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Figure 1: The urban surveillance or post-disaster scenario, where several ground robots survey it in predefined ways and trans-

mit collected data to a remote base station via a UAV-enabled wireless multi-hop network. Due to the existence of obstacles,

ATG communication links may have LoS or NLoS propagations.

ABSTRACT

In surveillance or search scenarios, exploiting unmanned aerial

vehicles (UAVs) as relays to provide wireless data access for task-

oriented ground robots (GRs) with remote base station have emerged

as a promising application. This paper considers a UAV-enabled

wireless network, where communication links could be line-of-

sight (LoS) and non-line-of-sight (NLoS) due to obstacles in urban

environments. Existing works typically adopted the free-space path

loss model or the statistical channel model, which either ignored

the impact of obstacles or assumed uniformly distributed obstacles

and therefore might fail in practical NLoS scenarios. In this paper,

taking the information of randomly distributed obstacles in envi-

ronments into consideration, we aim to optimize the placement for

the UAV-enabled multi-hop network to transfer more data collected

by GRs and minimize the time delay in data transmission while

satisfying the required communication quality. By reconstructing

this complex non-convex optimization problem into two subprob-

lems and solving them alternatively, we propose the multi-hop

UAVs placement (mUP) method to get the solution, which contains

the air-to-ground network formation (ATG-NF) algorithm and the

communication quality-aware UAV placement (CQA-UP) algorithm.

∗Corresponding author: Wenjing Yang.

Simulation results show that in four types of typical urban envi-

ronments or with different numbers of UAVs, the proposed mUP

method achieves substantial performance gains in terms of commu-

nication quality and task performance compared to other placement

approaches based on statistical channel models. We further discuss

the robustness of the mUP method towards terrain measurement

error.
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1 INTRODUCTION

The dense deployment of small base stations is one of the typical

features of the emerging 5G networks. However, in post-disaster

search and rescue scenarios or surveillance scenarios, backhaul

access is usually either unavailable or limited in capacity [10]. Due

to the unmanned aerial vehicles (UAVs) have swift mobility, flexible

deployment capabilities and relatively high possibility to establish

line-of-sight (LoS) communication links with ground robots (GRs),

exploiting UAVs as relays to enable multi-hop wireless backhaul
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Figure 2: Widely-used communication channel models and their limitations. (a) The free-space path loss model may hold

true when the UAV flies sufficiently high that GRs are unlikely blocked by local obstacles, which however may lead to a com-

munication performance bottleneck. (b) In the statistical channel model, obstacles are assumed to be uniformly distributed.

Furthermore, the probability of each ATG link having LoS propagation depends on distribution-related parameters and ele-

vation angle at GR. (c) In realistic urban environments with randomly distributed obstacles, solutions based on the statistical

channel model may fail at some locations.

networks for task-oriented GRs with the remote base station (BS)

is a promising application [15, 20]. Since the existence of obstacles

in urban environments would result in damaged communication

quality and therefore lead to poor task performance, one of the

major challenges in the UAV-enabled multi-hop wireless commu-

nication scene in urban environments is how to deploy UAVs to

transfer more data collected by GRs and minimize the time delay

with communication quality constraints satisfied [10, 13, 14, 21].

Several studies have been devoted to this challenge. Consid-

ering the free-space path loss model, authors in [12] optimized

bandwidth, power allocation, and position deployment of UAVs

by alternating optimization and successive convex programming

(SCP) to maximize the throughput of the UAV-enabled network. In

a similar cellular-connected UAVs-enabled network, by adopting

the Rayleigh fading channel model, authors in [4] considered a

tradeoff between maximizing energy efficiency and minimizing the

communication interference and wireless latency, and proposed a

deep reinforcement learning algorithm to solve it. However, com-

munication channel models that these works adopted have ignored

the impact of obstacles and can only hold true in scenarios where

the UAV flies sufficiently high that GRs are unlikely blocked by local

obstacles, such as trees and buildings. In this case, as shown in Fig.

2a, high flying altitude (h2 >> h1) may lead to the communication
performance bottleneck caused by path loss [1, 13].

Some other existing works adopted the statistical channel model

to design the multi-hop backhaul network [3, 8, 17, 18]. Exploit-

ing the framework of network formation games, the authors pro-

posed a myopic network formation algorithm to maximize the

utility function considering the achievable data rate, wireless la-

tency [3, 17], and energy consumption [18] comprehensively. In

[8], the authors proposed a novel hybrid 5G Fiber-Wireless access

architecture and proposed genetic algorithms to maximize the num-

ber of the served users within latency constraints. Among these

works, the statistical channel model is based on the assumption

that obstacles are uniformly distributed; therefore the probability

of each air-to-ground (ATG) link having LoS propagation depends

on distribution-related parameters and elevation angle at each GR,

as shown in Fig. 2b. However, in realistic urban environments with

randomly distributed obstacles, solutions based on them may fail

at some locations. For example, as shown in Fig. 2c, the resulting

relay position theoretically can experience LoS propagation while

actually may utilize the non-line-of-sight (NLoS) propagation and

lead to damaged communication quality. This is because the actual

position and shape information of obstacles are not well used.

Such being the case, some other researchers proposed some

methods to use the information of obstacles to plan the position of

UAV relay [5, 11, 19]. Based on fine-grained LoS information, the

authors in [5] proposed an efficient algorithm to arrange the posi-

tion of UAV relay to maximize end-to-end throughput. Similarly,

in [7], the authors proposed a positioning algorithm to smartly

place a UAV relay to improve the connectivity in a wireless mesh

network. Considering the effects of LoS obstructions in urban areas,

the authors in [11] proposed a learning approach to predict ATG

communication strength to plan the trajectory of UAV relay. Be-

sides, in [19], the authors considered the information of obstacles

in environments and proposed an LoS condition-based division

method to solve a concave optimization problem to arrange the

energy-efficient trajectory of the UAV relay. Note that a multi-robot

system can significantly extend the service areas and improve the

task-performing efficiency by cooperation. However, the above re-

searches only considered one UAV relay, which left the placement

of a multi-hop UAV-enabled network considering communication

quality constraints relatively unexplored.

