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ABSTRACT
Federated Learning (FL) is an emerging learning paradigm that
enables the collaborative learning of different nodes without ex-
posing the raw data. However, a critical challenge faced by the
current federated learning algorithms in real-world applications is
the long-tailed data distribution, i.e., in both local and global views,
the numbers of classes are often highly imbalanced. This would lead
to poor model accuracy on some rare but vital classes, e.g., those
related to safety in health and autonomous driving applications.
In this paper, we propose BalanceFL, a federated learning frame-
work that can robustly learn both common and rare classes from
a long-tailed real-world dataset, addressing both the global and
local data imbalance at the same time. Specifically, instead of letting
nodes upload a class-drifted model trained on imbalanced private
data, we design a novel local update scheme that rectifies the class
imbalance, forcing the local model to behave as if it were trained
on ideal uniform distributed data. To evaluate the performance of
BalanceFL, we first adapt two public datasets to the long-tailed
federated learning setting, and then collect a real-life IMU dataset
for action recognition, which includes more than 10,000 data sam-
ples and naturally exhibits the global long tail effect and the local
imbalance. On all of these three datasets, BalanceFL outperforms
state-of-the-art federated learning approaches by a large margin.
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1 INTRODUCTION
Federated learning is a promising approach for Internet of Things
(IoT) as it enables model training on decentralized data residing
on local nodes. It not only unleashes the compute power of the
edge but also takes advantage of the distributed data for collabora-
tive learning. A typical federated learning approach (e.g., FedAvg)
[31] aggregates the model weights from all nodes iteratively until
converging to a global model. As only model weights are required
to upload, it avoids exposing users’ raw data during the learning
process. However, existing federated algorithms face several major
challenges in real-world IoT applications, as illustrated in Figure 1.

The first challenge is the global data imbalance. The overall data,
i.e., the union of all distributed data, may follow a long-tailed dis-
tribution. Specifically, there may exist both head classes attaching
with a large amount of data, and tail classes that are rare and only
have a small number of data samples. The direct impact of class
imbalance is a drift to head classes and the performance drop of
classification accuracy on minority tail classes. However, those
minority classes may play a much more important role beyond
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Figure 1: The illustration of two practical challenges: global
data imbalance and local data imbalance. Our goal is to max-
imize the overall accuracy of all classes with the imbalanced
training data under the federated setting.

their proportion in data, especially in critical applications related to
safety or health, such as autonomous driving and medical diagno-
sis [2, 38]. Recently, a number of centralized learning approaches
have been proposed to address this long-tailed distribution problem
[3, 8, 18, 32, 45]. A common approach is to add a compensation term
to either the loss or the prediction results for the tail classes, based
on the training data distribution. However, such an approach is not
applicable in federated learning because only weights or gradients
of the model can be exchanged between nodes and the server, due
to the privacy concern. As a result, the global data distribution is
unobservable for both nodes and the server, making the adoption of
these centralized re-balancing approaches infeasible. Until recently,
only few studies investigated the long-tailed federated learning
problem. Astraea [11] addresses this challenge by requiring nodes
to upload the number of local samples of each class to the server.
However, it exposes a latent backdoor to attackers and can cause
privacy leakage. In [48], the global distribution is inferred by observ-
ing the gradient changes corresponding to every class. However, it
requires an additional validation dataset on the server, and relies
on the strong assumption that there exists a correlation between
gradient magnitude and sample quantity.

In addition to global imbalance, another major challenge is local
data imbalance, i.e., the sample number of every class on a node
is highly uneven. An extreme case of the local data imbalance is
the class missing, where some classes are not present at all while
the node is still required to recognize them. The class missing issue
is particularly likely to occur for those global tail classes, as tail
classes are rare in terms of both quantity and occurrence frequency.
There may also exist cases where a certain class is the majority class
on some nodes but the minority class on other nodes, which results
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in the inter-node data heterogeneity, also known as the non-iid
(independent identically distributed) data. An emerging paradigm
to address the data heterogeneity is the personalized federated
learning [43, 44, 55]. However, these approaches do not consider
the global data imbalance or the distribution mismatch between
the local training data and the test data.

In this paper, we propose BalanceFL, a novel long-tail feder-
ated learning framework that can handle the global and local data
imbalance simultaneously in a unified manner. Instead of letting
nodes upload biased local models trained on imbalanced private
data,we design a new local self-balancing scheme, which forces the
uploaded local model to behave as if it were trained from a uniform
distribution dataset. This design is motivated by two key insights.
First, from the perspective of data, as long as the “pseudo local
data” was balanced for every node, the overall global data would
also be “pseudo-balanced”, which avoids the difficulty in estimat-
ing the global data distribution, and would allow the algorithms
designed for global balanced data (e.g., FedAvg) to perform well. In
Section 4.1, we provide a theoretical foundation for this intuition.
Second, by applying the local self-balancing, the side-effect of data
heterogeneity among nodes can be alleviated, since all local models
are regularized to resemble the model trained from an evenly dis-
tributed dataset, leading to faster convergence. In order to achieve
the above self-balancing, we disassemble the issue of local data im-
balance into two sub-problems: class missing and the data amount
imbalance on those classes that have data. In BalanceFL, we address
them respectively by two techniques: knowledge inheritance and
inter-class balancing. Different from existing works [11, 48], our
approach works with existing federated learning settings, without
imposing any additional requirements such as the uploading of
local data distribution or an additional dataset on the server.

