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ABSTRACT

The growth of the Internet of Things (IoT) sensing systems leads to

a large number of multimodal datasets over different deployments.

Labeling costs for these datasets, especially fine-grained labels, are

often tremendous. On the other hand, different data distributions

(domain variance) of these datasets prevent models built with labels

of one dataset (source domain) from being directly used in another

(target domain). This domain variance may be caused by one or

more physical factors change in the deployments, such as buildings

and/or people. Existing model transfer studies mainly focus on

adapting the model to the domain variance caused by only one

physical factor change. When multiple factors change between the

source and target domains, the model transfer often yields low

accuracy due to significant domain variance.

We present VMA, a model transfer framework for multimodal IoT

sensing data that handles multi-factor domain variance. VMA first

decouples the multi-factor domain variance between two datasets

to multiple single-factor domain variance dataset pairs with other

available datasets. Then, VMA leverages sensing modalities robust

to each single-factor domain variance for accurate prediction by

weighing them more in the fusion. We apply VMA to the fine-

grained occupant activity recognition application with a multi-

modal sensing system of structural vibration and wearable IMU.

We collect real-world datasets to evaluate the proposed framework.

VMA achieves a model transfer accuracy up to 76.1% on the target

domain with multi-factor domain variance, demonstrating a 1.6×
and 1.9× error reduction compared to direct prediction baselines
with and without modality-aware learning design.
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1 INTRODUCTION

Internet of Things (IoT) systems enable various smart building

applications such as in-home older adults/patient monitoring via

multimodal sensing [19, 22, 24]. However, one of the bottlenecks

that limits the scalability of these IoT sensing systems is the cost

of labeling, especially for fine-grained labels [13]. This is because

datasets collected at different deployments often have different

data distributions. We define the multimodal dataset follows one

data distribution as one domain, and the difference between each

dataset’s distribution is therefore referred to as the domain variance.

To mitigate the intensive needs of labeled data, many model

transfer studies have been conducted, such as adversarial deep

domain adaptation [42] and domain-invariant feature learning [26].

Such approaches have been explored to reduce the labeled data

needed when the physical factor like occupant [42], structure [20],

device [1], illumination [39] changes and induce domain variance

between training (source domain) and test datasets (target domain).

These works focus on one physical factor change-induced domain

variance. When there are multiple physical factor changes between

two datasets, the domain variance is more significant than that of

single factor changes, which leads to low prediction accuracy.

We propose VMA, a domain variance- and modality-aware model

transfer framework to handle multi-factor domain variances effi-

ciently. The intuitions are twofold. Firstly, for source and target

domains with multi-factor domain variances, there are other do-

mains that are of single-factor variance to them. VMA decouples

the multi-factor domain variance to a transfer path of multi-

ple single-factor domain variances. We refer to datasets on this path

as intermediate domains. Secondly, for a single-factor difference

between datasets, some sensing modalities would have a less signif-

icant domain variance than other modalities, meaning their model

transfer often yield a higher accuracy. VMA conducts amodality-

aware model transfer along the transfer path by first learning a

multi-task model with modality-specific input and output layers to

predict the intermediate domain data. Then VMA selects predictions

with high confidence to pseudo-label the intermediate domain data.

Then the pseudo-labeled intermediate domain data is used to train

another multi-task model for model transfer. The model transfer

is done by reusing shared hidden layers’ parameters to retain the

modality-invariant knowledge. We apply VMA on the application of

fine-grained occupant activity recognition [13] as a demonstration.

We select structural vibration-based human sensing and wearable

IMU as the representative sensor modalities. They provide com-

plementary spatiotemporal information of the occupant activities.

The contributions of this work are as follows.

• We present VMA, a model transfer framework for multi-

modal IoT sensing data that handles multi-factor domain

variance.

• We introduce a domain variance decoupling algorithm that

generates a transfer path leveraging physical knowledge.

• We demonstrate VMA with the fine-grained occupant ac-

tivity recognition application with a multimodal sensing

system of structural vibration and wearable IMU.

• We evaluate VMA with data collected from real-world and

compare system performance over various baselines.

The rest of this paper is organized as follows. Section 2 analyzes

modalities’ sensitivity to domain variance of different factors. Then,

Section 3 presents the system design and the domain variance- and

modality-aware model transfer algorithm. Next, Section 4 shows

the experiments and evaluation analysis. Section 5 lists prior work
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Figure 1: Examples of multi-factor and single-factor domain

variances. Datasets are collected for two occupants in dif-

ferent structures. For the same occupant at different struc-

tures, i.e., Data1/Data2 and Data3/Data4, the datasets are of

single-factor domain variance caused by the structure dif-

ference. For different occupants at the same structure, i.e.,

Data2/Data3, the datasets are of single-factor domain vari-

ance caused by the occupant difference. For Data1/Data4,

both structure and occupants are different, therefore they

are of multi-factor domain variance.

related to our system and algorithm. Finally, Section 6 discusses

the potential future directions and Section 7 concludes this work.

2 MODALITY SENSITIVITY ANALYSIS

Different sensors acquire occupant information via different sensing

principles.We analyze the sensing principles for structural vibration

sensors and wearable IMU, to depict the key factors that directly

impact the acquired signal/data. The analysis is used as the metric

to determine the order of model transfer in Section 3.3.

2.1 Structural Vibration Sensing

Structural vibration sensors capture vibrations induced by occupant

activities. When an occupant interacts with a surface, the inter-

action induces a surface deformation. This deformation generates

vibration. This vibration propagates as a wave in the structure from

interact location to sensor location. Finally, the sensor captures this

vibration and converts the motion of the surface to voltage. There-

fore, the key factors that impact the data property are threefold.

1) vibration generation.We use a single degree-of-freedom sys-

tem with properties represented by mass, spring, and damper to

simplify the surface vibration [40]. The external force 𝐹 applied to
the system at time 𝑡 can be described as:

𝐹 (𝑡) =𝑚𝑎(𝑡) + 𝑐𝑣 (𝑡) + 𝑘𝑧 (𝑡) =𝑚 �𝑧 (𝑡) + 𝑐 �𝑧 (𝑡) + 𝑘𝑧 (𝑡) (1)

Where 𝑚, 𝑘 , and 𝑐 are the mass, spring constant, and damping
coefficient. 𝑎, 𝑣 , and 𝑧 are acceleration, velocity, and displacement
respectively. By solving Eq. 1, we can acquire the displacement of

the induced vibration wave 𝑧𝑠 (𝑡). For the same external force 𝐹 (𝑡),
different parameter (𝑚, 𝑘 , and 𝑐) values of different structures would
result in different vibration wave 𝑧𝑠 (𝑡). For example, concrete-steel

floor often have higher stiffness (larger𝑘) [27], larger density (larger
𝑚) [2] compared to wooden floors.
2) wave propagation. It is formulated as a wave attenuation model

of the path between excitation and the sensor [7]:

𝑧𝑟 (𝑑) = 𝑧𝑠

𝑑
√
𝑑
𝑒𝛼𝑑 (2)

where 𝑧𝑟 (𝑑) is the received vibration at distance 𝑑 , 𝑧𝑠 is the source

vibration, and 𝛼 is the material-dependent attenuation coefficient.
The attenuation coefficient is determined by the structural proper-

ties [33] and impacts waveforms when vibrations propagate.

