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ABSTRACT

Audio is valuable in many mobile, embedded, and cyber-physical

systems. We propose AvA, an acoustic adaptive filtering architec-

ture, configurable to a wide range of applications and systems. By

incorporating AvA into their own systems, developers can select

which sounds to enhance or filter out depending on their appli-

cation needs. AvA accomplishes this by using a novel adaptive

beamforming algorithm called content-informed adaptive beam-

forming (CIBF), that directly uses detectors and sound models that

developers have created for their own applications to enhance or

filter out sounds. CIBF uses a novel three step approach to prop-

agate gradients from a wide range of different model types and

signal feature representations to learn filter coefficients. We apply

AvA to four scenarios and demonstrate that AvA enhances their

respective performances by up to 11.1%. We also integrate AvA

into two different mobile/embedded platforms with widely different

resource constraints and target sounds/noises to show the boosts in

performance and robustness these applications can see using AvA.

1 INTRODUCTION

Audio is an important signal used in many mobile, embedded, and

cyber-physical systems. The rapid growth of personal, wearable,

and intelligent devices has placed an increased importance on au-

dio as a low-energy means for intelligent systems to sense and

communicate with users and respond to their surroundings.

Acoustic intelligence has enabled many applications including

urban safety systems, sleep monitoring systems, home assistants,

and many more. In many of these systems, audio signals are ex-

amined using machine learning or deep learning classifiers to de-

termine if a specific sound is present, before performing an action.

For instance, a home assistant will listen until a command phrase

is spoken, analyze the command, and perform an action. An urban

safety device listens to the surroundings and will alert a user if

it detects a dangerous vehicle approaching the person. A mobile

sleep monitoring system will record and analyze sleep sounds to

measure sleep quality throughout the night.

However, making systems robust is often more challenging than

just creating a machine learning classifier. For instance, smart home

devices are only supposed to record and analyze audio when a com-

mand phrase is spoken. However, recent studies on recordings taken

from Google Assistant applications have shown that more than 10%

of recordings made were not authorized (i.e. they recordings lacked

the command phrase), which poses a huge privacy concern [1].

Sleep monitoring applications may target sleep sounds, but can

inadvertently record other privacy-sensitive sounds in the home

environment (i.e. speech). In urban safety, there may be other sig-

nificant sounds in the environment that may obscure the sound of

an approaching vehicle, such nearby construction, making vehicle

detection much more difficult [2]. These diverse scenarios illustrate

a need for a platform that can account for a wide range of sounds,

models, and feature representations that users and developers can

customize depending on application needs.

One method to accomplish this is to use blind source separation

(BSS) to extract and keep relevant sources. BSS utilizes statistics

between microphone channels to perform separation. There are

many works that propose BSS methods, but perform poorly on

sound sources mixed in the real world, as we show in Section 5.

Instead, we propose AvA, an Adaptive Audio filtering architec-

ture for enhancing different types of sounds on a wide range of

systems. In many acoustic systems, developers create models of

sounds that need to be detected or filtered out. For instance, a smart-

phone may have a command phrase detector to determine when a

command phrase is spoken and a model for speech to determine

what was spoken. AvA allows users to choose which sound types to

either filter out or enhance by directly leveraging the sound models

that developers create for their specific application. As such, AvA

is adaptable to a wide range of different sound detectors and signal

features. AvA accomplishes this by incorporating content-informed

adaptive beamforming (CIBF), a novel adaptive beamforming al-

gorithm that directly incorporates sound detectors to learn filter

coefficients to better detect or filter out specific sounds. CIBF lever-

ages the advantages of both spatial filtering and content-based

filtering to outperform methods that only use either spatial filtering

(i.e. BSS) or content-based filtering in non-artificially mixed scenar-

ios. CIBF enables AvAto account for a wide range of different sound

models and signal feature representations using a novel three step

approach (model adaptation, feature adaptation, and signal adapta-

tion). AvA’s adaptability to a wide range of signal features, machine

learning models, and low-resource systems allows us to more easily

embed acoustic intelligence anywhere and impact many areas such

as wearables [3–7], built environments [8–13], and health [14–20].

We make the following contributions:

• We propose AvA, a novel acoustic filtering architecture that

adaptively filters out or enhances different sounds depend-

ing on application needs. AvA accomplishes this by directly

incorporating sound models, a developer may have already

created for an application, to filter out or improve detection.

• We propose content-informed adaptive beamforming (CIBF),

a novel adaptive beamforming algorithm that uses a novel

three step approach (model adaptation, feature adaptation,

signal adaptation) to learn filter coefficients to filter out or

improve detection based on user supplied soundmodels. AvA

leverages CIBF to be adaptable to a wide range of different

sound models and signal representations.

• Wedemonstrate through four scenarios, three differentmodel

types, and two different features the capability of AvA in
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enhancing or filtering out different types of sounds in a wide

range of scenarios and configurations, thus highlighting the

generalizability and customizability of AvA. Across these

scenarios, we show that that AvA outperforms state-of-art

filtering algorithms, improves target detection performance

by up to 11.1%, and reduces noise detection by up to 78.9%.

• We perform two case studies, where we integrate AvA into

two mobile/embedded platforms to show the adaptability

of AvA. We compare the performance of the AvA-enhanced

systems against existing state-of-art systems and show how

AvA can boost detection performance in real applications.

2 RELATEDWORKS

There are numerous mobile and embedded applications that lever-

age audio. Audio-based systems have been deployed for numerous

applications including, but not limited to, gunshot detection [21],

vehicle detection and localization for urban safety [22–26], activity

detection [27, 28], robotic intelligence [29], and much more [30, 31].

Many of these works focus on the design of classifiers to achieve

the best performance [32]. [33] presents a cloud-based system for

acoustic event detection that uses user-contributed sound clips to

train acoustic detectors for specific mobile applications. Instead, we

take an acoustic filtering approach to remove or enhance sounds in

the environment depending on application needs.

There are two broad categories of filtering algorithms: spatial

filtering and content-based filtering. Spatial filtering methods

use multiple observations in space by placing microphones at dif-

ferent locations to perform filtering. Methods that fall into this

category include, but are not limited to beamforming [34–36], blind

source separation (BSS) [37, 38], and two microphone filtering tech-

niques [39, 40]. Thesemethods do not incorporate the content or the

types of sounds present in the environment and generally require

the location of sources beforehand to perform filtering.

Content-based filtering methods generally require only one mi-

crophone. These methods, such as deep neural networks (DNN),

use trained models of specific sounds to filter them out [41–43]. Be-

cause they are trained to deal with specific sounds, applying amodel

trained in one context to a different application may significantly

degrade our signals. In this regard, unlike spatial filtering meth-

ods, content-based filtering methods are not agnostic to the sound

types present in the environment. In this work, we propose content-

informed adaptive beamforming (CIBF), a novel adaptive beamform-

ing algorithm that bridges the gap between spatial and content-based

filtering, leveraging the strengths of both types of filtering. CIBF al-

lows AvA to be a powerful tool for enhancing or filtering out sounds

that a developer has trained a model for (content-based filtering),

while providing a content-agnostic way of filtering sounds we do

not have models for (spatial filtering).

[2] proposes an acoustic wearable system for detecting and lo-

calizing vehicles to improve construction worker safety. This work

proposes an adaptive filtering architecture that improves vehicle

detection by filtering out construction site sounds. However, the

architecture is specific to the proposed acoustic wearable, limited

to only filtering construction sounds, and supports only a single

signal feature representation (power spectrum) and sound model

(mixture of Gaussians). In this work, we propose AvA and CIBF,

which can both enhance and filter signals while supporting a wide

range of different sound models and signal representations.

3 CONTENT-INFORMED ADAPTIVE
BEAMFORMING

We propose content-informed adaptive beamforming (CIBF), a novel

adaptive beamforming algorithm that directly incorporates acous-

tic detection and sound models to improve detection performance.

Users and applications can select different sounds to either im-

prove or degrade detection performance depending on application

needs. CIBF supports a wide range of different sound models, classi-

fier types, and frequency-domain signal representations. A typical

problem set up for beamforming is shown next.

argmin
w(𝑡,𝑓 )

𝐿(w(𝑡, 𝑓 ), x(𝑡, 𝑓 ))

w∗(𝑡, 𝑓 )d(𝑓 ) = 1
(1)

(·)∗ and (·)𝑇 are the conjugate and regular transpose operators,

respectively. x(𝑡, 𝑓 ) = [𝑥1 (𝑡, 𝑓 ), 𝑥2 (𝑡, 𝑓 ), ..., 𝑥𝑛 (𝑡, 𝑓 )]
𝑇 is the vector

of observations from each of the 𝑛 microphones at time window
𝑡 and frequency 𝑓 . 𝑥𝑖 (𝑡, 𝑓 ) is the short-time frequency representa-
tion of the signal from microphone 𝑖 at time step 𝑡 and frequency 𝑓 .
w(𝑡, 𝑓 ) = [𝑤1 (𝑡, 𝑓 ),𝑤2 (𝑡, 𝑓 ), ...,𝑤𝑛 (𝑡, 𝑓 )]

𝑇 is the vector of filter co-

efficients applied to each of our 𝑛 microphone observations at each
frequency and time step. d(𝑓 ) = [𝑑1 (𝜃, 𝑓 ), 𝑑2 (𝜃, 𝑓 ), ..., 𝑑𝑛 (𝜃, 𝑓 )]

𝑇

is the steering vector that depends on the steering direction, 𝜃 .
Beamforming attempts to adapt a set of filter coefficients w(𝑡, 𝑓 ) to
retain signals arriving from steering direction 𝜃 , while attenuating
signals arriving from other directions. This is accomplished by the

direction constraint, w∗(𝑡, 𝑓 )d(𝑓 ) = 1, and the choice of loss func-
tion. In this work, we use the commonly used linearly constrained

minimum variance (LCMV) loss function shown below [35].