To validate the performance of BalanceFL, we first evaluate it
on two constructed datasets, the long-tailed version of CIFAR10
[24] and Google Speech Commands [51], whose modalities are
image and audio, respectively. In addition, we collect a real-life
IMU dataset for action recognition, in which we observe a natural
long tail effect. Results show that BalanceFL largely outperforms
other state-of-the-art federated learning algorithms. Specifically, it
improves the overall accuracy of FedAvg [31] by up to 56.7% , 39.5%,
18.5% on three datasets, respectively. Moreover, it achieves 75%,
33.6%, 68.6% less communication overhead compared with FedAvg.

In summary, we conclude our contributions as follows:

• We formally identify two types of class imbalance in feder-
ated learning: local imbalance and global imbalance. We use
a case study to illustrate the issue and present theoretical
foundation to motivate our approach.

• We propose BalanceFL, a novel long-tail federated learning
framework addressing both global and local imbalance. To
the best of our knowledge, this is the first framework that
enables federated learning algorithms to achieve satisfactory
performance under long-tailed datasets.

• We collect a real-life IMU dataset for action recognition,
which includes over 10,000 data samples. It naturally exhibits
a global long tail effect and local imbalance. The dataset and

our implementation of BalanceFL as well as six baselines are
made available to the community.1

• We conduct extensive experiments on three datasets of differ-
ent modalities. All experiments validate the superior perfor-
mance of BalanceFL over existing state-of-the-art federated
learning algorithms.

The rest of this paper is organized as follows. Section 2 intro-
duces the related work. Section 3 presents the background. Sec-
tion 4 presents a motivation study. Section 5 describes the system
overview and the design. In the next, we show how we generate the
dataset in Section 6, and evaluate BalanceFL in Section 7. Finally,
in Section 8, we conclude the paper and discuss the future works.

2 RELATEDWORK
2.1 Personalized Federated Learning
An emerging paradigm in federated learning is personalized feder-
ated learning [44], which has two key features. First, by leveraging
a corpus of decentralized data residing on different devices, the per-
sonalized federated learning alleviates the over-fitting of the local
training and improves the generalization ability. Second, compared
with FedAvg, personalized federated learning can better handle
the data heterogeneity among nodes. Specifically, in [55], federated
learning is combined with the meta-learning algorithmMAML [13],
enabling the global learned model to quickly adapt to the local data
for personalization. Dinh et al. [43] propose to use Moreau envelops
as the regularized loss function to decouple the personalized model
optimization from the global model learning. Other studies [33, 40]
resort to multi-task learning, which treat the model personalization
for every node as a different task and perform the joint optimiza-
tion. There are also works associating personalized models with the
global model. Chen et al. [4, 53] show that fine-tuning the global
model learned from a generic federated learning algorithm such
as FedAvg already achieves satisfactory personalized performance.
GRP-FED [20] jointly utilizes a global model that is obtained from
adaptive aggregation to ensure fairness among clients, and local
models to customize each client. Although personalized federated
learning can handle data heterogeneity by adapting to each client’s
local data, it assumes certain similarity between the training and
test data distributions and cannot address the global imbalance. In
our setting, the local training data is non-ideal and imbalanced,
where there may be only few or even no samples on some classes
that are of interest. This puts forward demands on new algorithms
that are specifically designed for the nature of imbalance.

2.2 Long-Tail Learning
As a result of the prevalence of the imbalanced data distribution
in real-world applications, long-tail learning has attracted signif-
icant attention. Several solutions have been proposed, including
re-sampling, loss re-weighting and knowledge transfer from head
to tail classes. Re-sampling based approaches over-sample the mi-
nority classes or under-sample the majority classes to calibrate
the imbalanced distribution [1, 10]. Loss re-weighting based ap-
proaches add a class-specific compensation term to the original loss
function to re-balance the contribution of every class [8, 18, 36, 45]

1https://github.com/sxontheway/BalanceFL
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Other works aim to enhance the representation learning of the
tail classes by transferring knowledge from head classes [6, 29, 49].
However, these methods usually require a specific design of the
neural network structure, which restricts the generalizability. Apart
from above approaches, there are also several recent works [22, 56]
that aim to improve the long-tail prediction by decoupling the
representation learning and the training of the classifier into two
stages. Although long-tail learning has been widely studied in the
centralized setting, it is difficult to directly adapt those solutions
to federated setting, because the global training distribution is un-
known and can be significantly different from the local training
distribution on each client.