This thus motivates our current work to investigate the place-

ment optimization of the UAV-enabled multi-hop network in urban

areas, which considers the information of obstacles in environ-

ments. As shown in Fig. 1, we consider an urban surveillance sce-

nario, where communication links could be LoS and NLoS due to

obstacles in environments. Several GRs survey an urban area in

predefined ways and transmit collected data to the remote base

station via a UAV-enabled wireless backhaul network. We aim to

form an optimized placement of UAVs to maximize the amount of

transferred data and minimize the time delay while maintaining

the required communication quality.
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To our best knowledge, this is the first work that takes randomly

distributed obstacles into consideration to design a UAV-enabled multi-

hop backhaul network to satisfy the required communication quality

in urban environments. The main contributions of this paper are

summarized as follows.

• Considering environments with many obstacles, we adopt

the signal-to-noise ratio-based (SNR-based) communication

channel model, which captures both LoS and NLoS propaga-

tions. Furthermore, we propose a multi-hop UAVs placement

(mUP) method to form a UAV-enabled wireless network aim-

ing at transferring more data and minimizing the time delay.

• ThemUP problem is reconstructed into the ATG network for-

mation subproblem and the communication quality-aware

UAV placement subproblem, and be solved alternatively. We

design a UAV-UAV game and a GRs-network game and in-

corporate the virtual force field (VFF) to solve the first sub-

problem to get the topology of the network. Then based on

the information of obstacles in environments, we propose a

communication quality-aware UAV placement algorithm to

ensure UAVs are placed in positions where communication

qualities between UAVs and linked GRs are satisfied.

• Numerical results demonstrate that the proposedmUPmethod

achieves substantial communication quality and task per-

formance improvement in four typical urban environments

or with different numbers of UAVs compared with methods

that only use VFF and adopt the statistical channel model.

Our mUP method can ensure that 80% of ATG links are valid

while up to 50% of links generated by the other two meth-

ods are blocked by obstacles. Besides, Our mUP method can

transfer up to 2 times the amount of data as much as these

two methods. In addition, simulation results show that the

mUP method can be applied in successive task executions in

surveillance scenarios. We further discuss the robustness of

the mUP method towards terrain measurement error.

The rest of this paper is organized as follows. At first, we present

the SNR-based communication channel model and formulate the

mUP problem in Section 2. Then, the mUP method is given in

Section 3. Simulation results are provided and analyzed in Section

4. At last, we draw conclusions in Section 5.

2 SYSTEM MODEL AND PROBLEM
FORMULATION

We consider a wireless multi-hop network composed of one base

station, a set N of N UAVs, and a setM ofM GRs in post-disaster

search and rescue scenarios or surveillance scenarios in urban

environments. Due to disasters, terrestrial wireless infrastructures

are damaged, and we place one BS on the rooftop that is higher than

all buildings. GRs with different acquisition capabilities execute

their tasks (collect interested data) in street levels in predefined

ways. Besides, we assume that all UAVs fly at the same altitude

which is higher than obstacles, as commonly done in prior works

[3, 5]. Due to the existence of obstacles in environments, a ground

backhaul network connecting GRs to the BS is either limited in

capacity or significantly obstructed. Therefore, we consider a UAV-

enabled wireless multi-hop network to overcome the bottleneck

that provides GRs with the BS wireless data access.

Note that UAV-to-GRs data links can be obstructed due to ob-

stacles surrounding the GRs. And UAV relays cannot be placed

too close to some specific GRs since they need to strike a balance

between ensuring at least one UAV has access to BS, transmitting

more data collected by GRs, and reducing time delay in data trans-

mission. To address this dilemma, we aim to optimize the placement

of UAVs to transmit more data collected by GRs and reduce time

delay in this paper. Key notations are summarized in Table 1.

2.1 SNR-based Communication Channel Model

The prediction of communication quality is of great significance to

the optimization of UAV deployment. Considering a classic wireless

communication channel model consisting of pathloss and shadow

fading, we use the received SNR as the performance metric to

characterize wireless communication quality. And SNR between

the transmitter i and receiver j can be given by

SNRi j = Pi/di j
βN0BΨi j , (1)

where Pi represents the transmit power of i , di j is the Euclidean
distance between i and j, β refers to the pathloss exponent, N0
(W/Hz) represents the power spectral density of the additive white

Gaussian noise (AWGN), B (Hz) is the channel bandwidth, and Ψi j
represents the shadow fading component accounting for diffraction

and multipath fading between i and j. The Doppler effect caused
by the mobility of UAVs is assumed to be completely compensated

as done in [4]. Besides, Ψi j (dB) follows the Gaussian distribution
and can be expressed as [11]:{

ΨLoSi j ∼ N(μLoSi j , (σ
LoS
i j )2), LoS propagation,

ΨNLoSi j ∼ N(μNLoSi j , (σNLoSi j )2), NLoS propagation.
(2)

In (2), μi j and σ
2
i j refer to mean and variance respectively, and can

take either of two values for cases of LoS and NLoS propagations.

In our system model, communication links contain the air-to-

air (ATA) links between UAVs and UAVs (or BS), and ATG links

between UAV and GRs. For the ATA links, we assume that UAVs fly

higher than obstacles, so that ATA wireless channels are dominated

by LoS links [3, 6, 8] and the shadow fading component can be

expressed by ΨLoSi j . For ATG links, in urban environments, LoS and

NLoS propagations both should be considered.

Besides, to overcome the co-channel interference among differ-

ent GRs and UAVs, orthogonal transmission in the time domain

among different ATG and ATA links is considered, which means

we use time-division multiple access (TDMA) in this paper. In other

words, each link is assigned with a dedicated data transmission time

slot. In addition, we can reduce the overhead of synchronization

by applying methods like delay-tolerant synchronization approach

[16].

2.2 The mUP Problem Formation

As shown in Fig. 3, the UAV-enabled multi-hop network can be

represented as an undirected graph G(V ,E), where V represents

the set of all vertices (N UAVs,M GRs and one BS) and E represents
the set of all communication links. Similar to [3], we consider a

network with bidirectional tree structure rooted at BS o, which
allows each UAV/GR to connect to BS via at most one path. The
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Table 1: Key notations

Symbols Meaning

N ,M The sets of UAVs and GRs separately, N � {1, 2, ...,N } andM � {1, 2, ...,M}.
xUn ,xGRm The positions in three dimensional of the UAV Un and the GR GRm separately.

