESTBED AND HARDWARE

4.1 Testbed and Microsprinkler Description

Figure 7 shows our micro-sprinkler irrigation testbed. The micro-

sprinkler irrigation system is installed and designed to be identical

in hardware, micro-sprinkler coverage, etc. This irrigation system

measures 290 cm x 160 cm, with micro-sprinklers arranged in a 3x2

grid, each 97cm from the next. Themicro-sprinklers chosenwere 1/4

’, 360 ◦ pattern by Rainbird, which are currently considered state-of-

the-art in micro-sprinkler technology. Six all-in-one young almond

trees were planted into the testbed (three for each). The average

height is 2 meters. The soil with 2.7 m 3 volume is collected from

a local orchard that is a typical loam soil and the plant-available

water-holding capacity is 2.4 inches of water per foot.

4.2 DRLIC Node Development.

The designed DRLIC node in Figure 4 consists of four main parts:

sensors, actuator, power supply and transmission module.

Sensors: It consists of several moisture sensors for different

depths. The moisture sensors vary in their sensitivity and their

volume of soil measured. Each moisture sensor for 12-inch depth

provides accurate quantitative soil moisture assessment following

the Almond Board Irrigation Improvement Continuum [6]. We

Figure 8: Daily Soil Moisture Readings.
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Figure 9: On and off Circuit Diagram for Latching Solenoid.

assign 2 moisture sensors for each DRLIC node since the depth of

root zone of the almonds in our testbed is 24 inches.

A key feature of the DRLIC node is the ability to measure the

volumetric water content in the surrounding soil. We opted to

purchase research-quality Decagon EC-5 sensors 3, with a reported

accuracy of ±3%. Raw sensor readings collected over a period of

one day with a high sampling frequency can be seen in Figure 8.

The sensors report the dielectric constant of the soil, which is

an electrical property highly dependent on the volumetric water

content (VWC).

𝜑 (𝑚3/𝑚3) = 9.92 ∗ 10−4 ∗ 𝑟𝑎𝑤_𝑟𝑒𝑎𝑑𝑖𝑛𝑔 − 0.45 (17)

A linear calibration Function 17 above provided by the sensor

manufacturer is used to convert the raw readings to VWC. The

range of 𝜑 is between 0% and 100%. 𝜑 of saturated soils is generally

40% to 60% depending on the soil type.

Actuator: It consists of a latching solenoid with two relays. A

standard solenoid requires constant power to allow water to flow,

making it a poor choice for a battery-powered system. The nine-volt

performance all-purpose alkaline batteries from Amazon can only

continue to power the standard 12V DC solenoid for 8 hours. To

extend DRLIC node lifetime, we chose to use a latching solenoid for

micro-sprinkler actuation, requiring only a 25ms pulse of positive

(to open) or negative (to close) voltage. The h-bridge is usually

used to produce a bi-directional current to control the latching

3Decagon devices. http://www.decagon.com/products/soils/
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solenoid [30]. However, it needs a special design to meet different

voltages requirements for the ESP32 and latching solenoid.

In order to control the latching solenoid, we design a circuit

diagram using two relays to operate with a very little connection

overhead. A relay is an electrically operated switch. Figure 9 shows

the turn-on and off circuit diagram for latching solenoid.When both

the relays are off, there is no current going through the solenoid

(S). Initially, both the relays are in a normally closed (NC) position.

To turn the solenoid on, Relay 1 is switched from NC to normally

open(NO) for 25ms, providing the positive current pulse through

the solenoid. The current path shown in Figure 9(a) is: VCC ->

NC1 -> COM1 -> S -> COM2 -> NO2 -> GND. To turn the solenoid

off, Relay 2 is switched from NC to NO for 25ms, de-latching the

solenoid to the closed position. The current path shown in Figure

9(b) is: VCC -> NC2 -> COM2 -> S -> COM1 -> NO1 -> GND. To

prevent over-irrigation in the event of a power failure, we have the

power supply module to continuously provide the power.