3) signal acquisition. Different types of sensors measure vibra-

tions in different forms. For example, the geophone sensor measures

the velocity �𝑧𝑟 . The accelerometer measures the acceleration �𝑧𝑟 .

Therefore, the same vibration 𝑧𝑠 will have different waveforms and

spectrum characteristics when captured by different sensors. In this

paper, we do not consider this impact because it can be calibrated

by manufacturer. In summary, the vibration signal 𝑧𝑟 is directly

impacted by the structure parameters based on Eq. 1 and Eq. 2.

2.2 Wearable IMU Sensing

Wearable IMUs are attached to and measure body parts’ motions.

1) signal generation. We use a 3D rotation model to simplify the

body part movement motion [34], assuming that the joint is fixed

and the target body part rotates. For example, when a person moves

their hand, we consider the shoulder is a fixed point and the arm

length is the rotation radius. For a given motion with displacement

𝑠 (𝑡), the linear velocity 𝑣 (𝑡) and angular velocity𝜔 (𝑡) of themoving
body part at time 𝑡 can be represented as:

𝑣 (𝑡) = �𝑠 (𝑡), 𝜔 (𝑡) = 𝑣 (𝑡)/𝑙 = �𝑠 (𝑡)/𝑙 (3)

where 𝑙 is the distance between the body part and the joint.
2) signal acquisition. The IMU sensor directly measures motions

in the form of linear acceleration and angular velocity [14]. For a

motion with a displacement of 𝑠 (𝑡), the IMU outputs linear acceler-

ation �𝑠 (𝑡) and angular velocity 𝜔 (𝑡) = �𝑠 (𝑡)/𝑙 . As Eq. 3 shows, the
change of 𝑙 and �𝑠 would result in different linear acceleration and
angular velocity. For example, older adults usually have a lower

�𝑠 and children often have a shorter 𝑙 . Therefore, the IMU data is

directly impacted by occupants’ physical and motion parameters.

In summary, from the data acquisition perspective, the vibra-

tion signal/data is sensitive to structural differences, and the IMU

signal/data is sensitive to occupant variation.

3 SYSTEM DESIGN

VMA aims to tackle the challenge of multi-factor domain variance in

real-world multimodal IoT sensing datasets. Figure 2 depicts VMA

and its four modules with the fine-grained activities recognition

application.We adopt structural vibration and on-wrist IMU sensors

to capture spatiotemporal characteristics of fine-grained occupant

activities (Section 3.1). This multimodal data is then sent to the

modality-aware data characterization module (Section 3.2), where

VMA 1) determines the spatial characteristics of the given data and

2) extracts signal features. Simultaneously, VMA finds the transfer

path between the source and target domain in the domain variance-

aware multi-factor decoupling module (Section 3.3). Finally, VMA

conducts modality-aware model transfer with inputs of multimodal

signal features of datasets on the transfer path (Section 3.4).
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Figure 2: VMA framework with four modules for the appli-

cation of fine-grained activity recognition 1) multimodal

sensing, 2) modality-aware data characterization, 3) domain

variance-aware multi-factor decoupling, and 4) modality-

aware model transfer. The data flows marked in the figure

are respectively: 1© structural vibration signal segments of

detected events; 2© multimodal signals; 3© sensing system

meta data, including structure ID, occupant ID (wearable ID),

labeled/unlabeled; 4© multimodal signal features grouped

by the same spatial characteristics (area ID). 5© decoupled

transfer path between source and target domains.

Sliding Window

Figure 3: Exemplary signals of structural vibration and wear-

able IMU based occupant sensing. (a) vibration signal with

detected events marked in red lines. (b) one axis of the accel-

eration signals with sliding window depicted in red boxes.

3.1 Multimodal Sensing System

Structural vibration and IMU sensors demonstrate complementarity

in capturing spatiotemporal information [13]. Similar to [13], we

utilize structural vibration and IMU sensors to predict fine-grained

occupant activities in our system.

3.1.1 Structural Vibration Sensing. Structural vibration sensors

capture occupant activities when they interact with ambient sur-

faces and induce the vibration (Section 2.1). We place vibration

sensors on surfaces (e.g., table, countertop, floor) over different

areas (e.g., kitchen, study) to capture vibrations induced by different

types of activities. These activities often induce impulsive vibration

signals, which we define as events, shown as red solid lines in

Figure 3 (a). We apply a sliding window to the acquired sensor

signal. We establish a Gaussian noise model with the energy of the

windowed signal when no events occur. Then we conduct anomaly

detection on the incoming windowed signal based on this Gauss-

ian noise model [20]. The windows with signal energy detected

as anomalies are considered as events. If consecutive windows are

detected as anomalies, they are considered to be the same event,

i.e., the length of the event may vary over different activity types.

For a structure deployed with 𝑁 vibration sensors, if one sensor de-

tects an event, VMA considers it an event for all 𝑁 sensors. Further

processing and learning are done on the event level.

3.1.2 Wearable Sensing. We use an on-wrist IMU sensor to capture

the motion of participants’ dominant hand to infer the type of

activities. Since the IMU sensor captures the motion of the attached

body part all the time, the concept of ‘event’ defined for vibration

data is not suitable for IMU data. We adopt the sliding window

to segment the signal into windows of size 𝑤𝐼𝑀𝑈 , as depicted in

red boxes in Figure 3 (b), and predict the current activity at the

window level.

3.2 Multimodal Data Characterization

Given a dataset from an unknown deployment, VMA pre-processes

the dataset by extracting the following information.

3.2.1 Spatial Characteristics Analysis. To augment the spatial infor-

mation for activity recognition, we conduct spatial characteristics

analysis on the infrastructural sensing – structural vibration sen-

sors. Vibration sensors detect activities within the sensing range

and are deployed over multiple areas (e.g., kitchen and study). For

a deployment with 𝑁 sensors covering 𝑛 areas, VMA trains a mul-

timodal multi-task learning model for each area, i.e., 𝑛 models in
total. Meanwhile, VMA keeps track of a system status flag 𝐹𝐴𝑟𝑒𝑎

indicating the event area. When events are detected by vibration

sensors, the sensor with the highest event signal energy is consid-

ered as the closest to the activity, and we set the 𝐹𝐴𝑟𝑒𝑎 as the area

ID. The data points with the same 𝐹𝐴𝑟𝑒𝑎 values are trained/tested

with the area-specific model.

3.2.2 Feature Extraction. For vibration signals, VMA extracts fre-

quency components as features of the detected events. For the IMU

sensor, we apply a sliding window on six axes (accelerometer and

gyroscope). For each window, VMA extracts 36 key features from

each axis [13, 35] and then concatenates features from all axes.