SNRi j The signal-to-noise ratio (SNR) between the transmitter i and receiver j.

Ψi j The shadow fading component accounting for diffraction and multipath fading between i and j.

G(V ,E) An undirected tree-structured graph, with V representing the set of all vertices and E being the set of all
communication links.

am (bits/s) Data acquisition rate of each GR GRm .

An (bits) The total amount of data should be transferred by Un , which comes from its links GRs and its child UAVs.

to,n , tnm , tnn′ , tn′′n The time slots between BS o and UAV Un , UAV Un and GR GRm , UAV Un and its child UAV Un′ , and UAV Un
and its parent UAVUn′′ separately (n,n

′ ∈ N ,m ∈ M,n � n′,n′′).
tdelay_m The time delay in data transmission of one GRm.

p(n), c(n) The parent node of UAVUn and child nodes of UAVUn separately, in the tree-structure network G.

ρn The set of UAVs, which are parent nodes ofUn from BS to itself, ρn = {Ul1,Ul2, ...,Uln } (p(l1) = BS ,Uln = Un ).

enn′ , enm ATA communication link between UAV Un and another UAV Un′ , and ATG communication link between

UAVUn and GR GRm .

G − enn′ ,G + enn′ Deleting and adding link enn′ from G separately.

dis(Un ,Un′ ),dis(Un , c(n)) The Euclidean distances between UAV Un and another UAVUn′ , and between UAV Un and its child UAV c(n)
separately.

GRUn Directly linked GRs with UAV Un (n ∈ N ).

O(x ,dia) A circle with its center is x and diameter is dia.

DxUi
, S(DxUi

) The domain of xUi and its area.

tree-structure network topology constraint can be formulated as

follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
n∈N

Φ(tno ) ≥ 1,∑
n∈N

Φ(tnm ) ≤ 1,∑
n,n′ ∈N,n�n′

(Φ(tno ) + Φ(tnn′ )) = N .

(3)

In (3), Φ(t) is an indicator function taking value 1 if time t > 0, and
0 otherwise. Φ(t) can also be regarded as a mapping function which
maps the time slot allocation into network topology. In other words,

if a time slot is allocated between UAV Un ( n ∈ N ) and UAV Un′

( n′ ∈ N ) (tnn′ > 0), there exists a communication link between

them (Φ(tnn′ ) = 1). Besides, in (3), the first constraint ensures that
at least one UAV Un is connected to BS o, the second constraint
guarantees that each GR GRm is connected to at most one UAV

Un , while the third constraint guarantees the number of formed
edges in the network is the same as that of UAVs. Therefore, (3)

guarantees the tree-structure network topology.

As shown in Fig. 4, we quantize task execution time into multiple

time intervals. Each time interval contains two stages. In stage

I, GRs collect interested data in predefined ways, and UAVs are

deployed according to our proposed mUP method. In stage II, UAVs

and GRs both arrive at predefined or planned positions, where they

are motionless or in hovering to transfer data from GRs to BS via

UAVs relay. The transferred data include the collected data (like

images, audios) and destinations of GRs in next time interval. In

addition, time of stage I (tI ) is fixed while time of stage II (tI I )
depends on data transmission time, which can also be called time

delay and is part of our optimization objective.

BS

Un, n N

GRm, m M

tnn

tnm

to,n

Figure 3: Illustration of the tree-structure network com-

posed of N UAVs andM GRs, which rooted at BS.

Task execution time
Stage I Stage II

Time interval Time interval Time interval

Figure 4: Illustration of the task execution time, which is

quantized into multiple time intervals. Each time interval

contains two stages: stage I is the GRs data collection and

UAVs placement stage, while stage II is the data transmission

stage.

Time delay in data transmission relates to the amount of data to

be transferred. Speaking of the amount of data to be transferred,
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we assume GRs could carry different kinds of sensors, such as im-

age, audio, humidity sensors, to satisfy different task requirements.

Therefore, acquisition capabilities of GRs could be different. For

each GR GRm , it can collect amtI (bits) data during one time inter-
val. Given the spectral efficiency of the UAV relay SU (bit/s/Hz),

the time for these data to be transmitted by a UAV relay can be ex-

pressed as tm = amtI /(BSU ). Besides, as shown in Fig. 3, one UAV
Un has to transfer data coming from not only directly linked GRs

but also child UAVs, the amount of which is denoted by An . Then,
the time slot constraint (each time slot allocated to each link should

be long enough for Un to transmit related data) can be represented
as:

SU tn′′nB ≥
∑
n′ ∈N

n′�n,n′′

Φ(tnn′ )An′ +
∑
m∈M

Φ(tnm )Am ,∀n. (4)

To formulate the time delay, we first define path pal from leaf

node (UAVs with no child UAVs)Ul , (l = 1, 2, . . . ,L) to the BS o as
pal = Ul1Ul2...UlkUlk+1...UlK ,k ∈ K , where K � {1, 2, ...,K − 1},

Ul1 = Ul ,UlK = o, and each link eUlkUlk+1 ∈ E. Then, the time delay
in data transmission of GRm over path pal can be represented as
tdelay_m = tm,l1 +

∑
k ∈K

tlk,lk+1 + tlK,o ,∀m.
For notational convenience, we define T = {tnn′ , tnm , ton ,

∀m,n,n′,n � n′}. Our objective is to optimize the placement of
UAVs to transmit more data collected by GRs in less time delay,

which can be formulated as:

min

T ,xUn ,n ∈ N
J = ω

∑
m∈M

tdelay_m −
∑

n∈N

∑
m∈M

Φ(tnm )Am

s .t .
Φ(tnn′ )Pn

N0Bdnn′
βΨLoS

≥ SNRmin,

Φ(tnm )Pn

N0Bdnm
βΨnm

≥ SNRmin,

Φ(tno )Pn

N0Bdno
βΨLoS

≥ SNRmin,

dis(Un ,Un′ ) > dsafe,∀n,n′,m,n � n′,
(3) and (4).