𝐿(w(𝑡, 𝑓 ), x(𝑡, 𝑓 )) = w∗(𝑡, 𝑓 )𝐸 [x(𝑡, 𝑓 )x∗(𝑡, 𝑓 )]w∗(𝑡, 𝑓 )

𝐸 [·] is the expectation operator. We see that the filtering process

depends solely on the steering direction (i.e. sound source direction).

Although enhancing our signal in this way may improve the signal-

to-noise ratio, it is not guaranteed to improve or reduce detection.

In CIBF, we incorporate sound models and acoustic classifiers.

In general, an acoustic detector analyzes a signal holistically and

determines that a sound of class 𝑐 is present in environment if

𝑃𝑐 (𝐹 (s(𝑡))) > 𝑎, where s(𝑡) = [𝑠 (𝑡, 𝑓1), ..., 𝑠 (𝑡, 𝑓𝑛𝐵 )]
𝑇 is the fre-

quency domain representation of an acoustic signal and 𝑛𝐵 is the

number of frequency bins in our signal. Typically, traditional ma-

chine learning classifiers do not operate directly on the the raw

signal, but rather on a set of extracted features. We refer to the op-

eration 𝐹 (x(𝑡)) as the set of extracted features from the raw signal,

x(𝑡). Any detector for sound 𝑐 evaluates a decision function 𝑃𝑐 (·)
to determine whether the input is an instance of sound 𝑐 . If this
function is greater than some defined threshold 𝑎, then the model
will detect the presence of sound 𝑐 .

One way to to filter out sound 𝑐 , or prevent 𝑐 from becoming

detectable, is to ensure that the filtered signal remains below the

detectable threshold, 𝑎. That is to say, we should learn a set of

coefficients, w(𝑡, 𝑓 ), such that 𝑃𝑐 (𝐹 (𝐷 (W
∗(𝑡)X(𝑡)))) < 𝑎. 𝐷 (·) is
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the diagonal operator that returns the diagonal entries of a matrix

as a vector. The matrices,𝑊 (𝑡) and 𝑋 (𝑡), are shown next:

W(𝑡) =
[
w(𝑡, 𝑓1) ... w(𝑡, 𝑓𝑛𝐵 )

]
X(𝑡) =

[
x(𝑡, 𝑓1) ... x(𝑡, 𝑓𝑛𝐵 )

]

𝐷 (W∗(𝑡)X(𝑡)) =

⎡⎢⎢⎢⎢⎢⎣
w∗(𝑡, 𝑓1)x(𝑡, 𝑓1)

...
w∗(𝑡, 𝑓𝑛𝐵 )x(𝑡, 𝑓𝑛𝐵 )

⎤⎥⎥⎥⎥⎥⎦
𝑊 (𝑡) and 𝑋 (𝑡) are formed by concatenating the filter coefficient

vectors, w(𝑡, 𝑓 ), and signal vectors, x(𝑡, 𝑓 ), across all frequencies.
In other words, the filtered signal, 𝐷 (W∗(𝑡)X(𝑡)), is obtained by
applying each filter coefficient vector,w(𝑡, 𝑓 ), to the corresponding
signal vector, x(𝑡, 𝑓 ), at each frequency.

On the contrary, if wewish to "enhance" or improve our detection

rate of sound 𝑐 , we should learn a set of coefficients such that our
filtered signal remains above the detectable threshold. That is to say:

𝑃𝑐 (𝐹 (𝐷 (W
∗(𝑡)X(𝑡)))) > 𝑎. For clarity, we denote the the filtered

signal throughout the rest of the paper as Z𝑡 = 𝐷 (W∗(𝑡)X(𝑡)). The
full CIBF problem setup is shown in Equation 2.

argmin
w(𝑡,𝑓 )

𝐿(w(𝑡, 𝑓 ), x(𝑡, 𝑓 ))

w∗(𝑡, 𝑓 )d(𝑓 ) = 1

𝑃𝑒𝑖 (𝐹 (Z𝑡 )) > 𝑎𝑒𝑖 , 1 ≤ 𝑖 ≤ 𝑛𝑒

𝑃𝑓𝑗 (𝐹 (Z𝑡 )) < 𝑏 𝑓𝑗 , 1 ≤ 𝑗 ≤ 𝑛𝑓

(2)

We refer to 𝑃𝑒𝑖 as the decision function of sound 𝑒𝑖 that the user
wants to enhance, while 𝑃𝑓𝑗 refers to the the decision function of
sound 𝑓𝑗 that the user wants to filter out. 𝑛𝑒 and 𝑛𝑓 refer to the
total number of sound types a user wishes to "enhance" or "filter

out", respectively. We summarize the constraints of CIBF next.

• Direction Constraint: w∗(𝑡, 𝑓 )d(𝑓 ) = 1
• Enhancement Constraints: 𝑃𝑒𝑖 (𝐹 (Z𝑡 )) > 𝑎𝑒𝑖
• Filtering Constraints: 𝑃𝑓𝑗 (𝐹 (Z𝑡 )) < 𝑏 𝑓𝑗

We attempt to solve this problem with Lagrange multipliers (𝜆’s),
shown in Equation 3:

𝐿𝜆 (w(𝑡, 𝑓 ), x(𝑡, 𝑓 )) = 𝐿(w(𝑡, 𝑓 ), x(𝑡, 𝑓 ))

− 𝜆𝑑 (w
∗(𝑡, 𝑓 )𝑑 − 1)

−

𝑛𝑒∑
𝑖=1

𝜆𝑒𝑖 (𝑃𝑒𝑖 (𝐹 (Z𝑡 )) − 𝑎𝑒𝑖 )

+

𝑛𝑓∑
𝑗=1

𝜆𝑓𝑗 (𝑃𝑓𝑗 (𝐹 (Z𝑡 )) − 𝑏 𝑓𝑗 )

(3)

It is difficult to directly solve for the optimal multipliers for each

constraint, given the wide range of models and features that can

be used. As such, we take a gradient moving in the direction of the

negative gradient at each iteration, as shown in Equation 4.

w(𝑡 + 1, 𝑓 ) = w(𝑡, 𝑓 ) − 𝜖�w(𝑡,𝑓 )𝐿𝜆 (w(𝑡, 𝑓 ), x(𝑡, 𝑓 )) (4)

Here, 𝜖 > 0 is the step size. Due to the various configurations
of classifiers and features a sound or detection model can use, it is

difficult to choose multipliers that satisfy all of the enhancement

and filtering constraints in Equation 2. As such we only focus on

choosing the optimal multiplier, 𝜆𝑑 , corresponding to the direction
constraint. Applying the direction constraint to Equation 4, solving

for 𝜆𝑑 in terms of the enhancement and filtering multipliers (𝜆𝑒𝑖
and 𝜆𝑓𝑗 ), and substituting this value back into Equation 4 yields
the final CIBF update shown in Equation 5. For clarity, we denote

w(𝑡, 𝑓 ) = w(𝑡) and x(𝑡, 𝑓 ) = x(𝑡), and 𝐼 is the identity matrix. One
assumption present in the Equation 5 is that our system does not

have an estimate of the spatial correlation matrix, 𝐸 [x(𝑡)x∗(𝑡)].
This is because the environment and types of sounds may be time-

varying and changing frequently. As such, we make the simple, but

common, estimation of 𝐸 [x(𝑡)x∗(𝑡)] = x(𝑡)x∗(𝑡), and denote the
output of CIBF (i.e. the "beamformed" signal) as y(𝑡) = w∗(𝑡)x(𝑡).

w(𝑡 + 1) = w(𝑡) + d(d∗d)−1 [1 − d∗w(𝑡)]

− 𝜖 [𝐼 − d(d∗d)−1d∗]x(𝑡)y(𝑡)

− 𝜖 [𝐼 − d(d∗d)−1d∗]

𝑛𝑓∑
𝑗=1

𝜆𝑓𝑗�w(𝑡 )𝑃𝑓𝑗 (𝐹 (Z𝑡 ))

+ 𝜖 [𝐼 − d(d∗d)−1d∗]
𝑛𝑒∑
𝑖=1

𝜆𝑒𝑖�w(𝑡 )𝑃𝑒𝑖 (𝐹 (Z𝑡 ))

(5)

The question now is how to solve for the gradients corresponding

to the enhancement and filtering constraints, �w(𝑡 )𝑃𝑒𝑖 (𝐹 (Z𝑡 )) and
�w(𝑡 )𝑃𝑓𝑗 (𝐹 (Z𝑡 )) respectively. To accomplish this, we propose the
concepts of model adaptation, feature adaptation, and signal

adaptation. The idea being that we can separate these gradients

into the three parts, each corresponding a different part of the

soundmodeling and detection pipeline.We can visualize these three

components via the chain rule of derivatives shown in Equation 6,

and summarize the three phases next.