Power Supply: Power supply consisted of a 5v, 1.2W solar panel

for energy-harvesting and a 18650 Lithium Li-ion battery with a

capacity of 3.7V 3000 MAH for energy storage. The TP4056 lithium

battery charger module comes with circuit protection and prevents

battery over-voltage and reverse polarity connection. All sensors

(1 ESP32, 2 moisture sensors, 2 relays and 1 latching solenoid) are

powered with this power supply module. It can provide continuous

power to prevent over-irrigation in the event of a power failure for

the actuator module.

TransmissionModule:Transmission includes uplink and down-

link. In the uplink path, the moisture sensor readings from the field

are sampled by the ESP32, a low-cost, low-power system on a

chip (SoC) series with Wi-Fi capability. The readings are then sent

from ESP32 to the base station as input for the optimal control. In

downlink path, the control command calculated by the DRL agent

will be routed to all ESP32 to turn on or off the solenoids.

5 IMPLEMENTATION

In this section, we illustrate in detail the implementation of DRLIC

and tuning hyper-parameters.

DRLIC Implementation DetailsWe implement DRLIC in python

using widely available open-source frameworks, including Pandas,

Scikit-learn and Numpy. The control scheme - DRLIC is imple-

mented using the scalable reinforcement learning framework, RLlib

[31]. RLlib supports TensorFlow, TensorFlow Eager, and PyTorch.

RLlib provides multi-ways for us to customize the training process

of the target environment modeling, neural network modeling,

action set building and distribution, and optimal policy learning.

The 10-year weather data (2010-2020) are collected for DRLIC,

with 9 years used for training and the remaining 1 year used for

testing. In our implementation ofDRLIC, we use theAdamoptimizer

for gradient-based optimization with a learning rate of 0.01. The

discount factor is 0.99. The neural network model is 2 hidden layers

with 256 neurons for each. The local server for training and running

DRLIC is a 64 bit quad-core Intel Core i5-7400 CPU at 3.00 GHz that

runs Ubuntu 18.04.

Training Details and Tuning Hyper-parameters. The perfor-

mance of DRLIC agent is sensitive to the hyperparameter values

chosen. Unfortunately, there is no simple approach that allows

DRLIC agent to understand whether a specific value for a given

parameter would improve total reward. To address this issue and fur-

ther increase DRLIC ’s performance, we leverage a tuning approach

to optimize the DRLIC ’s hyperparameters, such as 𝜆, 𝜇 associated
with rewards and penalties, and the learning rates. In particular, we

employ grid search which allows us to specify the range of values

to be considered for each hyper-parameter. The grid search process

constructs and evaluates our model using every combination of the

hyper-parameters. Finally, we employ cross-validation to evaluate

each learned model.

6 EVALUATION

In this section, we evaluate the performance of DRLIC in the field.

We evaluate DRLIC system for 15 days in the real world.

6.1 Experiment Setting

6.1.1 Baseline Strategy: We compare DRLIC to two state-of-the-art

irrigation control schemes introduced in Section 7.

ET-Based Irrigation Control [6]. To implement an ET-based

controller, we query a local weather station for the previous day’s

ET loss. To compensate for the loss, we use the sprinkler’s irrigation

rate provided by its dataset to calculate how long the system should

be activated for irrigation.

Sensor-based Irrigation Control [7]. The sensor-based con-

troller has two thresholds, the lower and upper soil water content

levels. The first is set at 4.96 inches, 10% higher than MAD to

avoid the under irrigation occurring prior to the wetting front

arriving at the sensor depth. The latter is set to 6.97 inches, 5%

below FC to allow for some rainfall storage. We carefully set these

two thresholds based on the soil environment of our testbed.

6.1.2 Performance Metrics. We evaluate the performance of DRLIC

and two baseline systems in terms of two performance metrics.

Quality of Service. Although the irrigation system has no

control over solar exposure and soil nutrients, it has direct control

over the moisture levels in the soil. For this reason, our primary

metric for irrigation quality is the system’s ability to maintain

soil moisture above this MAD threshold at all times at all of our

measured locations. By doing so, we are guaranteeing that the plant

has sufficient moisture to be healthy and no production loss. In this

paper, we call this the quality of service of the irrigation system.