3 BACKGROUND
3.1 Application Scenarios
BalanceFL is applicable to a wide range of scenarios where dis-
tributed nodes intend to collaboratively learn a deep learningmodel,
while the overall data exhibits skewed distributions, rather than
the ideal uniform distributions over each class. The Long tail is a
very common phenomenon in an open world. Zipf’s law [35] in
linguistics indicates that a few words are used a lot while a lot of
words are used infrequently. Similarly, the frequency distributions
of categories of both visual and the biological data also exhibit the
long tail effect [19, 46].

Representative applications of BalanceFL include smart home
and healthcare monitoring systems. These systems are typically
designed to recognize a variety of users’ behaviors including speech
commands and indoor/outdoor activities, usingwearable ormounted
sensors [37, 47]. However, since many events only occur sporadi-
cally, an individual user may even not have any samples of certain
classes, let alone train a deep learning model that can recognize
them. A straightforward solution to tackle this local-side class miss-
ing issue is to aggregate data from all users. However, the sensing
data for healthcare and smart homes are privacy-sensitive and
hence cannot be shared or uploaded. In addition, even if all local
data are aggregated together into a global dataset, it may still suffer
a long-tail effect. For example, in smart homes scenarios, common
activities such as sitting, lying, and walking account for the major-
ity of data for all families. Samples of classes such as falling down or
stomping, which are vital to human safety or are important digital
biomarkers for chronic diseases diagnosis such as early Alzheimer’s
[37], are rare for most families.

Basically, there exist two federated learning settings [21]. In the
cross-device setting, there is usually a huge number of clients where
each client could be stateless and is likely to appear only once during
the whole training. In cross-silo federated learning, the number
of silos is limited, and each silo (e.g., a hospital) can participate in
the training continuously. BalanceFL mainly focuses on addressing
the global class imbalance issue when the number of clients is
relatively small and each client can participate in the training for
multiple times, which is similar to the cross-silo setting. However,
we also note that BalanceFL can work under partial participation
(see Section 7.4), which is one of the critical characteristics of cross-
device federated learning.

3.2 Problem Formulation
Local and Global Data Distribution. Assume the final objective
of federated learning is to train a global model, which is able to
recognize 𝐶 classes, and the total number of nodes involved in
federated learning is 𝑁 . We use𝑚𝑖

𝑗
to denote the number of sample

of class 𝑗 owned by node 𝑖 , where 𝑖 ∈ {1, .., 𝑁 } and 𝑗 ∈ {1, ...,𝐶}.2
Then we can denote the (unnormalized) local data distribution on
node 𝑖 by: 𝑑𝑖

𝑙𝑜𝑐𝑎𝑙
= {𝑚𝑖1 ...,𝑚

𝑖
𝐶
} ∈ R𝐶 . The global data distribution

can be obtained by adding the numbers of samples of each class

on each node together: 𝑑𝑔𝑙𝑜𝑏𝑎𝑙 = {
𝑁∑
𝑖=1

𝑚𝑖1, ...,
𝑁∑
𝑖=1

𝑚𝑖
𝐶
} ∈ R𝐶 . Locally,

when some elements in𝑑𝑖
𝑙𝑜𝑐𝑎𝑙

are zero, the class missing issue occurs
on node 𝑖 . From the global perspective, the global imbalance happens
when elements in 𝑑𝑔𝑙𝑜𝑏𝑎𝑙 are not equal to each other. Specifically,
we can define the global imbalance ratio as the quotient between
the total sample number of the majority class across all nodes and
that of the minority class, i.e., Γ = 𝑚𝑎𝑥 (𝑑𝑔𝑙𝑜𝑏𝑎𝑙 )/𝑚𝑖𝑛(𝑑𝑔𝑙𝑜𝑏𝑎𝑙 ). Γ
will be used in Section 6.1.1 for the experimental dataset generation.
Classification Model.Without loss of generality, given an input
sample 𝑥 ∈ X, a feature extractor 𝑓𝜃 embeds it into a 𝑑 dimension
vector h = 𝑓𝜃 (𝑥) ∈ R𝑑 , where 𝜃 denotes the parameters of 𝑓 . Then
from h, a classifier (including the final softmax layer) parameterized
by 𝑤 regresses the probability of every classes: q = 𝑔𝑤 (h) ∈ R𝐶 .
For simplicity, we denote the whole model by 𝐹 , where 𝐹 (𝑥) = q.
Optimization Objective. Leveraging federated learning, our ob-
jective is to obtain a global model 𝐹 , which includes both the feature
extractor and the classifier, to achieve the best overall prediction ac-
curacy among all𝐶 classes. Specifically, the training is conducted on
the distributed data following both the local distribution {𝑑𝑖

𝑙𝑜𝑐𝑎𝑙
}𝑁
𝑖=1

and the global distribution 𝑑𝑔𝑙𝑜𝑏𝑎𝑙 . During the test, the final objec-

tive is to maximize
𝐶∑
𝑖=1

𝑎𝑐𝑐𝑖/𝐶 , where every class is regarded as of

equal importance.