3.3 Domain Variance-Aware Multi-Factor
Decoupling

In real-world datasets, the data distribution change between the

labeled and unlabeled datasets is often caused by multiple factors

in a coupled manner [25]. We assume the investigated datasets

are impacted by 𝑟 known domain variance factors (e.g., occupant,
structure, device, illumination) and have data from 𝑞 modalities.
We denote a domain as D = [𝑓1, 𝑓2, ..., 𝑓𝑟 ]. For each pair of datasets,
we quantify their domain variance using Factor Difference as FD =
[𝐹𝐷1, ..., 𝐹𝐷𝑟 ] ∈ Z𝑟

2, Z2 = {0, 1} to encode the domain variance
factor difference between two datasets. 𝐹𝐷𝑖 = 1 means the two

domains are different in the 𝑖𝑡ℎ factor. We also construct the Shared
Modality as SM = [𝑆𝑀1, ..., 𝑆𝑀𝑞] ∈ Z𝑞

2 , where Z2 = {0, 1}, to
encode the shared modalities between two domains. 𝑆𝑀𝑖 = 1 means
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the corresponding modality is available in both datasets. We then

leverage the analysis in Section 2 and establish an Factor-Modality

Sensitivity Matrix FM ∈ Z𝑞×𝑟
2 , where Z2 = {0, 1}. In FM, each row

stands for sensing modalities in the same order as the SM. Each

column stands for domain variance factors in the same order as the

FD. We assign FM𝑖, 𝑗 as 0 when the 𝑖
𝑡ℎ modality is directly impacted

by the 𝑗𝑡ℎ factor. Otherwise, we assign FM𝑖, 𝑗 as 1, indicating an

indirect or less sensitive impact.

We consider datasets with FD that has more than one element of

1 are non-directly transferable, because they have multi-factor do-

main variance. For datasets with FD that has only one element of 1,

i.e., single-factor domain variance, VMA calculates Tr = (FM·FD)𝑇 ·
SM, which counts the number of available modalities that are not

directly impacted by this single-factor domain variance. If Tr > 0,

we consider the pair of datasets are directly transferable. For the

example shown in Figure 1, there are two domain variance factors

(𝑞 = 2) between Data 1 and Data 4, i.e., occupant and structure. Con-

sidering VMA with two modalities (𝑟 = 2), i.e., structural vibration

and wearable IMU , we form FM =
[
0 1
1 0

]
. The rows are IMU and

vibration sensing. The columns are occupant and structure factors.

Between Data 1 and Data 4, we form FD = [1, 1] and SM = [1, 1].
Since there are more than one 1 in FD, their domains are not di-

rectly transferable. For Data 1 and Data 2, we form FD = [0, 1] and
SM = [1, 1]. We calculate Tr = (FM · FD)𝑇 · SM = 1 > 0, meaning

their domains are directly transferable.

After calculating pair-wise Tr between all available domain pairs,

VMA establishes a graph with domains as nodes and Tr > 0 as

edges. Then, VMA conducts a breadth-first search (BFS) to select

intermediate domains between source and target domains. The

labeled source domain is the starting point of the BFS. The graph

connectivity is defined by 1) the pair-wise transferability, and 2) all

selected domains should share at least two sensing modalities, to

enable further model transfer. If BFS returns a path, VMA considers

the model transfer feasible.We refer to this path as the transfer

path, denoted as D1 → D2 → ... → D𝑝 , where 𝑝 is the path length
and D𝑝 is the target domain. If there are multiple paths returned

by BFS, VMA adopts the first searched path. If no path is returned,

VMA waits for more datasets.

3.4 Modality-Aware Model Transfer

Given a labeled or pseudo-labeled domain D𝑖 , VMA conducts the

modality-aware model transfer (Figure 4) to achieve high accurate

predictions on the succeeding domains in the transfer path, i.e.,D𝑖+1
and D𝑖+2. Between a pair of directly transferable datasets on the
transfer path, e.g., D𝑖 and D𝑖+1, VMA conducts a modality-aware

multi-task alternative training (Section 3.4.1) and pseudo-labels

D𝑖+1 (Section 3.4.2). The trained model’s shared hidden layers are
reused by the succeeding pair in the path, i.e., D𝑖+1 and D𝑖+2, to
preserve the transferable knowledge (Section 3.4.3).

3.4.1 Modality-Aware Multi-Task Alternative Training. To fairly

compare the representations for two modalities and fuse data with

different segmentation schemes without losing complementarity,

we train a multi-task learning model with labeled or pseudo-

labeled data. In our multi-task model, we consider recognizing

activities with data from one modality as one task. Figure 4 shows

a model with 𝑞 tasks corresponding to 𝑞 modalities. Each modality

has its input and output layers. Thesemodality-specific layers retain

the modality’s insensitivity to specific domain factor variances. The

input and output layers of all modalities connect to the same hidden

layers, i.e., these hidden layers are shared by𝑞 tasks [4]. This process
is shown as 1 , 2 and q path in Figure 4, each path corresponds to

one sensing modality. For sensing modality𝑀𝑘 , we denote feature

vectors as x𝑀𝑘 , where 1 ≤ 𝑘 ≤ 𝑞. The model can be described as:

𝑦𝑀𝑘 = 𝑓𝑂
𝑀𝑘
(𝑓 𝐻 (𝑓 𝐼

𝑀𝑘
(x𝑀𝑘 )), (4)

where 𝑦𝑀𝑘 is the prediction output, 𝑓
𝐼
𝑀𝑘
(·) is the function of input

layer for the sensing modality𝑀𝑘 , 𝑓
𝐻 (·) is the function of shared

hidden layers. The 𝑓𝑂
𝑀𝑘
(·) is the function of output layer for the

sensing modality𝑀𝑘 .

𝑓 𝐼
𝑀𝑘
(x𝑀𝑘 ) = 𝜙 (𝑊 𝐼

𝑀𝑘
x𝑀𝑘 + 𝑏𝐼

𝑀𝑘
), (5)

where𝑊 𝐼
𝑀𝑘

∈ R𝑚×𝑛 is the weight matrix,𝑚 is the dimension of the

next layer, 𝑛 is the dimension of the input feature vector. Here 𝑏𝐼
𝑀𝑘

is the bias term of each input layer. And 𝜙 is the activation func-

tion. The shared hidden layers are stacking feed-forward layers. Its

function 𝑓 𝐻 (·) is parameterized by𝑊𝐻 . The shared hidden layers

embed each modality’s input into a comparable representation z𝑀𝑘 .

z𝑀𝑘 = 𝑓 𝐻 (𝑓 𝐼
𝑀𝑘
(x𝑀𝑘 )) (6)

The output layer, 𝑓𝑂
𝑀𝑘
(·), employs a softmax 𝜎 as the activation

function

𝜎 (z)𝑖 = 𝑒z𝑖
∑𝐽

𝑗=1 𝑒
z𝑗
, (7)

where z is the input vector to the softmax function, and 𝑖 is the
𝑖th class in the total number of 𝐽 classes. Intrinsically, the softmax
function assigns prediction confidence to each class, and the class

with the highest confidence is the predicted label 𝑦
𝑦 = argmax

𝑖
𝜎 (z)𝑖 (8)

And the prediction confidence of 𝑦 is
𝑃 (𝑦) = max

𝑖
𝜎 (z)𝑖 (9)

We employ the categorical cross-entropy loss for each modality’s

output layers, L = −∑𝐽
𝑗=1 𝑦 𝑗 𝑙𝑜𝑔(𝜎 (z) 𝑗 ), [23], where 𝑦 𝑗 is the label.