Water Consumption. As each sprinkler uses a water supply

and we directly control the times at which each micro-sprinkler

is active, we can monitor the amount of water consumed by these

three systems at all times to determine the efficiency of each system.

Thus another metric is the water consumption, which we would

like to minimize subject to the quality of service constraints.

6.1.3 Experiments in our Testbed. We validate the DRLIC system

with baselines in real-world deployment in terms of plant health

and water consumption for 15 days. In the case study, we have six

almond trees in our testbed as shown in Figure 7. DRLIC, sensor-

based control and ET-based control are used to irrigate the upper,

middle and lower two trees separately since there is no runoff

between trees in our testbed. To allow three irrigation systems

to operate independently, Every micro-sprinkler is controlled by
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(a) ET-based Method (b) Sensor-based Method (c) DRLIC

Figure 10: Daily Soil Water Content of Different Irrigation Methods (15 Days).

Figure 11: Daily Water Consumption.

a DRLIC node. In this way, the only difference among the three

systems is the schedules sent to the nodes.

6.2 Experiment Results

6.2.1 Quality of Service. Irrigation systems are installed to main-

tain almond health with no production loss. Figure 10(a), 10(b), and

10(c) shows the daily soil water content in the field for ET-based

control, Sensor-based control and DRLIC. The black horizontal line

shows the MAD level. If soil water content is below this line, tree

health will be impacted. We can see that DRLIC and ET system

can maintain the soil water content above MAD threshold during

the 15 days deployment and thus meet the requirement of almond

health. However, the trees irrigated by Sensor-based method are

in an under-irrigation period of 18 hours for four days (day 1, 4, 7

and 9) since the soil water content of Sensor-based method is lower

than the MAD. The reason is that the moisture level of previous day

is close but not reached to MAD, so the sensor-based method will

not irrigate even though the moisture level is in an under-irrigation

trend. DRLIC system can irrigate what the trees need based on the

learned model about the water changes in the soil and maintain the

soil water content close to MAD level.

All three underlying irrigation systems begin with enough water

content on the first day. We see that the soil water contents of the

two trees in ET control system are much above the FC threshold.

In our deployment of DRLIC against the ET control strategy in

Figure 10(a), we see that soil water content for these two trees is

different and much higher than the MAD level. This emphasizes the

limitations of ET and the core of our work. The irrigated regions

Figure 12: Daily Soil Water Content with Safe Mechanism.

don’t receive moisture the same way, and most of the time, the

ET-based controller irrigates more water than the plant needs.

6.2.2 Water Consumption. When a decisionmust bemade to switch

to a new almond irrigation control system, a primary concern

is the efficiency of the proposed system. The system’s ability to

return its investment based on increased efficiency will often dictate

the acceptance of the technology. In addition, the environmental

benefits of reduced freshwater consumption are clear and help

promote system adoption.

In our experimental setup, the water source provided by each

micro-sprinkler is pressure-regulated to the industry standard, 30

psi. Each micro-sprinkler head distributing water uses a clearly-

defined amount of water per unit time, as described in the almond ir-

rigation manual [6]. By tracking exactly when each micro-sprinkler

is actuated by the system, we can determine very accurately how

much water has been consumed.

Figure 11 shows the daily irrigation amount of two trees actuated

by ET-based control, sensor-based control and DRLIC in a 15 days’

deployment experiment. From this figure, we can see that DRLIC

can save an average 9.52% and 3.79% of the water compared with

ET-based and Sensor-based control during 15 days deployment

experiment. ET-based control is a centralized control method to

irrigate all almond trees without considering their specific need.

Sensor-based control is water-efficient by monitoring the moisture

and irrigating when the moisture level is lower than the MAD level.

However, the thresholds are site-specific and not optimal. DRLIC

can learn optimal irrigation control by interacting with the local

weather and soil water dynamic environment.
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Figure 13: Daily Soil Water Content (w/o Safe Mechanism).

6.3 Effect of our Safe Irrigation Mechanism.

In the 15 days’ deployment, we find that there are two days (Day

2 and 14 in Figure 10(c)) DRLIC triggers the ET-control method.