(5)

In (5), ω is a tradeoff parameter which can weigh the importance

between transferring more data and minoring time delay in data

transmission. And the first three constraint functions are SNR-based

communication links constraints according to (1), in which SNRmin
denotes the minimum threshold of required SNR to transmit reli-

ably. And SNRmin is determined bymodulationmethod, coding rate
and communication rate [3]. The fourth constraint function is the

physical collision avoidance constraint, which means the distance

between different UAVs should be no closer than the safe distance

dsafe. Besides, the problem also subjects to the tree-structure net-

work topology constraint in (3) and the time slot constraint in (4).

3 MULTI-HOP UAVS PLACEMENT METHOD
DESIGN

This section aims to solve the mUP problem (5), which is complex

due to the multiple optimization variables and nonconvex nature

caused by obstacles. As given in Algorithm 1, we tackle the prob-

lem by reconstructing it into two simpler subproblems and solving

Algorithm 1 The mUP Algorithm

Input: Network G (initialized as a star network or resulted tree-

structure network in last time internal), GRs , N , obs (informa-
tion of obstacles).

1: while G has not yet converged do

2: PickUn (n ∈ N ) according to the assigned priority sequen-

tially.

3: Un activate another Un′ (n
′ ∈ N ,n � n′) randomly but

uniformly.

4: Pick all unlinked GRs as unGRs . Cluster unGRs based on
positions, pick the set with the maximum amount of data as

tarGRs .
5: ATG-NF(G,Un ,Un′ ,tarGRs).
6: Define linked GRs withUn as GRUn .
7: if GRUn � � then
8: Pick parent nodes of Un from BS to itself as ρn =

{Ul1,Ul2, ...,Uln } (p(l1) = BS ,Uln = Un ).
9: CQA-UP(ρn ,obs,tarGRs,N ).
10: end if

11: end while

12: return resulted network G

them alternatively. The first subproblem is constructed as an ATG

network formation (ATG-NF) problem. In the first subproblem, we

suppose positions of UAV relays are in domain where all links with

GRs are LoS, and the goal is to find the optimal data transmission

time slotT ∗ (also can be deemed as the topology of the network) to
maximize the amount of transmitted data and minimize time delay.

Then, upon solving the first subproblem, the second subproblem can

be reformulated as a communication quality-aware UAV placement

(CQA-UP) problem. In the second subproblem, for all possible po-

sitions of UAVs, the optimal topology of the network are given by

T ∗, and the goal of the second subproblem is to find positions of

UAVs to ensure required communication quality while maximizing

the amount of transmitted data and minimizing time delay.

3.1 ATG Network Formation Problem

If all ATG links are LoS, the problem (5) can be constructed as an

ATG-NF problem. The goal is to form an aerial multi-hop backhaul

network that allows each UAV to be connected to the BS via one

path and connects as many GRs as possible via fewer hops. For the

network formation problem, a framework of network formation

game was proposed in [3, 17], where each UAV was an indepen-

dent decision player to take action aiming at optimizing its utility

function, and the result of the game was the graph G allowing all

UAVs to be connected to the BS. However, in this framework, users

at ground level were considered as a whole and were in one-to-one

correspondence with UAVs, which might fail to satisfy the demands

of the wireless communication quality between some GRs and UAVs

due to the existence of obstacles. Therefore, apart from the forma-

tion of aerial network between UAVs, the connection between GRs

and UAVs should also be considered, which together constitutes

the ATG-NF problem. The proposed ATG-NF algorithm contains

two games design and VFF incorporation.

58



3.1.1 The UAV-UAV game and the GRs-network game. We design

two games to get the topology of the ATG network, which is the

UAV-UAV game and the GRs-network game. In the UAV-UAV game,

similar to [3], the players correspond to the set of UAVs; the action

space is defined as the set of links which each UAV can delete or

form; the purpose is to form a suited network graph that connects

them to BS via at most one path. While in the GRs-network game,

the players correspond to the set of GRs and the nodes of the

network G; the action space is defined as the set of links which
each node can delete or form and each GRs can form or replace;

the purpose is to connect GRs with proper nodes of the network to

reduce time delay in data transmission.

In the UAV-UAV game, for each UAV Un , the purpose is to mini-
mize its utility function Jn (G) (the objective of (5)), which captures
the amount of data transmitted viaUn in networkG and time delay

of transmitting them. In the GRs-network game, for each GRs, the

purpose is to connect to one node (UAV) to transmit collected data

to BS via fewer hops, the link between which should satisfy the

threshold of the required communication quality SNRmin. As for
another player, the network, the purpose is to minimize its utility

function J (G), which is also the objective of (5). And the result of
the second game is a set of links formed among different nodes

(UAVs) in the network and GRs.

In the game theory, when all players act according to their best

response, the game can converge to a stable state where they reach

an agreement. The state is Nash equilibrium (NE) [2]. In these two

games, to get to the NE, all players act based on greedy strategy,

which means they make decisions to optimize their utility functions

considering only the current state of the network and no future

evolution. More specifically, to get to NE, players follow rules below:

(1) To form a link enn′ between UAV Un and UAV U ′
n (n,n

′ ∈

N ,n � n′), they should both agree, which is on the condition
that Jn (G−enp(n)+enn′ ) < Jn (G) and Jn′ (G−enp(n)+enn′ ) <
Jn′ (G).

(2) To delete a link enn′ , Un can unilaterally decide, if Jn (G −

enn′ ) < Jn (G).
(3) To form a link enm between GRGRm (m ∈ M) and one node

Un of the network G, GRm can unilaterally decide, on the

condition that SNRnm ≥ SNRmin.
(4) To replace an existed link en′m with a newly formed link enm ,

GRm and the network G should both agree, which means

SNRnm ≥ SNRmin and J (G − en′m + enn′ ) < J (G).

3.1.2 Virtual force field. The idea of VFF is regarding a target in

environments as a charged particle navigating a magnetic field. In

other words, repelled by virtual forces from obstacles and attracted

by virtual forces from the goal, the target can arrive at the goal while

avoiding obstacles. VFF is adopted in [3] to allow a UAV to adjust its

position when different UAVs are beyond the communication range.