�w(𝑡 )𝑃𝑐 (𝐹 (Z𝑡 )) =
𝜕𝑃𝑐 (𝐹 (Z𝑡 ))

𝜕𝐹 (Z𝑡 )
·
𝜕𝐹 (Z𝑡 )

𝜕Z𝑡
·

𝜕Z𝑡
𝜕w(𝑡)

(6)

• Model Adaptation:
𝜕𝑃𝑐 (𝐹 (Z𝑡 ))
𝜕𝐹 (Z𝑡 )

• Feature Adaptation:
𝜕𝐹 (Z𝑡 )
𝜕Z𝑡

• Signal Adaptation: 𝜕Z𝑡
𝜕w(𝑡 )

A visualization of the three phases are shown in Figure 1. The

three typical steps for acoustic detection is highlighted in the for-

ward pass, where the raw signal is preprocessed, features are com-

puted, and the model is used to estimate the probability that the

sound is present. To compute the full gradient with respect to our fil-

ter coefficients,�w(𝑡 )𝑃 (𝐹 (Z𝑡 )), we take advantage of the chain rule
of derivatives to compute gradients corresponding to each of these

components for the detector (model adaptation), features (feature

adaptation), and the filtering process (signal adaptation), as shown

in the backward pass of Figure 1. In the following subsections, we

discuss each of these components in detail.

3.0.1 Model Adaptation. In model adaptation, we compute the

gradient of the machine learning decision function. Through chain

rule, model adaptation computes the gradient of the model deci-

sion function, 𝑃𝑐 (𝐹 (Z𝑡 )), for an acoustic detector for sound 𝑐 , with
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Figure 1: Pipeline detailing theCIBF enhancement andfilter-

ing optimization process. The forward pass shows the typi-

cal steps of evaluating the presence of a sound. The CIBF

optimization process is highlighted in red (backward pass),

highlighting the three primary steps. Each step is directly

tied to one part of the detection pipeline, where connections

are highlighted using black dashed arrows.

respect to the features computed from the processed and filtered sig-

nal, 𝐹 (Z𝑡 ). In other words, we are "adapting" our filter coefficients
based on the output to the detector with respect to the input.

Computing this quantity is possible for many different types of

sound models and detectors. In general, the inputs to the classifier

will be some set of features (i.e. MFCCs or even the raw frequency-

domain signal) of dimension 𝑛𝐹 . As such, model adaptation results
in a row vector, 𝜕𝑃𝑐 (𝐹 (Z𝑡 ))/𝜕𝐹 (Z𝑡 ), of dimension 𝑛𝐹 .
In this work, we use three different types of sound classifiers

to show CIBF’s versatility: support-vector machine with radial

basis function kernel (SVM RBF), random forest classifiers (RF), and

mixture of Gaussians (GMM). The model adaptation derivations for

each of these classifiers are shown in the Appendix (Section 10.1).

3.0.2 Feature Adaptation. The second step is feature adaptation,

which corresponds to feature computation module, where we com-

pute the gradient of the features, 𝐹 (Z𝑡 ), with respect to the filtered
signal, Z𝑡 . In general, the feature generation process reduces the

dimensions of the filtered or raw signal. If the signal has dimen-

sion 𝑛𝐵 and the computed features have dimension 𝑛𝐹 , then feature
adaptation, 𝜕𝐹 (Z𝑡 )/𝜕Z𝑡 yields a gradient field of dimension 𝑛𝐹 ×𝑛𝐵 .

Since most acoustic features mainly involve binning (i.e. weight-

ing and summing bins between predefined frequencies), 𝜕𝐹 (Z𝑡 )/𝜕Z𝑡
is generally simple to compute. In this paper, we utilize two different

acoustic features: mel-frequency cepstral coefficients (MFCC) and

non-uniform binned periodogram (NBIP) [22]. The feature adapta-

tion derivations for these features are shown in the Appendix. Note

the simplest case of feature extraction is using no features at all

(i.e. using the raw signal directly). In this case, feature adaptation

yields an identity matrix for the gradient.

3.0.3 Signal Adaptation. The third step, signal adaptation, com-

putes gradients of the filtered signal, 𝑍𝑡 , with respect to the filter
coefficients,w(𝑡, 𝑓 ). In model adaptation, we computed 𝜕𝐹 (Z𝑡 )/𝜕Z𝑡
of dimension 𝑛𝐹 × 𝑛𝐵 , where each row corresponds to one com-

ponent of the computed feature and each column corresponds to

one frequency bin of the raw signal. Now we must compute the

gradient of with respect to each set of filters per frequency 𝑓 .
The 𝑝-th column of our 𝜕𝐹 (Z𝑡 )/𝜕Z𝑡 matrix from feature adapta-

tion corresponds to the 𝑝-th frequency bin’s gradient contribution

to each of the 𝑛𝐹 feature bins. In other words, the (𝑙, 𝑝) entry of this
matrix corresponds to the effect that only the 𝑝-th frequency has on
the 𝑙-th feature bin. As such, to compute gradients corresponding
to filters of the 𝑝-th frequency 𝑓𝑝 , we only need to use the 𝑝-th
column of 𝜕𝐹 (Z𝑡 )/𝜕Z𝑡 . To do this, we multiply 𝜕𝐹 (Z𝑡 )/𝜕Z𝑡 by a
column vector 𝐶𝑝 , whose 𝑝-th entry is 1 and all other entries are 0.
Acoustic detectors generally compute features based on the

power spectrum. The power spectrum of the filtered signal is

S𝑓 (𝑡, 𝑓 ) = w
∗(𝑡, 𝑓 )x(𝑡, 𝑓 )x∗(𝑡, 𝑓 )w∗(𝑡, 𝑓 ). The full feature adapta-

tion and signal adaptation output is shown in Equation 7. y(𝑡, 𝑓𝑝 ) =
w∗(𝑡, 𝑓𝑝 )x(𝑡, 𝑓𝑝 ) refers to the filtered signal at frequency 𝑓𝑝 .

𝜕𝐹 (Z𝑡 )

𝜕Z𝑡
·

𝜕Z𝑡 )

𝜕w(𝑡, 𝑓𝑝 )
=

𝜕𝐹 (Z𝑡 )

𝜕Z𝑡
·𝐶𝑝 ·

𝜕S𝑓 (𝑡, 𝑓𝑝 )

𝜕w(𝑡, 𝑓𝑝 )

=
𝜕𝐹 (Z𝑡 )

𝜕Z𝑡
·𝐶𝑝 · x(𝑡, 𝑓𝑝 )y(𝑡, 𝑓𝑝 )

(7)

4 SYSTEM

We build the AvA acoustic enhancement and filtering pipeline us-

ing CIBF as the centerpiece, allowing AvA to account for a wide

range of features and models. CIBF leverages both content-based

filtering (pre-trained sound models), and spatial filtering (multiple

microphones). However, beamforming requires the direction of

the source as input. In this section, we first introduce our localiza-

tion module that detects and localizes significant sources in the

environment. Then, we introduce the full AvA architecture.

4.1 Acoustic Localization

To enable beamforming, we need to incorporate a localization mod-

ule. The localization module needs to locate all the significant

sources in the environment from different directions. Then, AvA

will utilize CIBF to "beamform" to the direction of the sources and

enhance/filter detected sources specified by the user or application.

There are numerous works that address multiple-source localiza-

tion. In general, most algorithms scan across all directions where

a potential source could be and compute a power response across

all directions. The number and location of significant peaks in this

curve are the number and estimated location of sources respectively.

Each method differs in how they compute this power response

curve and how they search for peaks. Methods such as steered-

response power (SRP) or steered-response power phase transform

(SRP-PHAT) apply a time shift or phase shift and use generalized

cross correlation between microphone pairs as the power response

at each direction 𝑑 [44]. The idea is that signals coming from direc-

tion 𝑑 will be added constructively, while signals not aligned with
direction 𝑑 will be destructively added (i.e. attenuated). Methods
such as MUSIC and its variants [45] use eigenspace methods to

compute a similar correlationmetric. Frequency-domain versions of

these methods generate power response curves for each frequency

and aggregate them before searching for peaks. Generating these

curves per frequency is expensive.