This can also be validated from Figure 11, we can find the water

consumption of ET method and DRLIC on days 2 and 14 are the

same. We check the weather data to understand the reason and

find that the wind speeds of days 2 and 14 are 7.2 and 11.9 mph

receptively which is much higher than the average 2.8 mph of the

other 13 days.

We now run DRLIC with and without safe mechanism for a

whole growing season in simulation, labeled as Robust-RL and

RL-only, respectively. Figure 12 and 13 show the daily soil water

content of Robust-RL and RL-only for a same growing season 2020,

respectively. From the almond’s perspective, Robust-RL maintains

health with 0 days below the MAD level. The RL-only irrigation

method has 21 days below the MAD level. The reason is that the

RL models trained from past weather data “misbehave” on the test

weather data. while it may be possible to train on changing weather

to obtain a robust policy, no offline training can ever cover all

possible weather changes. The RL agent with safe mechanism from

DRLIC, however, is robust to weather changes because the safety

condition detector will detect the dangerous actions from RL agent

and the ET system will take control.

6.4 Effect of proposed Reward.

In this section, we discuss the simulation results of DRLIC with

different rewards for a whole growing season (March 1st to October

31st, 246 days).

In order to minimize the water consumption while not affecting

the plant health, we consider three situations in the reward. 1)

The soil water content (𝑉𝑖 ) is higher than the FC (𝑉𝑓 𝑐 ) level. 2) 𝑉𝑖
is between 𝑉𝑓 𝑐 and 𝑉𝑚𝑎𝑑 . 3) 𝑉𝑖 is lower than 𝑉𝑚𝑎𝑑 . Only in the

second situation, the plants are in good health. To evaluate our

reward function, we compare it with a simple reward (DRLIC𝑀𝐴𝐷 )

that only maintains 𝑉𝑖 above 𝑉𝑚𝑎𝑑 . It is commonly used in the

sensor-based method [7]. The reward is defined as: 𝑅 = −
∑𝑁
𝑖=1 𝜆3 ∗

(𝑉𝑚𝑎𝑑 −𝑉𝑖 ) + 𝜇3 ∗ 𝑎𝑖 ,𝑉𝑖 < 𝑉𝑚𝑎𝑑 . This function gives more penalty

to plant health when 𝑉𝑖 lower than 𝑉𝑚𝑎𝑑 since plants’ health is

significantly impacted. All the parameters are the same in Section

3.3.3.

Figure 17 shows the water consumption of DRLIC with our

proposed reward (DRLIC) and the simple reward (DRLIC _MAD).

DRLIC can save 2.04% more water than DRLIC _MAD, as the latter

Table 3: Micro-sprinkler Node Manufacture Cost.

Component Price Component Price

Moisture Sensor x 2 $250 ESP32 $6.5

18650 Li-ion battery $3 Solar Panel $4.3

Latching Solenoid $4 Switch Relay x 2 $5

Waterproof Enclosure $12 Maintenance Fee $10

Total $294.8

does not consider the case when 𝑉𝑖 is higher than 𝑉𝑚𝑎𝑑 . DRLIC

considers twomore situations by giving different penalties to plants’

health and water consumption. The first case is over-irrigation. The

water consumption is too high. Therefore, the penalty for water

consumption is higher than plant health. In the second case, the

plants are in good health. DRLIC strives to maintain the 𝑉𝑖 close to
𝑉𝑚𝑎𝑑 to save more water.

6.5 DRLIC Policy Convergence.

Figure 14 shows the RL training process and the policy converges

around the 500th training iteration. We define the length of an

episode as 30 days. We randomly vary the soil water content for

each tree between the FC (7.08 inches) and MAD (4.72 inches) at

the beginning of each episode. By doing so, the policy is exposed

to different soil water content conditions and learns to avoid water

depletion than the MAD level during training. At the beginning

of the experiment, the RL policy receives a larger negative reward

as it does not know a valid sequence of actions that maximize the

reward. The policy converges at the 500th training iteration. The

whole training (i.e. 1000 training iterations) takes ∼ 4 hours using

a 64-bit quad-core Intel Core i5-7400 CPU at 3.00 GHz.