4 MOTIVATION
In this section, we first present a theoretical analysis which provides
the theoretical foundation for our approach. In the next, we present
an empirical case study that sheds key insights into the design of
BalanceFL.

4.1 Theoretical Foundation
Our goal is to obtain a balanced global model under the imbalanced,
long-tailed dataset in the setting of federated learning. The unique
challenge caused by federated learning is the unknown global dis-
tribution, as only the model weight or the gradient is allowed to
be exchanged between nodes and the server. An intuitive solution
to address this challenge is to convert the task of global balancing
to the node-side self-balancing. In the following, we present the
theoretical analysis for this intuition.

Here, we use FedAvg [31] as the aggregation function, which
has been widely used in many applications, such as next-word
prediction and visual object detection. FedAvg is also shown to

2For clarity, in the following of this paper, we will use superscript 𝑖 to refer to the
node index 𝑖 , and use subscript to refer to the class index 𝑗 .
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(a) From top to bottom, two figures show the accuracy of models under
non-iid and iid settings as federated learning goes on. Orange diamonds
represent the global model after aggregation. Red and black triangles
represent the model on nodes A and B just after the local update. The
top figure shows a zigzag behavior, because the model on node B quickly
forgets the first 5 classes (in ordinal) during the local training.

Global Model

Global Model

Client A 
Local Train

Client B 
Local Train

Global Model

Client A 
Local Train

Client A 
Local Train

Client B 
Local Train

Client B 
Local Train

Global Model

Round 0

Round 1

(b) An illustration of the
model evolution roadmap.
Different colors here corre-
spond to those used in the
legend of Figure 2(a).

(c) The solid curves represent the divergence (2-norm) of the classifier’s
weight of two models under two settings. The dotted curves show the
training accuracy. We can see that the class missing issue enlarges the
divergence, slows down the training convergence and decrease the
training accuracy.

Figure 2: A motivation study to show how class missing issue can impede the knowledge accumulation in federated learning.

have several desirable theoretical properties such as the conver-
gence guarantee under strongly convex and smooth problems [27].
Consistent with works [41, 52], there are three standard assump-

tions: (1) In a 𝑁 client system, the global function is 𝐹 = 1
𝑁

𝑁∑
𝑖
𝑝𝑖𝐹𝑖 ,

and the function of each client 𝐹1, 𝐹2,..., 𝐹𝑁 are 𝐿-smooth3 and 𝜇-
strongly convex4. (2) In round 𝑡 , let 𝜉𝑘𝑡 be the data sampled from
the 𝑘-th node’s local data uniformly at random for 𝑘 = 1, ..., 𝑁 ,
where 𝑡 = 1, ...,𝑇 − 1 and𝑇 is the number of total iterations. (3) The
variance of stochastic gradients and the expected squared norm of
stochastic gradients in each device is bounded as:

E∥∇𝐹𝑘 (w𝑘
𝑡 , 𝜉

𝑘
𝑡 ) − 𝐹𝑘 (w𝑘

𝑡 ) ∥2 ≤ 𝜎2
𝑘
, E∥∇𝐹𝑘 (w𝑘

𝑡 , 𝜉
𝑘
𝑡 ) ∥2 ≤ 𝐺2 (1)

where w𝑘𝑡 denotes the local model weights and 𝜎𝑘 is the variance
in client 𝑘 .𝐺 is the second moment bound. Then we can obtain the
following equation5, which motivates us to move the task of global
balancing into the self-balancing of each client:

E[𝐹 (w𝑇 )] − 𝐹 ∗ ≤ 𝐵 (2)

where w𝑇 is the returned global model weights after 𝑇 iterations.
𝐹 ∗ is the optimal 𝐹 . Specifically, Equation 2 shows the error of
FedAvg has a loose upper bound 𝐵, which is negatively correlated
with the number of iteration rounds 𝑇 [27]. Concretely, if the data
are iid, the value of E(𝐹 ) − 𝐹 ∗ obviously trends to zero. Although
in practical scenarios, the data distribution can be uneven at a node
and non-iid among nodes, we can still force the local model close
to the ideal one trained under the uniformly distributed data to
satisfy the assumption of Equation 2, making the learned global
model close to the optimal. Therefore, our goal is transformed to

3For all v and w, 𝐹𝑘 (v) − 𝐹𝑘 (w) ≤ (v −w)𝑇 ∇𝐹𝑘 (w) + 𝐿
2 ∥v −w∥22

4For all v and w, 𝐹𝑘 (v) − 𝐹𝑘 (w) ≥ (v −w)𝑇 ∇𝐹𝑘 (w) + 𝜇

2 ∥v −w∥225The full version and the proof can be referred to Theorem 1 and Appendix A.3.
of [27]

how to obtain self-balanced local models, whose behavior should
be similar to those trained on a uniform distributed dataset.