Instead, we utilize the method presented in [34]. This work,

rather than computing a curve across each frequency, compares

the observed phase differences between microphone pairs to the

expected phase difference we would expect to see if a source was

coming from a specified direction 𝑑 and assigns all the energy of the
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Figure 2: AvA’s System Architecture.

frequency to the direction where the source is most likely arriving

from, which greatly reduces computation.

4.2 AvA Architecture

Figure 2 shows AvA’s full adaptive system architecture. The red

dotted box highlights the content-informed adaptive beamforming

module, while the green arrows and text highlights the detection

and filtered signal outputs to AvA.

First, we sample a window from each of our 𝑛𝑚 microphones,

𝑥𝑚 (𝑡, 𝑓 ) for 1 ≤ 𝑚 ≤ 𝑛𝑚 . Then, we apply our filters, learned from
previous iterations, to obtain 𝑛𝑠 different filtered sources, Z

𝑠
𝑡 , for

1 ≤ 𝑠 ≤ 𝑛𝑠 , at time window 𝑡 . The number of sources present, 𝑛𝑠 ,
and their corresponding direction of arrivals, 𝜃𝑠𝑡 , is estimated by
the localization module in the previous time iteration. Additionally,

the update and apply filters module outputs the individual filtered

microphone channels, 𝑥𝑚 (𝑡, 𝑓 ) for 1 ≤ 𝑚 ≤ 𝑛𝑚 . We obtain 𝑥𝑚 (𝑡, 𝑓 )
for microphone𝑚 by applying each filter onto each of the micro-

phone channels, to diminish all sounds we want to filter out and

enhance all sounds we want to retain.

Afterwards, the cleaned microphone channels are used in the

localization module to estimate the number of significant sources

in the environment, 𝑛𝑠 , and their location or direction of arrival,
𝜃𝑠𝑡+1, that will be used to update source filters for the next time
window, 𝑡 + 1, as shown by the dotted arrow from the source de-

tection and localization module back to the update and apply filters

module. Additionally, the filtered sources, Z𝑠𝑡 , are used as inputs to

the CIBF module, highlighted in the dotted red box, where sound

analysis (acoustic detection), model adaptation, feature adaptation,

and signal adaptation are performed to alter filter coefficients to

enhance or reduce user specified sounds. These filters are applied

at the next iteration and the cycle continues adaptively.

In the first iteration, AvA analyzes the raw audio channels; in

other words, AvA’s initial filter starts off as all-pass, similar to tra-

ditional beamforming. Additionally, AvA may experience problems

with convergence if the direction of the sound sources change too

fast or randomly, just like in traditional beamforming. However,

sound sources in most common applications generally move suffi-

ciently slow. In Section 6, we demonstrate that AvA can adapt to an

application in urban safety where sound sources (vehicles) move at

tens of miles per hour.

4.3 Discussion

We note that in order to take full advantage of AvA, we require

trained detectors to perform CIBF. However, AvA can also op-

erate without any detectors or trained models. If no noise or

target sound detectors are provided, AvA will perform LCMV beam-

forming (Equation 1) and only utilize spatial filtering.

Beamforming has often been compared to blind source sepa-

ration (BSS). The primary difference is that beamforming filters

signals by "steering" to a user-specified direction, whereas BSS

does not require this input. At first glance, it would seem that

BSS is more advantageous than beamforming in our application.

However, many applications require the location of filtered signals

(we explore one application in Section 6). Although BSS does not

require the location or direction of sources as input, it also does

not output source directions. Moreover, phase information critical

to estimating source directions, which are present in raw signals,

are not retained once BSS has been applied. As such, we take the

beamforming-based two-step localize-then-filter approach, detailed

in this section, to ensure we have source directions that are asso-

ciated with filtered signals. Additionally, both beamforming and

BSS utilize source direction found, in phase information between

microphone channels, to perform filtering. As such, if two similar

sounding sources appear from different directions, both BSS and

our proposed CIBF method can differentiate the sources.

4.4 Integrating AvA into New Applications

A developer can integrate AvA into their own applications by pro-

viding up to three parameters. The first component is the relative

locations of the microphone array that are needed in the traditional

beamforming component of AvA. The second component is the

sound models (optional) to use for filtering or enhancement, in-

cluding the models themselves (𝑃𝑒𝑖 and 𝑃𝑓𝑗 ) and the input signal
representation, 𝐹 (·). These models can be a wide range of detectors
and could be models that the application itself would leverage. If

sound models were provided for filtering or enhancement, the de-

velopers should also supply weight parameters, 𝜆𝑒𝑖 and 𝜆𝑓𝑗 , which
determine how much emphasis to place on enhancing or filtering

specific sounds. Setting 𝜆𝑓𝑗 higher than 𝜆𝑒𝑖 would guide AvA to

prioritize filtering out sound 𝑓𝑗 over enhancing sound 𝑒𝑖 . To stream-
line this process, we provide developers common preset weights

that they can choose.

5 AVA EVALUATION

In this section, we evaluate the performance of AvA in various sce-

narios and configurations. The goal of AvA is to improve detection

or "enhance" target sounds and degrade detection or "filter" out

other noises that users can specify.

We look at four different scenarios where AvA may be useful.

Additionally, we vary the model types and signal features used in

each scenario to show the versatility of AvA. Table 1 summarizes
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Table 1: Summary of evaluation scenarios and different configurations of AvA.

Scenario Detection Model Features Comparison Methods

Target: Crying

Noise: Construction

Support vector machine

(SVM)

Mel-frequency cepstral coefficients

(MFCC)
LCMV Beamforming (AvA - LCMV) [35]

Target: Dog

Noise: Vehicle

Random Forest

(RF)

Non-uniform binned periodogram

(NBIP)
Redress BSS (RBSS) [46]

Target: Piano

Noise: Speechnoise

Gaussian mixture model

(GMM)
Two Step Mask Learning (TDNN) [47]

Target: Wild animals

Noise: Wind
Nonfiltered (NF)

the configurations we ran to evaluate the performance of AvA. The

scenarios in which we evaluated AvA are described next.

• Scenario 1: Baby crying enhancement in presence of

urban construction sounds. Parents need to know when

their children are crying to take care of them, but loud con-

struction noises couldmake this challenging. An audio-based

child alert system may make use of AvA to filter out con-

struction and enhance crying.

• Scenario 2: Dog barking enhancement in presence of

oncoming vehicles. A dog barking or whimpering could

be a sign of it requiring attention, but it could be difficult for

an application to hear it in presence of urban and vehicle

sounds. A pet care application, that uses audio to detect and

alert caretakers of pet distress sounds, could benefit from

AvA by filtering out urban sounds and enhancing pet sounds.

• Scenario 3: Music enhancement in presence of speech

and speechnoise. In social gatherings, there may be music

playing in the background that users may want to enjoy. An

acoustic augmented reality application could enhance the

music for the user and reduce the ambient speechnoise.

• Scenario 4: Wild animal enhancement in presence of

wind. In a wildlife environment, a person may want to ob-

serve the sounds of animals or nature. However, the envi-

ronment could be very windy and loud. A wildlife related

application could enhance wildlife sounds and filter out wind

sounds to improve the overall acoustic experience for users.

In each of these scenarios, we train a model for the sound we

want to enhance (target) and the sound we want to filter out (noise)

using AvA. The sound models and signal features used are also sum-

marized in Table 1. In total, we evaluate AvA using three different

types of detectors (SVM RBF, RF, GMM) with two different features

(MFCC, NBIP), for a total of six configurations per scenario. We

generate GMMs using a dirichlet process to automatically find the

best number of clusters to use per model [48].

We compare AvA against other types of filtering methods, sum-

marized in Table 1. The LCMV beamforming algorithm uses spatial

differences between microphones to perform filtering [35]. We de-

note LCMV beamforming as AvA - LCMV because, as mentioned

in Section 4.2, AvA directly performs LCMV beamforming if sound

models are not provided. Redress BSS (RBSS) is a state-of-art blind

source separation algorithm [46]. Two Step Mask Learning (TSML

DNN) is a state-of-art deep neural network for sound source sep-

aration [47]. For each method, we filter our signals through the

filtering method and evaluate detection performance using one of

the detector types and signal features listed in Table 1. AvA directly

uses these detectors to perform filtering and detection. As a baseline,

we compare the filtering methods against the "nonfiltered" signals

(NF), where we directly pass the raw signals into the detector. We

generate the following datasets for evaluation.

• Base dataset: For each of the four scenarios, we extract 10
minutes of audio for both the sound we wish to enhance

and the sound we wish to remove (80 minutes total). We

extracted sounds from the Google Audioset dataset [49].

• Mixed testing dataset: This dataset containsmixtures of sounds

from our different scenarios and is built from the base dataset.