6.6 Energy Consumption of Sensor Nodes

From a wireless sensor network standpoint, the ability of a system

to operate for a long period of time without user intervention is

fundamental. DRLIC nodes are no different, especially if they are

meant to be put on the ground. For this reason, our hardware and

software were designed to consume as little energy as possible.

DRLIC nodes were fitted with a latching solenoid, allowing the flow

of water to be turned on or off with a short pulse of power, rather

than a constant supply. For additional energy savings, the radio in

each node is duty-cycled, activating for only a 10 second period

every 1 minute. We need this high data frequency, the reason is

that the base station can send an off command to DRLIC with

a minute granularity. In our devices, the four peripherals that

consume significant energy are the two moisture sensors, solenoid,

two relays and radio. To meet this energy, we design an energy

harvesting mechanism by leveraging one 5/6 V 1.2 W solar panel.

Figure 15 shows the energy consumption for different sensors.

Each moisture sensor sample requires 10 mA of power for 10 ms,

and each flip of the latching solenoid requires 380 mA of power for

30ms. The ESP32 radio requires 180 mA of power for 50ms when

in transmitting mode. The relay requires 250 mA for 20 ms for

switching on or off. In our system, to ensure we don’t cut power

too early, we add a safety band of 50% on the timing on both of

these devices, triggering for 15 ms and 45 ms for the sensor and

solenoid, respectively. Overall, the solar-harvest mechanism can

meet the daily requirement of all the sensors in DRLIC node.
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Figure 14: Reinforcement Learning Pol-

icy Convergence.

Figure 15: Energy Profile for Different

Kinds of Sensors.

Figure 16: Battery Charging and Dis-

charging Cycle.

Figure 17: Water Consumption for DRLIC with Different

Reward

Figure 16 shows the two days’ energy charging and discharging

process. After a night discharge, the 18650 battery level is increasing

at 9:15 am on May 3rd. It usually takes 2 hours to fully charge the

battery (9:15 - 11:35 am). The battery level will keep 100% from

11:35 am to 18:45 pm, the energy harvested from solar can meet the

energy requirement of all sensors in DRLIC node. The battery will

discharge from 100% at 18:45 pm of May 3rd to the 90.7% at 8:45

am of May 4th. Then the whole energy charging and discharging

process repeat. The lowest battery level is an average of 90%. In

the 2 week’s deployment, we find that even on a cloudy day, the

battery can also be charged and will take one more hour to be fully

charged.

6.7 Return on Investment

A primary concern to purchasing or upgrading an irrigation control

system is the return on investment, i.e., how long does it take to save

enoughmoney fromwater consumption to cover the cost of the new

irrigation system. To calculate the return on investment of DRLIC,

we take into account the initial investment cost of theDRLIC system

and the money saved from the less water consumption provided by

our increased irrigation efficiency.

We first calculate the cost to develop a single DRLIC node. All the

components of aDRLIC node can be found in a consumer electronics

store and a home improvement store. Table 3 lists the cost of all

components. In total, a DRLIC sensing and actuation node costs

$294.8. A large portion of the budget is the cost of two soil moisture

sensors. We use two expensive soil moisture sensors that provide

accurate measurement and a long lifetime.

The factors that mostly influence the payback of our system

are water price and water volume saved by DRLIC. Water price

varies considerably in different irrigation district and over time.

This study assumed 100% groundwater usage and availability. Each

tree costs $11.3 for irrigation water per month. Based on our exper-

iment results, DRLIC can save 9.52% of water expense per month,

corresponding to $1.08. Normally, almond orchards have 100 trees

per acre. As a result, DRLIC can save $108 per month. Take a 60-

acre almond orchard with 10 irrigation regions as an example. Each

irrigation region is six acres. DRLIC can save $648 in each irrigation

region per month.