We denote the loss for the modality 𝑀𝑘 as L𝑀𝑘 . The parameters

of shared hidden layers and modality-specific layers are updated

alternatively according to the corresponding loss

L(x) = L𝑀𝑘 , if x = x𝑀𝑘 (10)

by backpropagation [30] with a specific optimizer. We use the Adam

optimizer for its strong empirical performance [16].

We use alternative training to train the model, where instead

of updating the model parameters with all the data from one task to

another, we update them with partial data from one task then move

to another task. In this way, each task updates model parameters in

multiple epochs, avoiding the learned knowledge from onemodality

being completely overridden by another modality (catastrophic

forgetting) [9]. For each epoch, we randomly select a batch of data

points to train the model.

For 𝑞 available modalities, the multi-task learning model out-
puts 𝑞 predictions of the input data. VMA conducts the predic-

tion fusion. Different sensing modalities’ signal often adopts their

modality-specific segmentation schemes [6]. As discussed in Section

3.1, wearable sensor’s signal is segmented with sliding windows of

size𝑤𝐼𝑀𝑈 , and their prediction output is at the window level. The

structural vibration sensor’s signal is processed and predicted on
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Figure 4: Modality-aware model transfer module.

event-level segments. When both segmentation schemes are used

by the available modalities, VMA needs to align each modality’s

prediction into the same segmentation scheme for further fusion

purposes.

For modalities adopting event-level segmentation, VMA first as-

signs the prediction and confidence to signal samples of detected

events. For remaining samples without detected events, VMA as-

signs them with the non-activity label and the confidence is set

as zero. Then, we apply a fusion sliding window of size 𝑤𝐹 to

the sample-level predictions. We conduct a majority vote with the

sample-level predictions and output the prediction label of this

window. The confidence of voted class is selected as the confidence

of the window. If there are multiple confidence scores for the same

voted class in the window, we select the highest one. In this paper,

the size of the fusion sliding window𝑤𝐹 is set as the same for IMU,

𝑤𝐼𝑀𝑈 , to simplify the modalities’ prediction resolution alignment.

After aligning each modality’s prediction into window level, for

each fusion window, we fuse the predictions of all modalities based

on their confidence scores. Since confidence scores of all modalities’

predictions are generated from comparable embeddings z𝑀𝑘 , they

are directly comparable. We choose the prediction with the highest

confidence score among all modalities as the fused prediction.

3.4.2 Confidence-based Pseudo-Labeling. For an intermediate do-

mainD𝑖+1, the fused prediction is then used to pseudo-label the data
for training the succeeding model. However, the succeeding model

takes inputs in the modality-specific segmentation schemes, which

may be different from the pseudo-label. Therefore, in VMA, we

develop a restore segmentation scheme to convert different sensing

modalities’ pseudo-labels to their modality-specific segmentation

schemes to train the succeeding model. Another challenge for train-

ing an accurate succeeding model is erroneous pseudo-labels [41].

Hence, we conduct a confidence-based selection of the fused pre-

diction to ensure the reliability of the pseudo-labels.

Restore Segmentation Scheme. For fused predictions of the inter-

mediate domain, e.g., D𝑖+1 in Figure 4, VMA restores them back to

modality-specific segmentation scheme. For modalities adopting

event-level segmentation, their fused predictions are at the window

level after the fusion. VMA converts them back to event-level to be

used as pseudo-labels in the succeeding model. For events that are

completely overlapped with a window (e.g., multiple events within

one window), we assign the window’s fused prediction as to the

pseudo-label of these events. For an event that overlaps with multi-

ple windows, we conduct a majority vote among these windows’

fused predictions. The voted class label is the event’s pseudo-label.

In practice, we only consider those windows with more than half

of their samples overlapped with the event. The confidence score

of the voted class is assigned as the confidence of the event. If there

are multiple confidence scores for the same voted class, we select

the highest value.

Pseudo-Label Selection. To prevent negative impacts of erroneous

pseudo-labels on the succeeding model [41], after restoring seg-

mentation schemes, we conduct a pseudo-label selection. We select

high-confident pseudo-labels to train the succeeding model. How-

ever, the confidence for different classes’ pseudo-labels may have

different value ranges, so as the same class’s pseudo-labels of dif-

ferent modalities. To have a balanced input for the succeeding

model, we apply a class-level ranked threshold on the prediction

confidence within each class of each modality. For each class data

of each modality, the model keeps the pseudo-labeled data with

confidence in the top 𝜏 percentile.

3.4.3 Model Transfer via Partial Weight Reuse. With the selected

pseudo-labeled D𝑖+1 data, we train a succeeding model to predict
the D𝑖+2 data. However, pseudo-labels could be erroneous, which
would lead to the accumulation of errors along the transfer path

and directly reduce the succeeding model’s accuracy. On the other

hand, the preceding model is trained with labeled or less erroneous

pseudo-labeled data, hence is less impacted by cumulative errors.

Therefore, we reuse parameters from preceding model to constrain

the cumulative error.

Reusing parameters is also challenging because the domain vari-

ance factor between D𝑖 and D𝑖+1 is often different from that be-

tween D𝑖+1 and D𝑖+2. Therefore, the modality that is insensitive to
the domain variance factor is different between two models. The

trained parameters of modality-specific layers in the preceding

model may no longer be applicable to the succeeding model. As a

result, the system cannot directly reuse the entire trained preced-

ing model. On the other hand, parameters of shared hidden layers

reflect the relationship between activity classes and modalities in

251



Figure 5: Sensing system hardware. (a) shows the wearable

sensing node with an IMU, and (b) shows the structural vi-

bration sensing node with a geophone sensor.

Figure 6: Structural vibration sensor experimental setup. (a)

and (b) are in structure 1. (c) and (d) are in structure 2.

the preceding model. To leverage this learned relationship in the

succeeding model, we reuse shared hidden layers’ parameters, i.e.,

𝑊𝐻 in Section 3.4.1.

4 EVALUATION

We evaluate VMAwith data collected in real-world experiments. We

collect data with six human subjects over two residential buildings

based on the IRB protocol.

4.1 Experiment Setup and Data Collection

We select 10 types of common activities of daily living (ADL) over

two areas including the following activities: 1) keyboard typing,

2) using the mouse, 3) handwriting. Kitchen Area: 4) cutting food,

5) stir-fry, 6) wiping countertop, 7) sweeping floor, 8) vacuuming

floor, 9) open/close drawer, and 10) idle. These activities are used

to assess older adults’ ability to live independently [11] and profile

people’s behavior [24, 38].

The sensing systems used to collect the data are shown in Figure

5. The wearable sensing device consists of an Arduino Nano 33

board and an LSM9DS1 IMU module 1 sampling at 235 Hz per axis.

The structural vibration sensing device consists of an Arduino zero

board with an LMV358 OpAmp and a geophone SM-24 sensor 2.

The vibration sensor is sampled at 6500 Hz. We place the on-wrist

IMU sensor on the occupant and four vibration sensors in kitchen

and study areas. Figure 6 shows the structural vibration sensors’

placement at two structures. Structure 1 and 2 are significantly

different in the layout andmaterial. For instance, structure 1 kitchen

area has a U-shape layout with a wooden floor, while the one in

structure 2 has an L-shape layout with a ceramic tile floor. Also,

the study desk in structure 1 is made from wood, while the one

in structure 2 is made from plastic and metal. These differences

would lead to different frequencies being activated even for the

1https://www.st.com/en/mems-and-sensors/lsm9ds1.html
2https://www.sparkfun.com/products/11744

same excitation and therefore change the vibration data distribution

between two structures [20].