This motivates us that VFF can convert mathematical constraints to

virtual forces, then update positions of UAVs. In this case, when all

links are LoS, corresponding virtual forces of the problem (5) that

would apply to a UAV relay are shown in Fig. 5. 	Fr e is the resultant
force of collision avoidance repulsive forces from different UAVs

and attractive forces from GRs/BS, which can push UAVs to proper

positions theoretically. Note that for the traditional VFF method,

there is typically only one goal, while in this paper, there are many

Algorithm 2 ATG-NF Algorithm

Input: G,Un ,Un′ and tarGRs .
Output: G.
1: Check Jn (G) and Jn′ (G).
2: if enn′ � E then
3: A resultant virtual force 	Fr e is exerted to Un to update its

position; original position xold
Un

is remembered.

4: if dis(Un , c(n)) > dA then
5: xUn = xold

Un
.

6: en,GRUn′
can replace en′,GRUn′

, if SNRn,GRUn′
>

SNRmin and J (G − en′,GRUn′
+ en,GRUn′

) < J (G).

7: end if

8: if c(n) not exist or dis(Un , c(n)) ≤ dA then
9: Form links enm (GRm ∈ tarGRs) if SNRnm > SNRmin.
10: if Jn (G−enp(n)+enn′ ) < Jn (G) and Jn′ (G−enp(n)+enn′ ) <

Jn′ (G) then
11: Form enn′ and replace enp(n).
12: else

13: xUn = xold
Un
.

14: Delete links enm formed in line 9.

15: end if

16: end if

17: end if

18: if enn′ ∈ E then
19: delete enn′ if Jn (G − enn′ ) < Jn (G);
20: en,GRUn′

can replace en′,GRUn′
, if SNRn,GRUn′

> SNRmin

and J (G − en′,GRUn′
+ en,GRUn′

) < J (G);

21: end if

GRs that can be regarded as goals. Therefore, we cluster GRs based

on their positions, for that GRs close to each other may share the

same communication condition with high probability.

Collision avoidance repulsive 
force from different UAVs

Attractive force 
from GRs 

(if Un has no child 
nodes)

Attractive 
force from BS

(if linked)

X

Y
Resultant virtual 

force Fre

Figure 5: Illustration of virtual forces that would apply to a

UAV relay.

3.1.3 Algorithm design. Based on the two games and VFF, our

proposed algorithm is given in Algorithm 2. Input parametersUn ,
Un′ and tarGRs are chosen in line 2-4 in Algorithm 1, while UAVs

with less child UAVs are assigned with higher priority. In Algorithm

2, we have two situations: link enn′ does not exist (in line 2-17)
and the other (in line 18-21). When link enn′ does not exist, a
resultant virtual force is exerted to Un to establish a temporarily

59



communication link withUn′ and make it closer to goal GRs. Then
compare the Euclidean distance between the updated Un and its
child UAV dis(Un , c(n)) and the maximum distance between any

two UAVs satisfying the threshold of communication quality dA =
β

√
Φ(tnn′ )Pn

SNRminN0BΨLoS
. IfUn in the newly position is disconnected from

its child nodes,Un should be returned to its original position. Then,
present network and GRUn′ (linked GRs with Un′ ) engage in the
GRs-network game (line 4-7). IfUn has no child node ordis(Un , c(n))
is within the maximum distance dA,Un andUn′ engage in the UAV-
UAV game while GRs in tarGRs and G engage in the GRs-network

game (line 9-15). On the other hand, if link enn′ exists,Un andUn′

engage in the UAV-UAV game while GRs inGRUn′ andG engage in

the GRs-network game (line 19-20). At last, we can get network G
with updated links and node positions.

3.2 Communication Quality-Aware UAV
Placement Problem

Based on the network topology resulted from the ATG-NF algo-

rithm, the problem (5) can be transformed as

min

xUn ,n ∈ N
J = −

∑
n∈N

∑
m∈M

Φ(tnm )Am

s .t . dnn′ ≤
β

√
Φ(tnn′ )Pn

SNRminN0BΨLoS
,

dno ≤
β

√
Φ(tno )Pn

SNRminN0BΨLoS
,

dis(Un ,Un′ ) > dsafe,

Φ(tnm )Pn

N0Bdnm
βΨnm

≥ SNRmin,∀n,n′,m,n � n′.
(6)

For that Ψnm is a step function of xUn , the problem (6) is a multi-

objective non-convex optimization problem, which optimizes po-

sitions of UAVs to transmit more data while satisfying the com-

munication quality. Due to topology and communication quality

constraints, the change of position of one UAV would affect po-

sitions of its directly linked UAVs, e.g., one UAV moving to the

best position may make child nodes of it disconnect with the net-

work. Note that in nature, the orientation of tree root can decide

the growth orientation of the tree. Similarly, in our tree-structure

network, positions of UAVs closer to the root (BS) can influence

the GRs that the network can link. Therefore, the basic idea of

the CQA-UP algorithm is to assign the most important weight to

UAVs closer to BS, and the assigned weights fall as the UAVs locate

further from the BS. In this way, we transform the multi-objective

optimization problem into single-objective optimization problem

by optimizing the UAVs closer to BS first and then their child UAVs.

Note that when UAV flying height is fixed, the closer the UAV

moves to the GR, the more likely the link between them has LoS

propagation [1], then satisfies the required communication quality.

Therefore the objective function of (6) can be approximated as

minimizing the distance between Un and center of tarGRs (J =
dis(Un , cen(tarGRs))). In this case, if the value of Ψnm is definite,

(6) is a convex problem, which therefore can be easily solved by

methods like interior point method. By utilizing LoS condition-

based division [19], we can make the value of Ψnm definite. In detail,

by regarding the radio propagation as the ray optics propagation,

we can divide the domain of xUn into areas with LoS (D
LoS
Un

) and

NLoS propagation (DNLoS
Un

) when Un communicates with linked

GRs separately. In DLoS
Un

, the value of Ψnm is definite. Since DLoS
Un

could be concavewith high probability, we next divide it into several

convex subdomains, inwhich subproblems of (6) are convex and can

be easily solved. The minimum solution among these subproblems

corresponds to the optimal solution, the optimal position of the

optimized UAV.