We use a six microphone uniform circular array (UCA), with

a 15cm diameter, to record mixtures. In each scenario, we

select a random clip from our target class (i.e., crying) and a

random clip from the noise class (i.e., construction). Then,

we play both sounds from two different speakers placed

at random directions from the UCA. In this way, all the

recordings are mixed in the real world rather than ar-

tificially, as is commonly done in many works. In total, we

generate 30 minutes of mixtures for each scenario (2 hours
total). The mean signal-to-noise ratio of the target sound for

each scenario is listed next:

– Scenario 1: -6.6 dB

– Scenario 2: -5.4 dB

– Scenario 3: -3.2 dB

– Scenario 4: -4.7 dB

• Training and testing datasets: For each scenario, we have 50
minutes of audio (base dataset + mixed dataset). We take

80% of the audio and use them to train detection classifiers

using the features and models listed in Table 1. We take the

rest of the 20%, filter them using AvA and the comparison

methods listed in Table 1, and use them to evaluate detection

performance (results shown in Tables 2, 3, 4, 5).

To train the TSML DNN, we take random target sound clips and

noise clips from the base dataset and artificially mix them together

to use as inputs. We need to artificially mix these sources because

DNN methods require the ground truth sources to compute loss

functions. Recording a mixture in the real-world does not give us

access to the exact ground truth sources, whereas artificially mixing

signals directly uses the ground truth to create training data.

Tables 2, 3, 4, 5 show the detection performance metrics for the

target sounds and noise sounds in the four scenarios after applying
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Table 2: Target and noise detection performance in scenario 1 (target: crying and sobbing + noise: construction).

SVM RBF Random Forest Gaussian Mixture Model

Target Noise Target Noise Target Noise

True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos.

AvA 0.821 0.180 0.153 0.101 0.924 0.115 0.129 0.122 0.771 0.185 0.082 0.091

AvA - LCMV 0.789 0.184 0.423 0.134 0.891 0.108 0.332 0.111 0.737 0.191 0.376 0.106

RBSS 0.748 0.191 0.483 0.130 0.877 0.111 0.440 0.123 0.703 0.191 0.315 0.147

M
F
C
C

TSML DNN 0.723 0.182 0.276 0.105 0.844 0.121 0.369 0.098 0.698 0.179 0.277 0.124

NF 0.734 0.199 0.899 0.154 0.855 0.110 0.92 0.176 0.661 0.188 0.871 0.106

AvA 0.754 0.210 0.133 0.129 0.834 0.133 0.219 0.132 0.782 0.233 0.129 0.156

AvA - LCMV 0.735 0.230 0.376 0.110 0.823 0.146 0.544 0.121 0.744 0.240 0.293 0.143

RBSS 0.702 0.200 0.354 0.132 0.811 0.134 0.567 0.162 0.729 0.249 0.217 0.130

N
B
IP

TSML DNN 0.713 0.229 0.234 0.144 0.796 0.155 0.265 0.112 0.741 0.247 0.245 0.165

NF 0.685 0.202 0.873 0.135 0.801 0.143 0.931 0.149 0.724 0.222 0.856 0.155

Table 3: Target and noise detection performance in scenario 2 (target: dog + noise: vehicles).

SVM RBF Random Forest Gaussian Mixture Model

Target Noise Target Noise Target Noise

True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos.

AvA 0.897 0.137 0.163 0.131 0.869 0.134 0.238 0.098 0.865 0.139 0.211 0.176

AvA - LCMV 0.849 0.132 0.432 0.149 0.825 0.136 0.332 0.122 0.831 0.131 0.327 0.167

RBSS 0.832 0.136 0.456 0.119 0.826 0.135 0.347 0.119 0.824 0.134 0.298 0.142

M
F
C
C

TSML DNN 0.858 0.135 0.287 0.137 0.867 0.133 0.349 0.130 0.824 0.131 0.247 0.159

NF 0.812 0.133 0.909 0.113 0.809 0.139 0.878 0.102 0.796 0.138 0.810 0.160

AvA 0.911 0.132 0.123 0.112 0.853 0.145 0.209 0.139 0.862 0.149 0.166 0.121

AvA - LCMV 0.837 0.139 0.331 0.098 0.849 0.135 0.446 0.140 0.820 0.138 0.345 0.134

RBSS 0.819 0.137 0.298 0.133 0.812 0.134 0.513 0.134 0.778 0.136 0.423 0.110

N
B
IP

TSML DNN 0.869 0.140 0.178 0.121 0.819 0.139 0.213 0.156 0.805 0.144 0.190 0.099

NF 0.800 0.131 0.886 0.139 0.791 0.143 0.921 0.138 0.766 0.133 0.834 0.148

Table 4: Target and noise detection performance in scenario 3 (target: piano + noise: speechnoise).

SVM RBF Random Forest Gaussian Mixture Model

Target Noise Target Noise Target Noise

True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos.

AvA 0.873 0.162 0.249 0.100 0.860 0.162 0.222 0.104 0.897 0.166 0.147 0.091

AvA - LCMV 0.849 0.159 0.417 0.098 0.839 0.167 0.544 0.129 0.850 0.160 0.388 0.087

RBSS 0.802 0.164 0.470 0.143 0.809 0.159 0.413 0.090 0.845 0.169 0.420 0.109

M
F
C
C

TSML DNN 0.852 0.158 0.313 0.095 0.819 0.164 0.319 0.115 0.821 0.158 0.221 0.119

NF 0.771 0.164 0.717 0.116 0.780 0.159 0.813 0.097 0.794 0.166 0.755 0.100

AvA 0.849 0.160 0.190 0.133 0.830 0.163 0.255 0.168 0.842 0.165 0.223 0.148

AvA - LCMV 0.841 0.161 0.399 0.120 0.818 0.166 0.449 0.134 0.837 0.165 0.298 0.133

RBSS 0.808 0.161 0.387 0.119 0.777 0.159 0.409 0.155 0.805 0.163 0.327 0.125

N
B
IP

TSML DNN 0.822 0.160 0.220 0.106 0.798 0.170 0.337 0.175 0.787 0.162 0.271 0.129

NF 0.754 0.158 0.667 0.127 0.766 0.161 0.794 0.129 0.803 0.164 0.684 0.140

Table 5: Target and noise detection performance in scenario 4 (target: wild animals + noise: wind).

SVM RBF Random Forest Gaussian Mixture Model

Target Noise Target Noise Target Noise

True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos. True Pos. False Pos.

AvA 0.738 0.238 0.287 0.148 0.702 0.242 0.214 0.134 0.711 0.240 0.248 0.157

AvA - LCMV 0.710 0.239 0.468 0.158 0.688 0.239 0.561 0.102 0.687 0.238 0.433 0.119

RBSS 0.667 0.233 0.430 0.113 0.668 0.239 0.498 0.149 0.666 0.235 0.498 0.134

M
F
C
C

TSML DNN 0.683 0.240 0.310 0.154 0.656 0.242 0.314 0.130 0.661 0.234 0.358 0.141

NF 0.655 0.236 0.922 0.140 0.622 0.240 0.967 0.129 0.612 0.243 0.872 0.168

AvA 0.696 0.235 0.234 0.137 0.655 0.247 0.250 0.102 0.661 0.236 0.290 0.099

AvA - LCMV 0.671 0.238 0.344 0.133 0.639 0.247 0.387 0.156 0.659 0.233 0.460 0.086

RBSS 0.669 0.237 0.310 0.149 0.632 0.244 0.319 0.142 0.635 0.240 0.478 0.129

N
B
IP

TSML DNN 0.641 0.230 0.290 0.122 0.644 0.240 0.332 0.109 0.650 0.241 0.370 0.100

NF 0.644 0.234 0.965 0.115 0.649 0.244 0.937 0.120 0.636 0.239 0.927 0.091
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one of the filtering algorithms. For both target and noise detectors

in each scenario, we tune the detectors such that the false positive

rates are relatively equal across all filtering methods in order to better

visualize the improvement or degradation in true positive rate. In all

scenarios, across all filtering methods and detection models, AvA

sees the largest increase in the true positive detection rate of our

target sounds across all scenarios. Moreover, AvA also sees the

largest decrease in detection rate of the noise signal (i.e. the signal

that we want to attenuate) across all configurations and scenarios.

This is because AvA intelligently leverages both spatial and content

filtering to improve detection, while other methods leverage only

one. Additionally, AvA directly optimizes over the detectors and

features a user develops or supplies for detection. We would also

like to highlight that the detection rates of the target sounds get

enhanced while the noise sounds get diminished if we incorporate

sound models (AvA) compared to only utilizing the spatial filtering

portion of the system (AvA - LCMV). In Tables 2, 3, 4, 5, we high-

light, in red, the best performing configuration (highest target true

positive rate) for each of the scenarios. We also highlight in blue

the configuration that yields the best noise filtering (lowest noise

true positive rate). These values are summarized below along with

the target sound detection rate increase and noise detection rate

decrease compared to no filtering (NF):

• Scenario 1:

– Target: RF + MFCC (6.9% increase)

– Noise: GMM + MFCC (78.9% decrease)

• Scenario 2:

– Target: SVM RBF + NBIP (11.1% increase)

– Noise: SVM RBF + NBIP (76.3% decrease)

• Scenario 3:

– Target: GMM + MFCC (10.3% increase)

– Noise: GMM + MFCC (60.8% decrease)

• Scenario 4:

– Target: SVM RBF + MFCC (8.3% increase)

– Noise: RF + MFCC (75.3% decrease)

This shows that each type of classifier or feature may perform

better in certain scenarios. Being adaptable to a wide range of con-

figurations is one of AvA’s greatest strengths over existing meth-

ods. AvA outperforms the methods we compared against because

it leverages both spatial and data-driven filtering, improving the

weaknesses of using just one type. Additionally, compared to deep

learning, AvA is extremely flexible, requires less data, and does not

require developers to dedicate large amounts of hardware and time

to create new architectures specific to each new sound.