We collect 12 datasets of different domains from six volunteers

(three females and three males with heights ranging from 4’11”to

6’1”) at two structures via semi-controlled experiments, each con-

tains 10 trials. We define a trial of data as one volunteer conducting

all 10 target activities at one structure. For each trial, we inform the

volunteer about the type and time duration of activities to conduct.

Volunteers have the freedom to decide 1) the order of activities,

2) locations within the area to conduct the activity, and 3) how

the activity is done (as natural as their daily activity at home) dur-

ing the data collection. The activities of each volunteer are evenly

distributed in the dataset. The data is collected under the regular op-

eration of the structure to reflect a practical ambient noise level – we

do not exclude ambient noises (e.g., chronic noise from the refriger-

ator) in the data collection. With these datasets, we explore transfer

paths in the form ofD𝑆𝑜𝑢𝑟𝑐𝑒 → D𝐼𝑛𝑡𝑒𝑟 → D𝑇𝑎𝑟𝑔𝑒𝑡 . For a given pair

of datasets with multi-factor domain variance, there are multiple

decoupling solutions, i.e., the BFS may return different solutions

given available intermediate domains. We generalize these paths’

properties with a tuple describing the order of single-factor do-

main variance along the path. For example, {O, S} represent paths,
where the domain variance factor between D𝑆𝑜𝑢𝑟𝑐𝑒 and D𝐼𝑛𝑡𝑒𝑟 is

the Occupant and the domain variance factor between D𝐼𝑛𝑡𝑒𝑟 and

D𝑇𝑎𝑟𝑔𝑒𝑡 is the Structure. In our experiment setting, the transfer

paths fall into two categories {O, S} and {S,O}. We investigate 70
transfer paths under these two categories.

4.2 Modality Sensitivity Quantification

We verify that for each sensing modality, the change of directly

impacting factors causes a larger domain variance than indirectly

impacting factors. We quantify the similarity between two datasets

of different domains via 𝑃𝑟𝑜𝑥𝑦 − A − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (PAD), which has
been used to measure the similarity between two probability distri-

butions [10]. The lower the PAD value, the more similar the two

domains [3].

We measure the PAD over pairwise datasets on both vibration

sensor data and the wearable IMU data. We investigate 12 datasets

of six occupants’ 10 activities over two structures, and consider

one of the datasets as the reference domain. Table 1 illustrates the

PAD between the reference domain and the investigated domains of

different structure/occupant/structure&occupant. Between the ref-

erence dataset and the dataset with structure variance, the wearable

data has a lower PAD value than the vibration sensor, indicating

that the wearable is less sensitive to the structure variation. Simi-

larly, between the reference dataset and the dataset of a different

occupant, we observe that the vibration sensor data has a lower PAD

value. This verifies the analysis that different sensing modalities

are sensitive to domain variances of different factors. In addition,

when the domain variance is caused by more than one factor, we

observe a higher PAD value compared to single factors’.

4.3 Evaluation Metrics

Two metrics are used to evaluate the performance of the system.

First, we use the average activity recognition accuracy (AARA)

[37] as themetric for the system evaluation. In practice, the duration
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Table 1: Modality-based domain variance analysis. PAD cal-

culated over different domain variance conditions.

Domain Variance \Modality Vibration Wearable

None 0 0

Structure 1.03 0.62

Occupant 0.41 1.26

Structure + Occupant 1.18 1.31

of different activities/events is different, which makes the average

accuracy over absolute numbers of events activity-biased. Similar

to [24], we consider the model’s accuracy on each fine-grained

activity equally important. Therefore, we use the average activity

recognition accuracy (AARA) of the target domain (with domain

variances from two physical factors).

𝐴𝐴𝑅𝐴 =
1

𝑁

∑

𝑖=1...𝑁

𝐴𝑐𝑐𝑖 , (11)

where 𝑁 is the number of types of activities, 𝐴𝑐𝑐𝑖 is the prediction

accuracy of the 𝑖𝑡ℎ activity.

Second, we define transfer success rate (TSR) to evaluate the

robustness of the system. We define the TSR as the ratio between

the number of successful transfers and the total number of trans-

fers we investigated in each evaluation experiment. Because VMA

applies confidence-based threshold on the preceding model predic-

tions, it is possible that the entire class of predictions is discarded.

In this case, the input to the succeeding model does not contain

pseudo-labeled data of all classes, and we consider it a failed trans-

fer. On the other hand, we consider a transfer is a successful transfer

when all target classes are maintained after the confidence-based

threshold process. The transfer success rate is formed as:

𝑇𝑆𝑅 =
𝑁𝑆𝑢𝑐𝑐𝑒𝑠𝑠

𝑁𝑇𝑜𝑡𝑎𝑙
, (12)

where 𝑁𝑆𝑢𝑐𝑐𝑒𝑠𝑠 is the number of success model transfer in total

number of 𝑁𝑇𝑜𝑡𝑎𝑙 transfers in each evaluation experiment.

For each transfer, all the labeled data from the source domain

is used for training. The test is done on all the unlabeled data

from the target domain. The source and target domain datasets are

collected from different occupants at different structures. Given the

randomized initialization for the model training, we do a 5-time

repetitions to avoid outliers. We report the mean and standard

deviation of the AARA over investigated transfer paths. And we

calculate TSR with all repetitions over investigated transfer paths.

4.4 Implementation

4.4.1 Pre-processing. For the IMU signal, we set the slidingwindow

size to 1.5 seconds with 0.75 seconds overlapping to capture the

temporal pattern of activities while keeping a low prediction latency.

For vibration signal’s event detection, we apply a sliding window

with size of 0.2s to ensure high segmentation precision. I.e., for

activities with short impulses/pauses, this window size enables

the system to capture accurate temporal segmentation of events.

However, the number of events detected by vibration sensors is

not comparable to the number of sliding windows of IMU signal.

Therefore, To amplify the data volume, we split detected events with

a length longer than 2 seconds into multiple 1-second sub-events.

Then we extract frequency components from 10𝐻𝑧 to 490𝐻𝑧 as
vibration signal features.

4.4.2 VMA. We train each modality-aware multi-task model with

an identical structure – one input layer and one output prediction

layer for each modality, and three shared hidden layers. The output

dimension of each input layer is 128, and the numbers of units for

each shared hidden layer is 128, 64, and 32, respectively. Dropout is

applied with probability of 0.2 over hidden layers’ connections [32].

The input and hidden layers adopt Exponential Linear Unit (ELU)

as the activation function for its strong empirical performance and

faster learning speed [5]. All modality-specific layers’ parameters

and shared hidden layers’ parameters in the first preceding model

are initialized with Xavier initialization [10]. The training batch

size for each modality is 256 per batch, and the learning rate is fixed

as 0.001 for both tasks. We set the confidence selection threshold 𝜏
as 40% for all evaluations unless further mentioned.