Algorithm 3 CQA-UP Algorithm

Input: ρn , obs , tarGRs and N .

Output: Positions of UAVs in ρn = {Ul1,Ul2, ...,Uln }.
1: for each i ∈ [l1, ln ] do
2: Uoth = N −Ui .
3: Uη = (N − ρn ) ∩ c(i).
4: if Uη == � then
5: DxUi

= O(xp(i),dA) −O(xUoth
,dsaf e ).

6: else

7: DxUi
= O(xp(i),dA) ∩O(xUη ,dA) −O(xUoth

,dsaf e ).

8: end if

9: Define the jth linked GRs withUi as GRUi , j .

10: Divide the flyable area ofUi into D
LoS
GRUi , j

and DNLoS
GRUi , j

when

Ui communicates withGRUi , j , according to obs and xGRUi , j .

11: Sj = S(DxUi
− DNLoS

GRUi , j
).

12: Sort Sj in descending order as Sk1 , Sk2 , ...,Skj .

13: for each K ∈ [k1,kj ] do

14: if S(DxUi
− DNLoS

GRUi ,K
) == 0 then

15: Delete link betweenUi and GRUi ,K .
16: else

17: DxUi
= DxUi

− DNLoS
GRUi ,K

.

18: end if

19: end for

20: Divide domain DxUi
into several convex subdomains Dε

xUi
.

21: In subdomains Dε
xUi

, subproblem (6) are convex problems,

and optimal solutions among these subproblems are xε∗
Ui

and

J ε∗
Ui
.

22: J∗op =min{J ε∗
Ui
} and x∗

Ui
is the corresponding xε∗

Ui
.

23: end for

The entire algorithm is summarized in Algorithm 3. Input param-

eter ρn is the set of UAVs to be optimized, which is chosen in line 8
in Algorithm 1. In Algorithm 3, UAVs are optimized from the ones

closer to BS. For each UAV i to be optimized,Uoth is the set of UAVs
apart from itself, while Uη is the set of its child UAVs except UAVs
to be optimized. In line 2-8, we have the domain of xUi satisfying
the first three constraints in (6). To make the value of the shadow

fading component definite, DNLoS
GRUi , j

should both be removed from

DxUi
. In case there are no area left, the link with the GR that leads

to the least left area would be deleted, until there are some areas

left (line 11-19). Then, following the LoS condition-based division,

we can get the newly positions of UAVs in ρn .
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(a) (b) (c)

Figure 6: Diagrammatic sketch of the CQA-UP algorithm. The star represents the UAV to be optimized. (a) Orange circle region

is the domain of xU3
satisfying the first three constraints in (6). (b) Blue regions are areas with NLoS propagations when U3

communicates with linked GRs (GR3). (c) The left orange shadow region is the final domain of xU3
, which can make the value

of the shadow fading component definite.

(a) Suburban (0.25, 1265, 10) (b) Urban (0.37, 461, 18) (c) Dense urban (0.4966, 310, 20) (d) Urban high-rise (0.4966, 310, 45)

Figure 7: Four typical types of urban environments recommended by ITU-R, followed by parameters (a,b, c). The original data
of these environments are either obtained from real-world datasets (the USGS database: http://ngmdb.usgs.gov) or adapted

from existing works[6].

An example is visualized in Fig. 6, where ρ3 = {U2,U4,U3},U3 is
the UAV to be optimized, andUη = �.DxU3

after line 8 in Algorithm

3 is shown in orange circle region in Fig. 6a, DNLoS
GRU3,1

is shown in

blue regions in Fig. 6b, and the final domain of xU3
is shown in

orange shadow region in Fig. 6c.

4 NUMERICAL RESULTS

In this section, we present our simulations to verify the validity

and task performance of the proposed mUP method with different

numbers of UAVs in different types of urban environments with ob-

stacles by comparing it with the other two methods. Then we show

how the system is used in successive time intervals in surveillance

scenarios. Besides, we analyze the robustness of the mUP method

towards terrain measurement error since maps of environments

may be imprecise due to limitations of mapping technologies or in

post-disaster scenarios.

For simulations, we consider four different Manhattan-like 1

km by 1 km urban environments with trees and buildings ranging

between 5-45meters height. As shown in Fig. 7, we assume obstacles

like trees and buildings are convex and simplify them into cuboids.

Table 2: System parameters

Parameters Values

Transmit power (P ) 30 dBm

Bandwidth (B) 5 MHz

Noise power spectral density (N0) -90 dBm/Hz

SNR threshold (SNRmin ) -4 dB

(μLoS , μNLoS ) (0.1,21)

Path loss (β) 2.5

Heights of BS and UAVs (hBS,hU ) 45 m, 50 m

Collision avoidance threshold (dsafe) 10 m

As recommended by The International Telecommunication Union

(ITU-R) [9], the ratio of built-up area (a), the mean number of

buildings per unit area (b), and building height distribution-related
parameter (c) are three empirical parameters that can describe

environments. According to these parameters, four environments

in Fig. 7 can represent four typical types of urban environments:

suburban, urban, dense urban and urban high-rise.
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(a) mUP in suburban (b) mUP in urban (c) mUP in dense urban (d) mUP in urban high-rise

(e) Proba-UP in suburban (f) Proba-UP in urban (g) Proba-UP in dense urban (h) Proba-UP in urban high-rise

(i) VFF-UP in suburban (j) VFF-UP in urban (k) VFF-UP in dense urban (l) VFF-UP in urban high-rise

Figure 8: The placements of 5 UAVs optimized by the proposed mUPmethod (shown by circle lines), Proba-UPmethod (shown

by pentagram lines), and VFF-UP method (shown by diamond lines) separately in four different types of urban environments

in top viewpoint. The network composed of 5 UAVs is initialized as a star network, where each UAV connects to the BS via a

direct link. There are 8 GRs and (GRm,am ) means the m-th GR collects am times as much as a0 (Mbits) data. The value of a0
depends on specific tasks.