In this section, we showed AvA’s versatility and capability of

improving detection for a wide range of user specified sounds in a

variety of different scenarios. In the following sections, we take a

deeper dive into two real application scenarios: urban safety and

audio privacy. In both applications, we integrate AvA into a real

mobile/embedded platform, and compare the performance of the

AvA-enhanced system against existing works in the respective area.

6 CASE STUDY: URBAN SAFETY

6.1 Background

Motor vehicle accidents are a growing concern. Since 2009, there has

been more than a 50% increase in pedestrian motor vehicle fatalities

in the United States, and more than 130,000 people are treated in

hospitals for vehicle accident injuries per year [50]. Additionally,

motor vehicle accidents are the first or second largest cause of

work-related fatalities in every industry [51].

To improve urban safety, there have been several works that

introduce acoustic wearables for detecting/localizing vehicles and

alerting users to avoid accidents. [22, 23] introduce wearables and

smartphone platforms that use an array of microphones and novel

machine learning architectures to accomplish this. However, these

works assume that vehicles will be the loudest sound in the envi-

ronment and see degraded performance in noisy environments. [2]

introduces a construction helmet wearable for construction worker

safety. Since construction sites are generally very noisy, the authors

propose an adaptive filtering architecture to filter out construction

sounds to improve vehicle detection. However, this work requires

the construction tool sounds to be modeled as a Gaussian mixture

model using the raw magnitude spectrum as the signal represen-

tation. Additionally, this work needs a separate vehicle detection

module later down the pipeline. AvA on the other hand can use a

wide range of different sound detection models and can directly

incorporate a vehicle detector to improve vehicle detection.

6.2 Integrating AvA into Acoustic Wearables
for Urban Safety

We integrate AvA into an acoustic headset wearable that leverages

an array of microphones. The system architecture for the AvA-

enabled, real-time, urban safety wearable is shown in Figure 3. We

borrow the embedded wearable platform from [22] and insert AvA

as the preprocessing and the vehicle detection module running in

the smartphone system. If a vehicle is detected, an audio, haptic,

and visual alert is sent to the user, which also shows the direction

of the vehicle in relation to the user.

For our use case scenario, we had a user wear the AvA-enhanced

wearable next to a street in a bustling urban city while speaking to

someone on the phone. The pedestrian is focusing on his conversa-

tion through his headset and is much less likely to hear oncoming

vehicles. Additionally, the loud conversation from the pedestrian

makes it more difficult for any acoustic wearable to detect and local-

ize vehicles over the speech. In this scenario AvA employs a vehicle

detector to enhance and a speech detector to filter out the user’s

conversation in order to improve vehicle detection. We compare the

AvA-enhanced acoustic urban safety wearable against the PAWS

state-of-art pedestrian safety wearable [22] and the CSafe construc-

tion worker safety wearable [2]. We adapt the CSafe system to filter

out speech rather than construction sounds. For all systems, we

adopt the PAWS random forest based vehicle detector. For CSafe

and AvA, we generate a Gaussian mixture model speech detector

through a dirichlet process by using 5 minutes of recorded speech
from the user. Using recorded speech from the user is a reason-

able way to generate a speech model since the acoustic wearable

use recordings and learn a user’s speech pattern over time during

his/her current or past phone conversations.

Table 6 shows the performance metrics of all three systems. Just

as in Section 5, we tune each system such that the true negative

rate for vehicle detection is similar for all systems we evaluate to

better visualize the improvement in the true positive rate. We see
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Figure 3: AvA-enhanced urban safety wearable architecture.

The embedded hardware platform is borrowed from [22].

AvA directly uses the results from the vehicle detector to de-

termine when to alert the user.

Table 6: Performance metrics of vehicle detection of AvA

compared to other state-of-art acoustic-based urban safety

wearables, while user is having a phone conversation.

True Pos. True Neg. False Pos. False Neg. Vehicles Detected

AvA 0.866 0.974 0.026 0.134 15/15

CSafe 0.834 0.973 0.027 0.166 14/15

PAWS 0.729 0.982 0.018 0.271 11/15

Table 7: Localization error comparison between AvA and

other state-of-art acoustic-based urban safety wearables,

while user is having a phone conversation.

Avg. Error (degree) Std. Dev. Error (degree)

AvA 12.97◦ 11.88◦

CSafe 16.62◦ 10.71◦

PAWS 27.25◦ 16.39◦

that the AvA-enabled system has the highest true positive rate,

followed by CSafe and PAWS. This means that the AvA-enabled

system was able to detect the most number of windows where

a vehicle is present. PAWS has the worst performance because it

does not employ any method to deal with loud non-vehicle sounds

(the phone conversation). Additionally, AvA is able to outperform

CSafe because CSafe only has a module to filter out speech. AvA

not only reduces the effect of speech, but also directly uses the

vehicle detector to enhance signals and improve vehicle detection.

Table 7 shows the localization error of AvA, PAWS, and CSafe.We

see that PAWS performs much worse than AvA and CSafe because

its localization module is affected by the phone conversation of

the user. We see that AvA and CSafe have similar performance

because of their ability to filter out the loud phone conversation

that adversely affects vehicle detection and localization. This shows

that AvA can improve other aspects of acoustic sensing, beyond

detection, by selectively enhancing or filtering specific sounds.

Table 8 shows the latency breakdown and power consumption

comparisons. We note that, AvA utilizes the same hardware pipeline

as CSafe. As such, the hardware processing and power consumption

of the embedded platform are equivalent. Although the algorithms

employed by AvA requires slightly more time to execute than CSafe,

we note that the difference is less than 10ms, and both systems
still operate at real-time on the order of the average person’s re-

action time (242ms vs 236ms). PAWS requires much less power

because its hardware platform utilizes an application-specific in-

tegrated circuit (ASIC) that significantly reduces power consump-

tion, whereas CSafe and AvA utilize a higher power consumption

Table 8: Power consumption and latency comparison be-

tween an AvA-enhanced wearable and other state-of-art ur-

ban safety wearables. The total latency is the time it takes

for each system to process one window of audio. The power

consumption shows the current draw from each embedded

platform powered by a 3.3V battery.

AvA CSafe PAWS

Hardware Proc. and Sampling 228ms 228ms 224ms
Algorithmic Processing 14ms 8ms 91ms
Total Latency (hardware + algorithms) 242ms 236ms 315ms

Power Consumption 69.0mA 69.0mA 18.9mA

microcontroller. In future work, we also aim to reduce power con-

sumption by integrating an ASIC. However even in its current state,

the AvA-enhanced wearable can still operate continuously for 14.5
hours off of two standard AAA batteries with 1000mAh capacity,
which is more than enough for daily use.

7 CASE STUDY: AUDIO PRIVACY

7.1 Background

The growth of mobile devices and wearables has enabled numerous

applications that improve our daily lives. However, the readily

available sensors on our smartphones and personal devices have

also been causing a growing privacy concern. In 2019, the VRTNWS

news outlet analyzed more than 1, 000 recordings collected through
Google Assistant applications and found that more than 10% of

recordings were not prefaced with the "OK Google" command and

should never have been recorded [1]. In 2017, The New York Times

found that more than 1, 000 smartphone applications used software
that is known to collect TV viewership data by listening to TV

sounds [52]. In this section, we show howAvA can improve acoustic

privacy in mobile platforms.

First, we integrate AvA into a mobile sleep monitoring applica-

tion. Mobile sleep monitoring applications use the microphone on

the smartphone to detect, record, and analyze breathing sounds as

the user sleeps. These applications use a threshold-based detector,

which will record anything that is loud enough for a microphone

to sense, including privacy sensitive speech. In this application, we

integrate AvA into our own sleep monitoring application, where we

focus on enhancing breathing sounds to improve sleep detection

while filtering out speech to enhance user privacy.

Second, we demonstrate how voice command applications can

incorporate AvA as a preprocessing step to filter out speech that

may be recorded without the proper command word. In this case,

we want to "enhance" the command phrase (we use the "OK Google"

phrase for this demonstration), while filtering out other speech.

For both systems, we create amobile systemwith the architecture

shown in Figure 4. Unlike in the urban safety application, we only

use the single microphone channel available in most smartphones.

We sample onewindow of audio (herewe use 250mswindows), pass
it through to our AvA filtering architecture that filters out speech

(both scenarios) and enhances either the "OK Google" command

or breathing sounds. The output in both scenarios is a saved audio

stream, which we then analyze for speech intelligibility using the

Google Speech-to-Text API [53] as a measure of privacy.
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Figure 4: AvA-enhanced platform for filtering out speech

and preserving privacy in mobile applications. Unlike in ur-

ban safety, audio privacy applications save raw breathing

sounds. In the AvA-enhanced systems, we save the filtered

signals rather than the raw audio to preserve privacy.