4.2 A Case Study
There are two challenges to obtain the aforementioned self-balanced
local models. The first challenge is caused by the class missing is-
sue defined in Section 3.2. Specifically, when a class is missing,
a node has to resort to the federated learning to gain the ability
to recognize this class. On the other hand, the federated learning
algorithm also in turn relies on the participation of these nodes,
although the data from every node alone may not play a critical role.
Here, we can regard federated learning as a process of knowledge
accumulation, where knowledge is extracted by local node updates
and then accumulated by the server during the aggregation step.
However, deep neural networks are known to be oblivious to pre-
viously learned knowledge, also termed as catastrophic forgetting
[15]. For example, when training with a conventional cross-entropy
loss using only the data of new classes, the model is prone to rapidly
forget its knowledge on old classes. Next, we use a case study to
show how the node-side class missing issue can cause catastrophic
forgetting and thus impeding the knowledge accumulation of the
federated learning. Specifically, we distribute the CIFAR10 dataset
onto two nodes. Under the iid setting, samples of each class are
equally distributed on two nodes. Under the non-iid setting, where
the class missing issue occurs, the node A only has samples of the
first 5 classes and node B the last 5 classes. The local epoch in this
experiment is set to 5. From figure 2(a), we can see that with only
few epochs of local training on the local data which misses some
classes, the model will lose the recognition ability on those absent
classes, as shown by the transition from orange diamonds to the
black triangles. In addition, from Figure 2(c), we can observe that
due to the catastrophic forgetting and local over-fitting, the model
divergence between two nodes is enlarged, making the averaged
model substantially biased from the optimal one.
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Apart from the above knowledge forgetting problem caused by
the absent classes, the differences of absolute sample numbers on
those activated classes themselves lead to the imbalanced learning
problem.6 Specifically, when a node’s local data only includes few
samples on a class, the node itself cannot well learn the represen-
tation of this class [19], let alone share the useful knowledge that
can be leveraged by other nodes through federated learning.

We note that the above two challenges have an implicit cor-
relation in the federated learning setting. The data imbalance on
activated classes impedes the knowledge extraction on local tail
classes, while the class missing issue hinders the knowledge accu-
mulation. As validated in the experiment in Table 4, leaving either
of them unaddressed can hugely degrade the performance of the
federated learning algorithm.

5 DESIGN OF BALANCEFL
5.1 Overview
Figure 3 shows the overall system architecture of BalanceFL. Each
communication round consists of the following steps: (1) Nodes
check-in with the federated server and receive the global model
from the server. (2) Using the received global model, nodes perform
on-device model training. (3) Once the local training is finished,
nodes upload the updated model. (4) The server performs the model
aggregation. Step (1), (3) are consistent with conventional federated
learning approaches, while in step (2), BalanceFL features a novel
node-side updating scheme that enables every node to automati-
cally calibrate its local model as if it were trained from a uniform
distribution dataset, even though the dataset itself is imbalanced
in reality. In addition, our framework is agnostic to the aggrega-
tion function in step (4), thus is not restricted to the conventional
aggregation method FedAvg [31].

As analyzed in Section 4.2, class missing and class imbalance of
activated classes are two major impediments to the self-balancing
in step (2). First, to tackle the class missing issue, we let the local
model inherit the knowledge of missing classes from the down-
loaded global model via a distillation loss, so as to preserve the
responses on those classes to prevent the catastrophic forgetting.
Second, to tackle the class imbalance of activated classes, we in-
troduce three techniques: balanced-sampling, feature-level data
augmentation and smooth regularization. The balanced-sampling
increases the probability of data from tail classes to be chosen
to equilibrate the response of all classes during the training. The
feature-level data augmentation implicitly enriches the diversity of
classes with a small number of samples to avoid the over-fitting due
to over-sampling. Compared with existing data-level augmentation
[7, 54], this approach can be applied to arbitrary modalities. The
smooth regularization penalizes the over-confident predictions for
better balancing and representation learning. The above 4 steps
will run iteratively before the convergence. Through node-side self-
balancing, we calibrate the arbitrary local distribution to the same
"pseudo-uniform" one, enabling BalanceFL to work with a low node
participating ratio, which will be discussed in Section 7.4.

6In the following of this paper, the activated classes refer to the classes that a
node has data on, and the absent classes refer to those classes that the node has no
data.