In each irrigation region, we need to deploy one DRLIC node,

which costs $294.8. The other irrigation components will use the

existing infrastructure, such as the pipelines and micro-sprinklers

under each tree. The cost of upgrading the existing irrigation system

with our irrigation control system is $294.8 for one irrigation region

in an orchard. Every month, our system can save $648. Therefore,

it only needs half a month for our irrigation system to return the

investment.

7 RELATEDWORK

ET-Based Irrigation Control. As the weather is a primary water

source or sinks in an irrigated space, systems have been devel-

oped to use weather as input for control. The simplest of these

systems use standard fixed-schedule irrigation, but allow a pre-

cipitation sensor to override control to save water during rain.

The more complicated systems, now the industry standard, use

evapo-transpiration (ET), an estimate of the amount of water lost

to evaporation and plant transpiration to do efficient water-loss

replacement [32]. Some providers boast an average 30% reduction

in water consumption, but as with all industry irrigation systems,

ET-based systems are limited by centralized control, and can not

provide site-specific irrigation, reducing potential system efficiency

and quality of control.

Sensor-based Irrigation Control. With the introduction of

more accurate and efficient soil moisture sensors, work has been

done to create irrigation controllers that react directly to moisture

levels in the soil [7]. Moisture sensors buried in the root zone of

trees accurately measure the moisture level in the soil and transmit

this data to the controller. The controller then adjusts the pre-

programmed watering schedule as needed. There are two types of

soil moisture sensor-based systems: 1) Suspended cycle irrigation

systems. Suspended cycle irrigation systems use traditional timed
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controllers and automated watering schedules, with start times

and duration. The difference is that the system will stop the next

scheduled irrigation cycle when there is enough moisture in the

soil. 2) Water on-demand irrigation requires no programming of

irrigation duration (only start times to water). This type maintains

two soil moisture thresholds. The lower one to initiate watering,

and the upper one to terminate watering [7]. However, without

a model of the way water is lost, these thresholds are usually set

based on experience and are not optimal.

Model-based Irrigation Control. In [30], a mechanistic PDE

model of moisture movement within irrigated space is built. Using

this model, an optimal watering schedule can be found to maintain

a proper moisture level. However, the PDE model is not updated

over time and future weather prediction is not taken into account.

To tackle these two limitations, the same authors further improve

the control system in [14]. The PDE model is eschewed in favor

of an adaptive approach that involves models trained from sensor

data. Long-term and short-term models are developed to describe

the relationship of runoff between sprinklers in the movement of

water through the soil.

As indicated by the authors [14], their system is designed for turf

irrigation, and it is unlikely to provide benefit in shrubbery or tree

irrigation. First, the turf soil moisture is affected by water runoff on

soil surface and the overlapping coverage of sprinklers. The models

in [14] are focused on capturing the relationship of runoff between

sprinklers. For tree irrigation, however, there is little runoff due to

the tree space. The soil moisture model for tree irrigation needs to

consider the soil-water relationship under different depths. Second,

as shown in [33], the decay of volumetric water content derived

from the long-term model of [14] was shown to be much quicker

than the real-world scenarios. It is bound to irrigate lightly and

frequently, which has been found to be inefficient [34].

DRL-based Control. DRL has been applied in many applica-

tions, such as network planning [16], cellular data analytics [17],

sensor energy management [35], mobile app prediction [36, 37]

and building energy optimization [20, 38]. However, this paper

tackles some unique challenges for irrigation control. First, we

define an irrigation reward function that considers three cases for

tree irrigation, as introduced in Section 3.3.3. Second, to prevent

any possible damage to plants’ health, we adopt a safe mechanism

that replaces some unwise actions generated by DRL agent. Third,

due to the data inefficiency, we leverage a data-driven simulator to

speed up the training process.

8 CONCLUSIONS

We present DRLIC, a DRL-based irrigation system that generates

optimal irrigation control commands according to current soil water

content, current weather data and forecasted weather information.

A set of techniques have been developed, including our customized

design of DRL states and reward for optimal irrigation, a validated

soil moisture simulator for fast DRL training, and a safe irrigation

module. We design DRLIC irrigation node and build a testbed of six

almond trees. Extensive experiments in real-world and simulation

show the efficiency of DRLIC system.
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