In the sleep monitoring application, we compare the benefits

of AvA against PAMS [54]. PAMS uses models of speech to filter

out speakers, much like AvA. However, PAMS can only run on

mobile platforms, using a single microphone channel, while AvA is

adaptable to systems with more microphones. Just as in Section 5,

we tune each system such that the true negative rate for breathing

detection is similar for all systems we evaluate for better comparisons.

7.2 Integrating AvA into Mobile Platforms for
Sleep Monitoring

We compare the AvA-enhanced sleepmonitoring system against the

PAMS-enhanced system and the Sleep as Android sleep monitoring

application [55]. We had 7 different volunteers speak one of 11
passages while we recorded their voice. We used these recordings to

train our GMM speech model for both PAMS and AvA. We also use

AvA to enhance breathing and sleep sounds. To do this, we trained

a Radial Basis Function support vector machine (RBF SVM) using 5
minutes of sleeping and breathing sounds that we extracted from

Google Audioset [49]. AvA uses this detector to enhance breathing

sounds and perform breathing detection, while PAMS only uses

this detector to detect breathing.

To generate our testing set, we had the same volunteers speak 10
different passages while playing one of 10 breathing and snoring
clips through a speaker. All three systems then record, process,

and save the clips. We run each saved clip through the Google

speech-to-text API to measure speech intelligibility. Table 9 shows

speech intelligibility metrics of the recorded sleep sounds, including

the percentage of words correctly identified, incorrectly identified,

and not detected. We see that Sleep as Android has the highest

percentage of correctly identified words, which could spell a serious

breach of privacy. We see that both PAMS and the AvA-enhanced

systems have a much lower correctly identified rate and much

higher incorrectly identified and undetected rates, meaning they

were able to obscure and filter out much more speech and preserve

privacy. However, even after improving privacy, the PAMS and AvA-

enhanced applications still need to perform their original goals;

that is, to detect and analyze breathing and other sleep sounds.

Table 10 shows the performancemetrics for sleep event detection.

We see that Sleep as Android has the highest true positive rate

because it uses a threshold-based detector. This means that if the

sound is loud enough, it will detect and record audio. As such, Sleep

as Android also has the highest false positive rate (i.e. if a person

speaks when there is no breathing, Sleep as Android will still detect

and record). On the other hand, we see that the false positive rate

of both PAMS and AvA-enhanced systems is much lower at only

Table 9: Proportion of words correctly identified, incor-

rectly identified, and undetected by Google Speech-to-Text.

A lower rate of correctly identified words correlates to a

more privacy-aware system.

Correct Incorrect Not Detected

AvA 16.7% 8.3% 75.0%

PAMS 18.4% 10.2% 71.4%

Sleep as Android 92.1% 1.4% 6.5%

Table 10: Performancemetrics for sleep breathing detection.

True Pos. False Pos. True Neg. False Neg.

AvA 0.946 0.109 0.891 0.054

PAMS 0.891 0.112 0.888 0.109

Sleep as Android 0.986 0.944 0.056 0.014

a slight cost to true positive detection. Additionally, we see that

the AvA-enhanced system has a significantly higher true detection

rate than the PAMS-enhanced system. This is because AvA directly

uses the sleep detector to improve the detection of sleep sounds,

whereas PAMS is unable to do so.

To process one window of audio, the AvA-enhanced system takes

36ms, while PAMS takes 31ms. Although PAMS is slightly faster,
AvA comfortably runs in real-time, taking far less time than

the sampling window to execute.

7.3 Improving Command Phrase Privacy in
Smart Audio Applications

In this section, we analyze how AvA can be applied to mobile

and smart home applications that use voice commands. Generally,

these applications listen until the command phrase is heard (i.e. "OK

Google"), and then start recording and analyzing the audio to extract

the voice command. However as mentioned at the beginning of this

section, there have been many instances where these applications

have recorded speech without the command phrase, which poses

a privacy concern. In this scenario, we configure AvA to "filter"

general speech, while "enhancing" just the "OK Google" command.

If at any point the "OK Google" command is detected, then we turn

off the AvA filtering pipeline and record the raw unfiltered audio.

Otherwise, the filtered audio is saved.

We used the same models for speech generated for the sleep

privacy scenario in Section 7.2. We also generated a mixture of

Gaussians model for the "OK Google" command by having each

volunteer record the phrase 10 times each. Then, we had each

volunteer speak 20 commands and recorded them with our mobile

platform. Half of the phrases contained the "OK Google" command

at the beginning, and the other half did not.

Table 11 shows the speech intelligibility metrics of the AvA-

enhanced system when the command phrase is spoken compared

to when the command phrase is not present. We see that the per-

centage of correctly identified words is much higher when the

command word is spoken because the system turns off the filtering

process when the command phrase is detected. On the other hand,

when the command phrase is not detected, the system continuously

filters speech, which drastically reduces speech intelligibility.
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Table 11: Speech intelligibility of the AvA enhanced com-

mand phrase mobile application in scenarios where a com-

mand phrase was present and not present.

Correct Incorrect Not Detected

present 13.6% 16.5% 69.9%

not present 94.3% 0.8% 4.9%

8 FUTUREWORK

AvA allows developers to leverage their own sound models to filter

or enhance sounds specific to their application. To fully leverage

the benefits of AvA, developers currently need to supply their own

models. We will first work to improve usability by removing this

requirement. To accomplish this, we envision and will work to

create an organized library of sound models that developers can

directly select and download into their applicationswithout needing

to create their own.

Second, we plan to explore more ways that AvA could be bet-

ter adapted to specific scenarios. AvA currently initializes filters

based on the direction of sounds detected, just like in traditional

beamforming. However, by incorporating models of sounds an ap-

plication wants to filter out or enhance, we should already have

prior knowledge to use to create even better initial filters, which

we hypothesize will improve convergence. We also, plan to look

at the configuration of microphones in the array (e.g., how many

microphones, how far apart, geometry of the array, etc.) affects

performance in certain applications.

Third, we plan to explore architectures for audio filtering that

intelligently integrates the physics of audio signals (just like in

this work) with deep neural networks. In this work, we primar-

ily integrated signal-based beamforming with traditional machine

learning models. Though incorporating deep learning models is

possible with AvA, deep neural networks typically have numerous

layers and nodes that require a multitude of gradient computa-

tions, making, making it difficult to incorporate into real-time and

low-resource systems. In this thrust, we first plan to explore meth-

ods that allow us to reduce the complexity of neural networks to

comfortably run in real-time. Second, we plan to explore ways we

can embed the physics of audio signals directly into deep neural

networks to reduce computation, rather than embedding data into

beamforming, which requires gradient computations.

9 CONCLUSION

We present AvA, an acoustic filtering architecture that is easily con-

figurable and adaptable to a wide range of scenarios and sound mod-

els to improve detection or filter out sounds. AvA accomplishes this

by incorporating content-informed adaptive beamforming (CIBF), a

novel adaptive beamforming algorithm that filters out or enhances

signals based on sound detectors that developers and users can

supply. CIBF utilizes a novel three step process to adapt coeffi-

cients based on the detection model, the feature representation,

and signal properties. We demonstrate the generalizability of AvA

through four scenarios, using three different types of sound de-

tectors and two signal features. We demonstrate that developers

and applications that utilize AvA can improve or degrade detection

performance by up to 11.1% and 78.9% respectively. Additionally,

we evaluated AvA in two case studies, where we integrated AvA

into real mobile and embedded applications with different resource

constraints and goals. We show that these AvA-enhanced systems

can improve detection (urban safety) and user privacy (audio home

privacy) over existing state-of-art systems. Through these case stud-

ies and evaluation, we show that AvA is a truly general platform

for acoustic filtering and enhancement.
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10 APPENDIX

10.1 Model Adaptation Gradients

This section details the computations required for model adaptation,
𝜕𝑃 (𝐹 (Z𝑡 ))
𝜕𝐹 (Z𝑡 )

, introduced in Section 3.0.1, for three different detectors:

support vector machine with radial basis function kernel (SVM

RBF), random forest (RF), and a mixture of Gaussians (GMM).

10.1.1 SVM with Radial Basis Function. For a kernelized SVM

model, the decision function, 𝑃 (G), is shown in Equation 8.

𝑃 (G) =
𝑛∑
𝑖=1

𝜌𝑖𝑘 (G𝑖 ,G)

𝑘 (G𝑖 ,G) = 𝑒𝑥𝑝 (−𝛾 | |G𝑖 − G| |
2)

(8)

Here, G𝑖 refers to one of the training samples used to train the

SVM, 𝑛 refers to the number of samples used to train the model,
and G is our input window feature that we wish to classify (i.e.

the features computed on our input signal, 𝐺 = 𝐹 (Z𝑡 )). 𝑘 (·, ·) is
the RBF kernel, 𝛾 is a user tunable constant for the radial basis

function, and the 𝜌𝑖 ’s are parameters that are learned during the
training process. To perform model adaptation with an SVM RBF,

we take the gradient of the decision function, 𝑃 (G), with respect
to the input, G, shown in Equation 9.