5.2 Knowledge Inheritance
Although the catastrophic forgetting mentioned in Section 4.2 is a
well-known drawback of deep neural networks, few works consider
their side-effect in federated learning, especially when combined
with the long tail learning. The solution in [39] uses the elastic
weight consolidation (EWC) [23] to mitigate the non-iid issue by
imposing a restriction to the changes of the weights. However, it
does not consider the forgetting in a class-wise manner. In addition,
previous literature shows that distillation-based methods such as
learning without forgetting (LwF) [28] achieve better performance
than weight regularization methods [30] such as EWC. In this paper,
we follow the idea of LwF. Our insight here is that as federated
learning proceeds, the server-side global model more or less has
accumulated some knowledge on all classes, thus can be used as
a teacher to remind the node-side local model of the knowledge
on those absent classes. Therefore, during the local update, we
encourage nodes to make contribution to classes they have data
on (i.e., the activated classes), while discouraging the changes on
predictions of absent classes to inherit the teacher’s knowledge. To
this end, we jointly optimize the distillation loss on absent classes as
well as a regularized version of cross entropy loss (will be introduced
in Section 5.3.3) on activated classes. In particular, we use C𝑖𝑝𝑜𝑠 ,
C𝑖𝑛𝑒𝑔 to denote the set of activated classes and absent classes of node
𝑖 , respectively. For each input sample 𝑥 , the model will generate
a 𝐶 dimension prediction: 𝐹 (𝑥) = q = [𝑞1, ..., 𝑞𝐶 ] ∈ R𝐶 , where
𝐶 = |C𝑖𝑝𝑜𝑠 | + |C𝑖𝑛𝑒𝑔 |. Subsequently, the knowledge distillation loss
for absent classes on node 𝑖 can be given as:

𝐿𝑖𝐾𝐼 (q̂
′, q′) = −

∑︁
𝑗 ∈C𝑖𝑛𝑒𝑔

𝑞′𝑗 log𝑞
′
𝑗 (3)

where q̂′ = [𝑞′1, ..., 𝑞
′
𝐶
] and q′ = [𝑞′1, ..., 𝑞

′
𝐶
] are modified version

of the predicted probabilities (after the softmax layer) from the
teacher model and the student model, respectively. Their elements
are defined as:

𝑞′𝑗 =
𝑞
1/𝑇
𝑗

𝐶∑
𝑗=1

𝑞
1/𝑇
𝑗

, 𝑞′𝑗 =
𝑞
1/𝑇
𝑗

𝐶∑
𝑗=1

𝑞
1/𝑇
𝑗

(4)

where 𝑇 is the distillation temperature. In [17], a 𝑇 greater than 1
is suggested, which amplifies the originally small probabilities and
soften the logits from the teacher (compared with the hard one-hot
coding). Note that for preventing the catastrophic forgetting, the
loss in Equation 3 only involves part of the elements of q (i.e., ele-
ments corresponding to absent classes) , while the loss for elements
of activated classes C𝑖𝑝𝑜𝑠 will be elaborated in Section 5.3.3.

5.3 Inter-Class Balancing
In Section 5.2, the knowledge inheritance is introduced to address
the class missing issue. However, for those activated classes, the
data distribution is also imbalanced. In the following, we introduce
three techniques to address this local inter-class imbalance.

5.3.1 Class Balanced Sampling. Without loss of generality, suppose
node 𝑖 has 𝑘 activated classes: C𝑖𝑝𝑜𝑠 = {𝑐1, ..., 𝑐𝑘 }, the probability of
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Figure 3: System architecture of BalanceFL. We achieve the self-balancing during the on-device model update in two ways. For
the absent class (colored by gray), we apply the knowledge inheritance scheme to retain the knowledge from the global model.
For classes that have some samples (denoted by other colors), we introduce an inter-class balancing scheme to address the
imbalanced distribution issue.

sampling a data from class 𝑗 can be defined as 𝑝 𝑗 :

𝑝𝑖
𝑠𝑎𝑚𝑝𝑙𝑒,𝑗

=
(𝑚𝑖

𝑗
)𝛾

𝑐𝑘∑
𝑗=𝑐1

(𝑚𝑖
𝑗
)𝛾

(5)

where 𝑚 𝑗
𝑗
is sample amount defined in Section 3.2, and 𝛾 is the

exponential number which can determine the sampling strategy.
When 𝛾 is set to 1, Equation 5 indicates the instance-balanced

sampling, which has been shown to be sub-optimal for imbalanced
datasets as the gradients on few-shot classes might be overwhelmed
by other classes [50], leading to unsatisfactory accuracy. In order
to amplify the response of classes that have few samples, we adopt
the class-balanced sampling, where 𝛾 is set to 0. In this way, we
equilibrate the possibility that every class to be selected to 1/𝑘 . One
can also regard this as a two-stage sampling strategy, where we
first uniformly choose a class from a set of classes C𝑖𝑝𝑜𝑠 , and then
pick a sample from that class uniformly.

5.3.2 Feature-Level Data Augmentation. In the above class-balanced
sampling procedure, those classes with fewer samples are manually
assigned with a higher probability to be selected compared to their
original occurrence frequency. The side-effect of this over-sampling
strategy is that some samples are repeated many times in a batch of
data, resulting in the over-fitting issue. Data augmentation is known
as an effective tool to enrich the diversity of data while avoiding the
over-fitting. Typically, the data-level augmentation is performed
by applying a wide array of domain-specific transformations to
the input data, where domain expertise is required to design those
transformations and to ensure that the newly synthesized data are
valid. For modalities such as RGB images, there have been abundant
data-level augmentation techniques [7]. However, considering that
there exist a large number of sensing modalities in IoT applications
and each modality requires a unique data augmentation technique,

the generality and usability of the data-level augmentation is hence
largely restricted. Motivated by [9], we circumvent the augmen-
tation on input data by adopting the feature-space augmentation,
which is domain-agnostic and can be applied to arbitrary modalities.
Our main idea is to add a perturbation to a portion of duplicated
feature vectors (due to the over-sampling) to expand the span of
the feature cloud, as shown in Figure 4. Specifically, the degree of
the perturbation should be first determined. We propose to transfer
the overall variance of all classes to expand the feature space for
those few-sample classes. We formulate the variance for node 𝑖 as:

Σ𝑖 =

𝑐𝑘∑
𝑗=𝑐1

𝑚𝑖
𝑗
Σ𝑖
𝑗

𝑐𝑘∑
𝑗=𝑐1

𝑚𝑖
𝑗

(6)

where the definition of𝑚𝑖
𝑗
is consistent with that in Equation 5, and

Σ𝑖
𝑗
is the co-variance matrix of feature vectors of class 𝑗 , which is

with size ofR𝑑×𝑑 , where𝑑 is the feature vector dimension defined in
Section 3.2. Subsequently, a 𝑑 dimensional perturbation sampled by
the multivariate Gaussian distribution 𝑁 (0, Σ𝑖 ) is added to original
feature vector. The magnitude of Σ𝑖 determines the degree of the
perturbation.

In addition, we note that the likelihood of applying the pertur-
bation for every class should be different. In particular, for node
𝑖 , we denote the data amount of the class with most samples by
𝑚𝑖𝑚𝑎𝑥 = 𝑚𝑎𝑥 ( [𝑚𝑖𝑐1 ...,𝑚

𝑖
𝑐𝑘
]). Through balanced sampling, where

the amount of samples of every class can be regarded being aligned
to𝑚𝑖𝑚𝑎𝑥 , every sample in class 𝑐 𝑗 in average is over-sampled by
𝑚𝑖

𝑚𝑎𝑥−𝑚𝑖
𝑐 𝑗

𝑚𝑖
𝑐 𝑗

times. Those classes with fewer samples suffer a heav-

ier repeated sampling, and therefore should be augmented with a
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Overall Variance

Feature-Space 
Augmentation

Figure 4: Illustration of the feature-space augmentation. For
the class colored by brown, due to the insufficiency of the
samples, the occupied feature space is too small to push other
classes away, leading to the failure of a robust representation
learning. We expand its occupied feature space using the
overall variance obtained from all classes.

higher probability. To this end, we introduce a class-specific aug-
mentation probability, where for class 𝑐 𝑗 , the probability of a sample
to be augmented is:

𝑝𝑖𝑎𝑢𝑔,𝑐 𝑗 =
𝑚𝑖𝑚𝑎𝑥 −𝑚𝑖𝑐 𝑗

𝑚𝑖𝑚𝑎𝑥
(7)

5.3.3 Smooth Regularization for Multi-Class Classification. In Sec-
tion 5.2, for node 𝑖 , the loss for absent classes 𝑗 ∈ C𝑖𝑛𝑒𝑔 is presented,
which is designed to prevent the local model from forgetting the
shared global knowledge on those classes. Moreover, to endow the
model the capability of discrimination on different classes, a classi-
fication loss should also be applied to activated classes 𝑗 ∈ C𝑖𝑝𝑜𝑠 . A
conventional loss function for multi-class classification is the cross
entropy (CE) loss, which can be defined as:

𝐿𝑖𝐶𝐸 (y, q) = −
∑︁

𝑗 ∈C𝑖𝑝𝑜𝑠

𝑦 𝑗 log𝑞 𝑗 (8)

where y = [𝑦1, ..., 𝑦𝑐 ] ∈ R𝐶 is the one-hot ground truth label, and
q ∈ R𝐶 is the predicted probability from the model, as already
defined in Section 5.2. However, this CE loss may wrongly calibrate
the output probabilities (a.k.a. the confidence score for every class)
when the data distribution is highly biased, because the neural
network is guided to be over-confident, especially on those classes
that have more samples, which is often a symptom of overfitting
for unwanted noises [34, 42, 57].

To alleviate this problem, apart from the above traditional CE
loss, we introduce a smooth regularization term to penalize the
over-confidence behavior for better generalization, which is defined
as follows:

𝐿𝑖
𝑆𝑚𝑜𝑜𝑡ℎ

(q) =
∑︁

𝑗 ∈C𝑖𝑝𝑜𝑠

𝑞 𝑗 log𝑞 𝑗 (9)

This term is also known as negative entropy. By minimizing it, we
guide the neural network to output a smooth prediction, thus to
promote the balance of the representations among classes. Notably,
this term is specifically designed for addressing the federated im-
balanced learning problem, where the key difference between ours

and the standard one [34] is that ours is applied only to the acti-
vated classes C𝑖𝑝𝑜𝑠 . This can prevent the regularization term from
weakening the response on those absent classes, whose knowledge
is still retained by the knowledge inheritance scheme proposed in
Section 5.2.