The main simulation parameters are summarized in Table 2. GRs

are spread at ground level in predefined ways according to their

tasks. UAV flying heights are set to 50 meters to avoid collision with

any building while maintaining LoS propagation with the BS. As

for the UAV-to-GRs links, we consider both LoS and NLoS propaga-

tion scenarios, relevant propagation parameters that correspond

to existing literature models for a fair comparison [3, 11]. Besides,

the bandwidth per UAV is the same since we adopt TDMA. All

statistical results are averaged over 500 independent runs.

4.1 Superiority of the mUP Method in Task
Performance

In this subsection, we simulate the scenario described in Section 2

in four typical types of urban environments. And we compare our

proposed mUP method with following baselines.

• UAVsplacement using probabilistic LoS channelmodel

(Proba-UP): the probabilistic LoS channelmodel is thewidely-

used statistical communication channel model in existing

research when dealing with environments with obstacles

[3, 8, 17, 18]. Since existing works either considered the

phone users and cared little about the precise positions of
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(a) The ratio of valid ATG links (b) Value of objective J and the amount
of transferred data via the network

Figure 9: With the same sets of Fig. 8, valid link ratios, ob-

jective J and the amount of transferred data via the network
formed by three methods in four types of urban environ-

ments. ATG links satisfying the threshold of SNR are as-

sumed to be valid. And the "ratio of valid ATG links" is the

ratio of valid links to the number of GRs. The total amount

of the data collected by 8 GRs are 14a0 (Mbits).

(a) The ratio of valid ATG links (b) Value of objective J and the amount
of transferred data via the network

Figure 10: With the same set of GRs in Fig. 8b, valid link

ratios, objective J and the amount of transferred data via
the network formed by threemethods. The number of UAVs

ranges from 2-9.

GRs or based on communication models like free-space path

loss model without reckoning on the impact of obstacles,

their methods cannot be applied to this scenario directly.

Therefore, in this paper, we implement it by substituting

the shadow fading component with the probabilistic shadow

fading component Ψ
proba
i j :

Ψ
proba
i j = PLoSi j μLoSi j + (1 − PLoSi j )μNLoSi j ,

PLoSi j = 1/(1 +C exp(−D[θ −C])).
(7)

The probability of one link ei j having an LoS propagation

(PLoSi j ) is related to the distribution of obstacles (C,D) and

the elevation angle between transmitter and receiver (θ )
[1]. (C,D) can be obtained from (a,b, c) according to [1]. In
this case, the problem (6) can be transformed into a convex

problem, which methods like the interior point method can

solve.

• UAVsplacement using virtual forcefield (VFF-UP): Noted

that using the proposed ATG network formation algorithm

alone, we can theoretically get the proper placement of UAVs.

Apart from virtual forces shown in Fig. 5, we take the repul-

sive forces from obstacles into consideration in this method.

Besides, we implement this method by carefully adjusting

the virtual force attractive coefficient parameters according

to information of environments.

As shown in Fig. 8, in top viewpoint, we compare the placements

of UAVs optimized separately by mUP method (Fig. 8a- Fig. 8d),

Proba-UP method (Fig. 8e- Fig. 8h) and VFF-UP method (Fig. 8i-

Fig. 8l) in four types of environments. Overall, we can see that all

ATG communication links deployed by mUP method are LoS, while

ATG links deployed by Proba-UP method and VFF-UP method have

both LoS and NLoS propagations (eU1,GR8 in Fig. 8f and eU4,GR1
in Fig. 8j for instance). This should owe to the CQA-UP algorithm,

which utilizes the information of obstacles and optimizes positions

of UAVs to ensure the required communication quality. As for UAVs

placements optimized by Proba-UP method, UAVs tend to move

to places with higher probability of having LoS propagations, on

the condition that obstacles are evenly distributed in environments.

It turns out that this does not work well in real-world dataset, in

which obstacles are usually randomly distributed. When it comes to

UAVs placements optimized by VFF-UP method, UAVs are usually

deployed close to positions above no obstacles. This is because

in VFF-UP method, UAVs are pushed by resultant forces of attrac-

tive forces from GRs/BS, collision avoidance repulsive forces from

other UAVs and all obstacles in environments. However, UAV in

positions above no obstacles cannot guarantee the UAV-to-GRs

links are LoS, which is why our proposed mUP method contains

ATG-NF algorithm (similar to VFF-UP method), as well as CQA-UP

algorithm.

In Fig. 9, we quantitatively compare the ratio of valid ATG links,

the objective J , and the amount of transferred data via the net-
work deployed by the mUP method, Proba-UP method, and VFF-UP

method in four different types of urban environments. In Fig. 9a, we

can see that the ratio of valid ATG links of these three method are

in line with the analysis, where ratios of the proposed mUP method

are always more than 80%, ratios of Proba-UP method are around

50%, and ratios of VFF-UP method steadily drop with environments

becoming crowded. Similarly, in Fig. 9b, we can see that values of

objective J resulting from the mUP method are the minimum, and

the network formed by the mUP method can transfer up to 2 times

and 3 times the amount of data as much as that of the Proba-UP

method and the VFF-UP method.

In addition, we also analyze the influence of different numbers

of UAVs on the ratio of valid ATG links, the objective J , and the
amount of transferred data in Fig. 10. Overall, the results trend

illustrates that ratios and the amount of data increase with the

UAVs number until they reach their peak value in all methods, and

the trend of J is on the contrary. This is because that UAVs at first
are too few to link all remote GRs, then GRs are linked with the

increase of the UAVs. Besides, the final values of ratios, J , and the
amount of data are consistent with previous observations in Fig. 9.
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(a) Time interval one (b) Time interval two (c) Time interval three

Figure 11: Three networks resulting from the proposed mUPmethod in three successive time intervals, which shows how the

proposed method is used in successive task executions in surveillance scenarios. The initial state of the network in (a) is the

star network, and the resulted network in present time interval is the initial state of the network in next time interval.

In conclusion, these observations show the superiority of the mUP

method in improving communication quality and task performance.

4.2 Successive Task Executions in Surveillance
Scenarios

In this subsection, we show how the proposed mUP method is used

in successive task executions in surveillance scenarios. In successive

time intervals, each GR first collects data in a predefined trajectory

according to the surveillance areas assigned to it, then rests on a

predefined position to transmit data to the BS via UAVs. For example,

from time interval one to time interval two, GRs collect data while

move from positions shown in Fig. 11a to positions shown in Fig.