4.4.3 Learning Scheme Baseline 1: Direct Prediction. We train in-

dependent models for each modalities with labeled source domain

data to directly predict the target domain (without intermediate

domains). These models are feed-forward neural networks [29],

which have five hidden layers with dropout [32]. The dimension

of each layer, activation functions utilized, dropout rate, training

batch size and learning rate are the same as those applied to VMA

(Section 4.4.2). This baseline still employs spatial characteristics

analysis (Section 3.2.1) to augment the spatial information.

4.4.4 Learning Scheme Baseline 2: Modality-aware Direct Prediction.

We construct a modality-aware multi-task learning model with the

same structure and training parameter setting as inVMA. Themodel

is trained with labeled source domain data and then tested with

unlabeled target domain data without intermediate domains.

4.4.5 VMA Oracle Mode. When there are multiple accessible trans-

fer paths,VMA selects the first one coming up by the search, because

there is no additional information to indicate the optimality of the

paths. We further present VMA in the ‘Oracle Mode’ to compare and

demonstrate the robustness of all the transfer paths. VMA Oracle

Mode assumes that there are always sufficient datasets to generate

multiple transfer paths and the best transfer path (i.e., the path that

maximizes AARA) is always selected.

4.4.6 Ablation Study Baseline 1: No Confidence Threshold. In this

baseline, we discard the pseudo-label selection step in the confidence-

based pseudo-labeling (Section: 3.4.2). Other parts in the system

are kept as same, to investigate the impact of noise and error accu-

mulation from the pseudo-labeling.

4.4.7 Ablation Study Baseline 2: Random Transfer Path. In this

baseline, we discard the domain variance-aware multi-factor decou-

pling (Section: 3.3). Instead, the intermediate domain is randomly

assigned to investigate the contribution of the transfer path.

4.4.8 Ablation Study Baseline 3: No Spatial Modeling. Here, we

aim to investigate the impact of using spatial information (Section:

3.2.1). Instead of training spatial-specific multimodal multi-task

learning models, we train one model for each structure.

4.4.9 Weight Reuse Scheme Baseline 1: All Weights Reuse. To show

the importance of partial weight reuse scheme, here we reuse the
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Figure 7: Comparison of different learning schemes. Com-

pared to approaches without using intermediate domain, our

VMA achieves an AARA of 76.1%, which is the highest among

the three schemes. The modality-aware direct prediction and

the direct prediction achieve an AARA of 62.5% and 54.7%.

parameters of the entire model trained in the preceding model as

the initialization for the succeeding model.

4.4.10 Weight Reuse Scheme Baseline 2: Modality Independence.

Here, we train two independent models for two modalities in the

preceding model to pseudo-label the intermediate domain. Then

each modality reuses its entire model in the succeeding model by

initializing the model with weights from the preceding model.

4.4.11 Weight Reuse Scheme Baseline 3: No Weight Reuse. To eval-

uate the contribution of the shared hidden layers trained in the

preceding model, we implement this baseline without transferring

any learned model. Instead, we randomly initialize when train the

succeeding model with selected pseudo-labeled data.

4.5 Learning Scheme Analysis

VMA ensures high prediction accuracy over high domain vari-

ance because it utilizes 1) selected intermediate domain (transfer

path) with 2) modality-aware multi-task alternative training and 3)

confidence-based pseudo-labeling.

4.5.1 Comparison of Learning Schemes. We consider direct pre-

diction approaches as learning scheme baselines (Section 4.4.3,

4.4.4). Since the two learning scheme baselines do not adopt the

confidence-based threshold mechanism, we compare only AARA

without TSR here. Figure 7 shows that our VMA achieved a mean

AARA of 76.1% with a standard deviation of 6.4%. The direct predic-

tion without modality-aware design only achieves a mean AARA

of 54.7% with a standard deviation of 8.7% due to the high domain

variance between training and testing data. The direct prediction

with modality-aware multi-task learning achieves a mean AARA

of 62.5% with a standard deviation of 5.2%.

To verify that our modality-aware design effectively leverages

the sensitivity difference of sensing modalities over different single-

factor domain variances, we look into details of one example trans-

fer path D𝑆𝑜𝑢𝑟𝑐𝑒 = [𝑂1, 𝑆1] → D𝐼𝑛𝑡𝑒𝑟 = [𝑂2, 𝑆1] → D𝑇𝑎𝑟𝑔𝑒𝑡 =
[𝑂2, 𝑆2], where 𝑂1 and 𝑂2 are occupant ID, 𝑆1 and 𝑆2 are structure
ID. The transfer path decouples the multi-factor domain variance

between the source and target domains into two single-factor do-

main variances with different occupant and structure factors. Figure

8 (a) and (b) shows the prediction confidence of the modality-aware

multi-task learning model on D𝑆𝑜𝑢𝑟𝑐𝑒 → D𝐼𝑛𝑡𝑒𝑟 and D𝐼𝑛𝑡𝑒𝑟 →
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(b) Single-Factor Domain Variance: Different Structure

Figure 8: Prediction confidence of an example transfer path

D𝑆𝑜𝑢𝑟𝑐𝑒 = [𝑂1, 𝑆1] → D𝐼𝑛𝑡𝑒𝑟 = [𝑂2, 𝑆1] → D𝑇𝑎𝑟𝑔𝑒𝑡 = [𝑂2, 𝑆2].
When predicting the intermediate domain, vibration is less

sensitive to the domain variance (different occupants). Its

prediction accuracy and confidence are higher than those of

the IMU. While when predicting the target domain, IMU is

less sensitive to the domain variance (different structures)

and achieves higher prediction accuracy and confidence.

D𝑇𝑎𝑟𝑔𝑒𝑡 , respectively. (a) shows that the predictions on the vibra-

tion data have higher and more consistent confidences compared

to the IMU data. It results in a 16% higher AARA compared to the

IMU’s. This is because the single-factor domain variance between

these two domains is the occupant, which the wearable IMU is

sensitive to. On the other hand, (b) shows an inverted trend, where

the predictions of the IMU data have higher and more consistent

confidences compared to the vibration data. Because the single-

factor domain variance between these two domains is the structure,

which the vibration sensing is sensitive to. This indicates that our

modality-aware multitask learning scheme effectively models the

modality sensitivity/robustness to different single-factor domain

variances.

4.5.2 Ablation Study. We conduct an ablation study on the design

components of VMA with VMA Oracle Mode and three baselines

(Section 4.4.5, 4.4.6, 4.4.7, and 4.4.8), and demonstrate their perfor-

mance in AARA and TSR in Figure 9. To highlight the robustness of

transfer paths, we compare VMA to VMA Oracle Mode and demon-

strate the performance difference between first searched paths and

optimal paths is negligible (2.8%). To demonstrate the importance

of confidence-based pseudo-labeling, we compare VMA to the Base-

line 1, where no confidence thresholding is applied. When the

system does not select pseudo-labels with confidence higher than

the threshold, the target domain learning accuracy drops from 76.1%

to 68.5%. This is because the succeeding model has more erroneous

pseudo-labels.

To understand the performance and importance of the transfer

path, we investigate the VMA Oracle Mode and the Baseline 2. VMA

Oracle Mode always selects the best transfer path and the Baseline

2 selects intermediate domain randomly. Comparing to the 78.9%

AARA by VMA Oracle Mode, VMA achieves a comparable AARA.