𝜕𝑃 (G)

𝜕G
=

𝑛∑
𝑖=1

2𝜌𝑖𝑘 (G𝑖 ,G)𝛾 (G𝑖 − G)
𝑇 (9)

10.1.2 Gaussian Mixture Model. For a Gaussian mixture sound

model, we use the probability density function as the decision

function, shown in Equation 10.

𝑃 (G) =
𝑛∑
𝑖=1

𝑎𝑖𝑁 (G|𝜇𝑖 , Σ𝑖 ) (10)

Here,𝑛 refers to the number of clusters in theGMM, and𝑁 (·|𝜇𝑖 , Σ𝑖 )
refers to the Gaussian probability distribution with mean 𝜇𝑖 and
covariance Σ𝑖 . 𝑎𝑖 > 0 are weighting parameters learned during the
training phase. The model adaptation step follows in Equation 11.

116



𝜕𝑃 (G)

𝜕G
= −

𝑛∑
𝑖=1

𝑎𝑖𝑁 (G|𝜇𝑖 , Σ𝑖 ) [Σ
−1
𝑖 (G − 𝜇𝑖 )]

𝑇 (11)

10.1.3 Random Forest. A random forest detector uses a collection

of𝑇 decision trees. Each decision tree contains a collection of nodes.

A decision tree begins at the root node, which has two children

nodes. The tree makes a decision based on the input window that

is being classified. For instance, if the 𝑘-th dimension of our input
is greater than some threshold 𝛼 , then it will travel down one path.
Otherwise, it will go down the other path. Eventually, it will arrive

at a node that has no children (leaf node). Each leaf has a class

associated to it (i.e. for a binary classifier, each leaf node is labeled

a "0" if a sound 𝑐 is not detected, or a "1" if the sound is detected).
Every input will eventually be classified into one of these leaf nodes.

A random forest will have each of its 𝑇 trees make a decision on

whether the sound is detected and uses a majority vote to determine

the final result (i.e. if more than half the trees detected the presence

of the sound, then the random forest will also detect the sound).

Because random forests performs classification using explicit

rules rather than an equation, it is difficult to compute gradients and

perform model adaptation. To create an equation-based decision

function for a random forest, we view the random forest model as

a clustering algorithm rather than as a decision tree.

For the 𝑖-th decision tree in a random forest of 𝑇 trees, there

is a collection of 𝑛1𝑖 nodes labeled "1" (detected) and a collection

of 𝑛0𝑖 nodes labeled "0" (not detected). Each node, 𝑗 , with label 𝑘 ,

has a collection of training samples, with mean 𝑐𝑘𝑖,𝑗 , that fall within

the boundaries of the node. We can create a decision function by

finding the distance of an input window, 𝐺 , between the means,

𝑐𝑘𝑖,𝑗 , of each node 𝑗 in each tree 𝑖 , as shown in Equation 12.

𝑃 (G) =
𝑇∑
𝑖=1

⎡⎢⎢⎢⎢⎣
𝑛0
𝑖∑

𝑗=1

| |𝐺 − 𝑐0𝑖, 𝑗 | |
2
2 −

𝑛1
𝑖∑

𝑗=1

| |𝐺 − 𝑐1𝑖, 𝑗 | |
2
2

⎤⎥⎥⎥⎥⎦
(12)

Essentially by minimizing the distance of input 𝐺 to all nodes

that belong nodes labeled "1" while maximizing the distance to

nodes labeled "0", we may be able to improve detection. The model

adaptation step,
𝜕𝑃 (G)
𝜕G , follows in Equation 13.

𝜕𝑃 (G)

𝜕G
=

⎡⎢⎢⎢⎢⎣
𝑇∑
𝑖=1

⎡⎢⎢⎢⎢⎣2
𝑛0
𝑖∑

𝑗=1

(𝐺 − 𝑐0𝑖, 𝑗 ) − 2

𝑛1
𝑖∑

𝑗=1

(𝐺 − 𝑐1𝑖, 𝑗 )

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦
𝑇

(13)

10.2 Feature Adaptation Gradients

This section details the computations required for feature adap-

tation,
𝜕𝐹 (Z𝑡 )
𝜕Z𝑡

, introduced in Section 3.0.2, for two different fea-

ture schemes: non-uniform binned periodogram (NBIP) and mel-

frequency cepstral coefficients (MFCC). In discussing feature adap-

tation for NBIP, we also discuss computation for general binning

schemes (i.e. summing all energies within a frequency range).

10.2.1 Non-Uniform Binned Periodogram. The NBIP feature evenly

bins all frequencies below frequency 𝑓𝑚 into 𝑎 bins and all frequen-
cies above 𝑓𝑚 into 𝑏 bins. If the frequency domain representation of
our signal has 𝐵 bins and bin number𝑚 refers to frequency 𝑓𝑚 , then

each NBIP feature at index 𝑖 consists of summing up Δ𝑙 =
𝑚
𝑎 bins if

𝑖 ≤ 𝑚 (lower half) or Δℎ = 𝐵−𝑚
𝑏 if 𝑖 > 𝑚 (upper half). The NBIP bin-

ning scheme, which produces a feature vector v = [𝑣1, 𝑣2, ..., 𝑣𝑎+𝑏 ]
𝑇

from the power spectrum of the input signal Z𝑡 = [𝑧1, 𝑧2, ..., 𝑧𝐵]
𝑇

(we refer to this Z𝑡 as the same Z𝑡 introduced in Equation 2), is

shown in Equation 14 [22].

𝑣𝑘 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑘Δ𝑙∑
𝑖=(𝑘−1)Δ𝑙+1

𝑔(𝑧𝑖 ), if 1 ≤ 𝑘 ≤ 𝑚

𝑚+(𝑘−𝑎)Δℎ∑
𝑖=𝑚+(𝑘−𝑎−1)Δℎ+1

𝑔(𝑧𝑖 ), otherwise

𝑔(·) = 20 log10 (·)

(14)

It follows that
𝜕𝐹 (Z𝑡 )
𝜕Z𝑡

is a Jacobian matrix of dimension 𝑐 × 𝐵,

where 𝑐 = 𝑎 + 𝑏 (Equation 15).

(
𝜕𝐹 (Z𝑡 )

𝜕Z𝑡

)
𝑘,𝑗

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if 1 ≤ 𝑘 ≤ 𝑚, and

(𝑘 − 1)Δ𝑙 + 1 ≤ 𝑗 ≤ 𝑘Δ𝑙
𝑔
′

(𝑧 𝑗 ), or

if 𝑘 > 𝑚, and

(𝑘 − 𝑎 − 1)Δℎ + 1 ≤ 𝑗 −𝑚,

and (𝑘 − 𝑎)Δℎ ≥ 𝑗 −𝑚

0, otherwise

𝑔
′

(𝑥) = 20 log10 (𝑒)
1

𝑥

(15)

If the 𝑗-th frequency bin is part of the sum used to generate the 𝑘-
th feature bin, then the (𝑘, 𝑗) entry equals the gradient of a function
𝑔(·) on the frequency bin. Since NBIP bins the periodogram, 𝑔(·)
converts the magnitude spectrum into the dB scale.

10.2.2 Mel-Frequency Cepstral Coefficients. MFCCs are a common

acoustic feature, that transforms the input power spectrum, Z𝑡 , as

shown in Equation 16.

𝐹 (Z𝑡 ) =
1

𝑁
· 𝐷 · log(𝑀 · Z𝑡 ) (16)

𝑁 refers to the number of samples in the window (i.e. the FFT

size). 𝐷 is the discrete cosine transform matrix of dimensions 𝑐 ×
𝑐 , where 𝑐 is the number of filter banks employed in the MFCC

(typically 12 or 13). 𝑀 is the 𝑐 × 𝐵 matrix of filter banks applied

onto the input Z𝑡 . The log(·) operator applies the natural logarithm
to all entries of the input matrix. Both 𝐷 and𝑀 are static matrices

that can be precomputed. The feature adaptation step for the MFCC

feature is shown in Equation 17.

𝜕𝐹 (Z𝑡 )

𝜕Z𝑡
=

1

𝑁
· 𝐷 · 𝑑𝑖𝑎𝑔 (𝑀 · Z𝑡 )

−1𝑀 (17)

Here, the 𝑑𝑖𝑎𝑔(·) operator takes the input vector and creates
a diagonal matrix by placing all values along the diagonal. Since

𝑀 · Z𝑡 applies the filter banks𝑀 onto our input signal Z𝑡 ,𝑀 · Z𝑡 is

a 𝑐 dimensional vector, so 𝑑𝑖𝑎𝑔 (𝑀 · Z𝑡 ) is a 𝑐 × 𝑐 diagonal matrix.
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