11b, then rest on positions shown in Fig. 11b to transmit data.

In Fig. 11a, GRs are at remote positions, and UAVs form a line-

structure network to extend the communication range. We can see

that all links are LoS. GR7 and GR2 are unlinked since they are too
far and have relatively small amount of data. And the collected data

will be saved until being transmitted. When GRs move to positions

in Fig. 11b, the network changed to a tree-structure one to reduce

time delay in data transmission. And data collected byGR7 andGR2
are transmitted into the BS in this time interval. GR2 is unlinked,
for that links connecting it to UAVs are significantly obstructed by

surrounding high buildings. As GRs move more closer in Fig. 11c,

the topology of the network has changed to another tree-structure

one. We can see that all GRs are linked while all links are LoS.

4.3 Robustness of the mUP method towards
Terrain Measurement Error

The proposed mUP method is based on accurate maps of environ-

ments, which can be obtained by digital elevation model (DEM) data

or technologies like oblique photography. However, measurement

errors or environmental damages caused by disaster (are collec-

tively called "terrain measurement errors" in this paper) may make

the map of environments imprecise. Therefore, in this subsection,

we analyze the robustness of the proposed method towards terrain

measurement error.

In this paper, obstacles are simplified into cuboids, which can be

represented with the following parameters: height, location, length

and width. We get an imprecise environment by adding terrain

measurement errors to obstacles in the accurate environment

separately. The terrain measurement error ratio [19] is used to

make it quantitative. For example, 20% of terrain measurement

error ratio means 15% ∼ 20% or -20% ∼ −15% random terrain mea-

surement errors add to each obstacle in the accurate environment.

As for the validation, the proposed method is firstly applied in the

imprecise environment, then the result of which is validated in the

accurate environment. If produced UAVs-to-GRs links are still LoS

in the accurate environment, they are assumed to be valid. And the

validness ratio is the ratio of the number of valid links to that of

all UAV-to-GRs links. With the same positions set of GRs in Fig. 8,

validness ratios of mUP method for different terrain measurement

error ratios in different obstacle-related parameters in four types

of urban environments are shown in Fig. 12.

Overall, we can see that the ratio of validness falls as the terrain

measurement error ratio increases. Besides, sorting these parame-

ters by influence on validness ratio in descending order, they are as:

all of them, location, length/width and height. In addition, we can

see there are some fluctuations in Fig. 12, which is because some

random measurement errors such as the bigger width or positional

error of obstacles may not make the UAV-to-GRs links blocked and

therefore not influence the validness of links. When the terrain

measurement error ratio in location/all parameters is bigger than

5% in all environments, the ratio of validness of the mUP method

drops to around 50%, which is close to the result of the Proba-UP

method (refer to Fig. 9a). In this case, the result of the mUP method

is considered to be distrusting. As for the length/width and height

parameters, the ratio of validness of the proposed method remains

more than 60% in all environments, the result of which means at

least 60% UAV-to-GRs links are LoS and can be considered as func-

tional. In addition, validness ratios in suburban, urban, dense urban

and urban high-rise environments are above 60%, 50%, 45% and

40%.
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(a) Suburban (b) Urban (c) Dense urban (d) Urban high-rise

Figure 12: The validness ratio of resulted links for different terrain measurement error ratios in different obstacle-related

parameters in different types of urban environments, which illustrates the robustness of the proposed mUP method towards

terrain measurement error. Placements of UAVs produced in imprecise environments are validated in original accurate envi-

ronments. If UAV-to-GRs ATG links produced in the imprecise environment are still LoS in the original accurate environment,

they are assumed to be valid.

Based on all these observations, we can see that the proposed

mUP method is tolerant to shape measurement errors (measure-

ment errors in length/width or height parameters), but sensitive

to location measurement errors (measurement errors in location

parameters). Besides, note that in post-disaster scenarios, shape

measurement errors may occur with a higher probability when

buildings collapse. In this case, we may conclude that as far as the

measurement error ratio is below 5%, the proposed method can be

regarded as functional and robust. In addition, the robustness of the

mUP method performs better in suburban and urban environments,

which are relatively sparse and have fewer tall buildings.

5 CONCLUSION

In this paper, we considered urban surveillance and post-disaster

scenarios, where backhaul access was either unavailable or limited

in capacity due to the existence of obstacles. AUAV-enabledwireless

multi-hop network was deployed to serve several task-oriented GRs

to transmit their collected data to a remote BS. Considering the

impact of obstacles, we proposed anmUPmethod to form a network

to transfer more data collected by GRs and minimize the time delay

in data transmission. We tackled this problem by reconstructing

it into the ATG-NF subproblem and the CQA-UP subproblem, and

solving them alternatively. By designing the UAV-UAV game and

the GRs-network game and incorporating VFF, we solved the first

subproblem to get the topology deployment of the network. Then

by assigning different weights to different UAVs and using LoS

condition-based division, we transform the second multi-objective

optimization subproblem into single-objective optimization convex

subproblems. Then we got positions of UAVs where communication

qualities are satisfied.

Simulation results have shown that the proposed method yields

significant performance gains in communication quality and task

execution compared with the Proba-UP method and the VFF-UP

method in four typical types of urban environments or with differ-

ent numbers of UAVs. Besides, results show that the mUP method

can cope with successive task executions. In addition, we also ana-

lyze the robustness of it towards terrain measurement error. Results

show that so far as the location measurement error ratio is below

5%, which can be satisfied by most mapping technologies, the mUP

method can be regarded as functional and robust. Moreover, the

robustness of the mUP method performs better in environments

that are sparser and have fewer tall buildings.

In our future work, we will consider a more realistic scenario

with an online-measured communication channel and 3D deploy-

ment of UAVs, then evaluate the mUP method in real experiments.

Besides, homogeneous quadrotors are considered in this paper,

how to adapt to fixed-wing UAVs or heterogeneous UAVs can be

investigated. Moreover, treating ground robots as relays is another

promising solution, which introduces the interesting optimization

problem of deploying UAVs and ground robots to maximize task

performance efficiency.
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