This is because the transfer path searching takes both modality and
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Figure 9: Ablation study. We compare VMA to the Oracle

Mode and three baselines using AARA and TSR. VMA Oracle

Model always select the best transfer path and therefore

achieves the highest AARA of 78.9%. For each baseline, a

design component is removed. VMA achieves AARA of 76.1%,

which is slightly lower than VMA (< 3%). Both VMA and VMA

OracleMode achieve a 100% TSR. The three baselines achieve

AARA of 68.5%, 60.3%, and 55.5% and TSR of 100%, 54.3% and

37.1%, respectively.

factor into consideration. The searched transfer path is reliable for

the model transfer. We observe that in Baseline 2 both the AARA

and the TSR reduce, where the AARA reduced to 60.3% and the TSR

is only 54.3%. Because the significant domain variance between the

source and intermediate domain leads to more erroneous pseudo-

labels with low confidence.

To study the importance of using spatial information (Section

3.2.1), we compare our approach to the Baseline 3, where the sys-

tem does not leverage spatial modeling. The mean AARA reduces

to 55.5%. Due to the structure differences (e.g., layout, material,

etc.), transferring knowledge directly between different buildings is

more challenging than transferring knowledge of designated areas

between different buildings (e.g., kitchens of the two buildings). As

a result, utilizing spatial characteristics customizes the transfer for

different areas within the building to achieve a higher accuracy.

4.5.3 Comparison of Model Transfer Schemes. To demonstrate ad-

vantages of modality-aware model transfer design and its robust-

ness over different transfer path categories, we compare it to three

baselines of model transfer schemes as listed in Section 4.4.9, 4.4.11,

and 4.4.10. We plot the model transfer results in Figure 10.

VMA achieves mean AARA of 76.7% for paths in the category

{O, S} (paths’ property defined in Section 4.1) and 75.5% for for

paths in {S,O}. The partial weight reuse allows the system to cap-

ture the modality-invariant knowledge via the shared hidden layers.

While the modality-specific layers enables the system to leverage

each modality’s robustness in handling specific domain variance.

As a result, when all the weights are reused (Section 4.4.9), the suc-

ceeding model loses its modality-specific advantage, and the mean

AARA reduces to 65.3% and 64.4% for transfer paths in categories

{O, S} and {S,O}, respectively.
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Figure 10: Model transfer schemes study. We compare VMA

to three baselines. VMA adopts partial weight reuse and

achieves the highest AARA. In addition, VMA demonstrates

robustness over different categories of transfer paths.
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Figure 11: Target domain prediction AARA using different

amounts of labeled data from the source domain.

The shared hidden layer is important for projecting each modal-

ity input into the comparable latent space. If the models are trained

in a modality-independent way (Section 4.4.10), even the weights

for each modality model is reused, the modality inputs are not

projected to the same latent space, which makes their prediction

confidences not as comparable as those from our VMA. This leads

to a decrease of accuracy to 63.8% and 63.1% respectively for the

{O, S} and {S,O} transfer paths.
If we do not reuse the weights at all (Section 4.4.11), the mean

AARA drops to 60.1% for paths in the category {O, S} and 62.4%
for paths in the category {S,O}. This indicates that the partially
reuse weights of the shared hidden layer not only retains the shared

modality-invariant information, it also allows the model to rely on

the modality who is less sensitive to the domain variance for an

accurate prediction.

4.6 System Parameter Analysis

We further show the system’s performance with different parameter

settings, including the amount of labeled data in the source domain

(Section 4.6.1), the confidence-based pseudo-labeling threshold 𝜏
(Section 4.6.2), and the transfer path length (Section 4.6.3).

4.6.1 Amount of Labeled Data. Here we investigate the impact of

the amount of labeled data from the source domain. Figure 11 shows

the AARA of target domain prediction with different amounts of

labeled source domain data. The amounts range from 100% to 50%

with an interval of 10%.We observe that for paths in both categories,
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Figure 12: Target domain prediction AARA and TSR with

different pseudo-label confidence thresholds.

VMA shows similar trends. For paths in the category {O, S}, the
AARA of the target domain prediction decreases from 76.7% to

69.0%. For paths in the category {S,O}, their AARA varies from

75.5% to 68.2%. The results indicate that VMA is robust to amounts

of labeled source domain data – the reduction of AARA is less than

8% given the 50% reduction in the amount of labeled data.

4.6.2 Pseudo-Label Confidence Threshold. VMA controls the ‘qual-

ity’ of pseudo-labels by selecting predictions of high confidence via

class-level ranked thresholding. Therefore, the threshold value 𝜏
directly impacts the pseudo-labels reliability. We explore five differ-

ent levels of threshold values and depict the AARA and TSR over

two path categories {O, S} and {S,O} in Figure 12 (a). When the

threshold value 𝜏 changes from 40% to 70%, the AARA of {O, S}
and {S,O} decrease by 2.4% and 3.3%, respectively. This is because

more erroneous pseudo-labels are included for training the suc-

ceeding model. When the threshold value 𝜏 changes from 40% to

10%, the AARA of {O, S} varies from 76.7% to 71.9%, and the TSR

drops from 100% to 88.5%. Similarly, for {S,O}, the AARA varies

from 75.5% to 70.0%, with the TSR dropping from 100% to 91.4%.

With the increase of the confidence threshold, the amount of the

pseudo-labeled data decreases, resulting in less training data for

succeeding model. In this way, the AARA of the target domain

prediction decreases. In the cases where some classes have a lim-

ited number of predictions, this increase of the threshold also may

cause miss class in the pseudo-label. As a result, we also observe a

decrease in the TSR.

4.6.3 Case Study: Intermediate Domain Availability and Transfer

Path Length. The availability of the intermediate domains directly

impacts the transfer paths’ length. With the increase of the trans-

fer path length, the negative impact of erroneous pseudo-labels

accumulates at each domain on the transfer path. We investigate

the robustness of transfer paths generated by VMA with a case

study by including an additional dataset of 𝑂3 in structure 𝑆3. We
compare two paths of different lengths between the source domain

[𝑂1, 𝑆1] and the target domain [𝑂3, 𝑆3]. When there are limited
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Figure 13: AARA of prediction on domains along the trans-

fer path. Comparison between VMA and two baselines 1)

modality-aware direct prediction and 2) direct prediction.

The labeled source domain D𝑆𝑜𝑢𝑟𝑐𝑒 = [𝑂1, 𝑆1].

available datasets from 𝑆1, VMA finds a transfer path with a length

of five relying on multiple 𝑆2 datasets D𝑆𝑜𝑢𝑟𝑐𝑒 = [𝑂1, 𝑆1] → D2 =
[𝑂1, 𝑆2] → D3 = [𝑂2, 𝑆2] → D4 = [𝑂3, 𝑆2] → D5 = [𝑂3, 𝑆3]. We
depict the AARA of each domain in Figure 13. We observe that VMA

is robust with domains on the transfer path, and achieves AARA of

81.7%, 76.5%, 73.0%, and 71.8% for the investigated domains, respec-

tively. We adopt the two learning scheme baselines, as introduced

in Section 4.4.3 and 4.4.4. The direct prediction baseline achieves

AARA of 56.8%, 55.3%, 58.7%, and 56.4% over these investigated

domains, which shows 14.3% to 24.9% lower accuracy than our

VMA. The modality-aware direct prediction shows a comparable

performance at D2, but yields 10.7% more error at D5. We com-

pare this result with a shorter transfer path when more datasets,

e.g., [𝑂3, 𝑆1], from 𝑆1 are available D𝑆𝑜𝑢𝑟𝑐𝑒 = [𝑂1, 𝑆1] → D2 =
[𝑂3, 𝑆1] → D3 = [𝑂3, 𝑆3]. The shorter path achieves a slightly
higher AARA of 73.4% than the longer path. This higher result

comes from less error accumulation.

5 RELATEDWORK

5.1 Occupant Activity Recognition

There are various sensing modalities have been explored for oc-

cupant activity recognition, including device-free (e.g., RF [37],

camera [17], and vibration [13]) and wearable sensing[1]. Device-

free sensing usually captures human-induced signal in the space.

For example, human body’s interference to the WiFi signals. These

systems often focus on coarse-grained activities only, due to their

limited temporal resolution. On the other hand, wearable sensors

continuously captures human body’s motion, hence they can moni-

tor fine-grained activities. However, due to the lack of spatial infor-

mation, these systems are often limited in recognizing fine-grained

motions of specific contexts, e.g., kitchen activities [21]. Comparing

to these prior works, our system combines infrastructural and wear-

able sensing to achieve fine-grained full-home activity recognition.

5.2 Multimodal Data Fusion

Multimodal sensing systems often leverage the complementary

information provided by different sensing modalities to achieve

accurate inference. Various techniques to fuse the information from

differentmodalities have been explored tomake the best use of these

complementary characteristics. The fusion is generally performed
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at two levels: early fusion and late fusion [12]. For the early fusion,

the features extracted from input data are first combined and then

sent as input to a model. Common early fusion approaches include

1) explicitly concatenating feature vectors from different modali-

ties [13] and 2) deep learning-based approaches [25], in which the

learning model fuses different modalities’ inputs implicitly.

On the other hand, for late fusion approaches, each modality

first conducts prediction independently, then the predictions are

combined using a fusion strategy, such as Bayesian inference-based

weighted fusion [8]. In our study, we adopt both early and late

fusion techniques to better leverage the complimentary properties

between multiple modalities, yet keep each modality’s insensitivity

on specific domain variance.

5.3 Model Transfer

The model transfer has been successfully applied in many appli-

cations such as natural language processing[18] and computer

vision[36] to ensure high learning accuracy with domain shift. Prior

works have investigated both shallow machine learning [15, 35]

and deep learning [28, 31] for model transfer. Shallow models often

focus on leveraging data’s statistical property to design the model

transfer algorithm, therefore, they can work with limited amount

of data. On the other hand, deep learning-based models often relay

on models’ feature extraction capability, e.g., latent space embed-

ding. However, large amount of data are required to train these

deep learning models. Those prior works have shown the effective-

ness of applying model transfer in occupant activity recognition,

however, these approaches are focusing on only single-factor of

domain variance, e.g., different human subject, different spatial de-

ployment. We focus on leveraging multiple sensing modalities and

their sensitivity properties in handling different single-factor do-

main variances and present a framework conducts modality-aware

model transfer.

6 DISCUSSION

Scalability of The Framework. VMA is designed as a model trans-

fer framework and can be adjusted given the number of target

classes, sensing modalities, and available computational resources.

In this work, we select 10 classes of fine-grained activities in

three categories (studying, cooking, and housekeeping) to represent

daily activities. The difficulty of activity recognition may increase

when the number of targeting prediction classes increases. VMA

has the flexibility to replace the activity recognition model and

fit into the problem with more activity classes. In addition, since

the framework takes spatial information into account, we believe

scaling up to more activities over different functioning areas would

have a limited impact on the model accuracy.

In addition, VMA is flexible with sensing modalities. We select

structure vibration and wearable IMU in this study because of

their complementary properties in activity recognition [13]. More

sensing modalities can be included and these modalities would

bringmore transfer path options. For example, a camera can provide

information when the ambient vibration noise is loud (e.g., robot

vacuum cleaner passing by,) while the vibration sensor can provide

information when lights are off.

Besides, given the available computation resource (e.g., edge

devices, cloud cluster), the model complexity can be adjusted to

fit into the resource. The model in this study adopts the ELU as

the activation function to skip the computational complexity from

batch normalization. This reduces computational load for edge

device deployment. The model complexity can also be increased

with a deeper and bigger network design to be deployed in clouds

for more complex activity recognition tasks. In the future, we will

investigate the scalability of framework given different activities

classes, sensing modalities and available computation resources.

Robustness to Overlapping Signals. VMA is designed to conduct

model transfer on activity-induced sensory signals. However, the

signal of interest (SoI) can be noisy due to the overlapping of multi-

ple person’s activities or strong ambient noise. The extraction of

SoI impacts the IoT sensing system performance.

In this work, we assume that there are not any forms of activity

overlapping from multiple people. When there are multiple peo-

ple within the same area, their activities may lead to overlapping

structural vibration signals. In addition, one person may conduct

multiple activities simultaneously, e.g., walking while talking or

walking while cleaning. This may lead to multiple labels for the

same period of time, and makes it difficult for wearables to cap-

ture. Strong ambient noises (e.g., machinery, appliance, outdoor

traffics, nearby construction) would also introduce non-activity vi-

bration events overlapping with occupant activities signals, hence

negatively affecting the model transfer.

The key to improve the framework robustness to overlapping is

isolating SoI from the raw data streams. Wearable sensors monitor

each user independently, without being interfered with by other

person’s activity or ambient noise sources. This characteristic can

be leveraged to assist co-located infrastructural sensors in splitting

overlapped signals and identifying vibration sources. We plan to

investigate splitting overlapped signals by identifying the vibration

source and further improving the framework’s robustness.

Domains with Different Activities and/or Bias. In this work, we

focus on model transfer over the same set of activities with an even

distribution. However, in real-world systems, different datasets

may contain a different set of activities. For example, there is only

a subset of target activities are observed in different domains. Also,

the class distribution may be biased, some classes may have more

data than others. In the future, we plan to explore these challenges.

We plan to incorporate techniques like meta-learning and zero-

shot learning, which have shown promising capability of learning

new information without prior knowledge, with our model transfer

framework. Also, we will investigate deep causal learning on the

bias reduction for our model transfer framework.

7 CONCLUSION

In this paper, we present VMA, a model transfer framework for

multimodal datasets with multi-factor domain variance. VMA first

characterizes impact factors of the datasets’ domain variance. For

datasets of multi-factor domain variance, VMA decouples it to a

transfer path of multiple single-factor domain variances. Next, VMA

conducts modality-aware multi-task learning on pairs of domains

along the transfer path till the target domain is predicted. We apply
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VMA to the fine-grained activity recognition application with a

multimodal IoT sensing system of structural vibration and wear-

able IMU. We conduct real-world experiments to evaluate the pro-

posed framework and algorithm over multiple residential building

structures and multiple occupants. VMA achieves a model transfer

accuracy up to 76.1% on the target domain with multi-factor do-

main variance, which is 1.9× and 1.6× error reduction compared to

baseline learning schemes.
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