5.4 Put All Things Together
We now summarize the methodology of BalanceFL from perspec-
tives of the data and the objective function.
Training Data. Given the imbalanced training data of each node,
we first apply a class-balanced sampling whose strategy is intro-
duced in Section 5.3.1. We then perform the feature-level data aug-
mentation to the feature vectors before the classifier with themagni-
tude determined by Equation 6, and with the class-wise probability
given by Equation 7.
Overall Objective Function. Putting Equation 3, 8, 9 together, the
overall optimization target of node 𝑖 during the local training is:

𝐿𝑖 (y, q, q̂) = 𝐿𝑖𝐾𝐼 (q̂
′, q′) + 𝐿𝑖𝐶𝐸 (y, q) + 𝜆1𝐿

𝑖
𝑆𝑚𝑜𝑜𝑡ℎ

(q) (10)

where 𝜆1 is a balance factor. We note that the above loss function
is only for one input sample for simplicity, while the one used in
practice during the training should be the average over all losses of
a batch of inputs.

6 DATASET
In total, our evaluation in Section 7 involves three datasets: a long-
tailed version of CIFAR10 [24], a long-tailed version of Google
Speech-Commands [51], and an IMU dataset for action recognition
collected by ourselves. For the sake of clarity, a summary of three
datasets is provided in Table 1. In the following, we will introduce
in detail how each dataset is generated.7

6.1 CIFAR10-LT and Speech Commands-LT
6.1.1 Dataset Generation Scheme. The procedure to adapt the stan-
dard CIFAR-10 and Speech Commands datasets to long-tailed fed-
erated learning include two steps. First, we follow [3] to construct
the global dataset with an overall long-tailed data distribution. We
then devise a sampling mechanism to divide this global data into
many sub-datasets, where each sub-dataset is used as the training
data of one participant in the federated learning. We still use the
original test dataset without manipulation.
Global Long-tail Construction. As mentioned in Section 3.2, we
use Γ = 𝑛𝑚𝑎𝑥/𝑛𝑚𝑖𝑛 to indicate the global imbalance degree. Given a
Γ, we then let the sample amount of each class follow an exponential
decay as the class index increases, i.e. 𝑛𝑖 = 𝑛𝑚𝑎𝑥 Γ

−𝑖/(𝑁−1) , where
𝑖 = {0, 1, ..., 𝑁 − 1}.
Data Division for Nodes.We devise a sampling scheme, named
𝜏-Sampling, to divide the global data for multiple nodes. The choice
of 𝜏 will influence the degree of local class missing and the non-
iidness. Specifically, we set 𝑛𝜏 = 𝜏𝑛𝑚𝑖𝑛 . In every round, every node
randomly samples 𝑛𝜏 instances without replacement from the class
with the fewest data. If the data amount of a certain class is less

7The experiments that involve human subjects are approved by the IRB of authors’
institution.
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Table 1: A summary of the used datasets. The Γ is set to 100 for both CIFAR10-LT and Speech Command-LT.

Dataset Modality Task # Data for Training # Data for Test # Classes Imbalance Ratio

CIFAR10-LT [24] Image Image Recognition 12,406 10,000 10 100
Speech Commands-LT [51] Audio Key Word Sensing 23,463 11,005 35 100

Our Collected Dataset IMU data Action Recognition 6,137 3,989 8 24.8

Figure 5: An illustration of our generatedCIFAR10-LTdataset
with 10 nodes and Γ = 0.01, 𝜏 = 2, where the last class only
includes 50 samples. The upper big plot shows the global
data distribution, and the lower small plots show the local
data distributed on 10 nodes.

than 𝑛𝜏 , sample 𝑛𝜏 instance from this class first, and then sample
the remaining instances from the class with the second smallest
data amount. Rather than a generating pathological non-iid dataset,
the 𝜏-Sampling is proposed to better simulate the phenomenon that
local class missing issue is more likely to happen on tail classes, as
tail classes are rare in terms of both total quantity and occurrence
frequency. For example, when 𝜏 = 1, the class with the fewest
samples will only exist on one node. A larger 𝜏 will cause a heavier
class missing problem.

6.1.2 CIFAR10-LT. We use a long tailed version of CIFAR-10 [24].
The original CIFAR10 dataset includes 50,000 32×32 training images
from 10 classes, with 5,000 images per class. Figure 5 shows our
generated datasets of CIFAR10 with 10 nodes, where we can observe
that the sample distribution of the head classes among nodes is more
uniform than that of tail classes, and the class missing issue mainly
occurs for tail classes, which conforms the real-life conditions.

6.1.3 Speech Commands-LT. This is a long-tailed version of the
Speech Commands dataset from Google [51]. In the original dataset,
there are 105,829 one-second utterances of 35 keywords collected
from thousands of people. The class with the largest data amount
has 3250 samples. In our experiment, we set 𝑛𝑚𝑎𝑥 to 3000 and the
imbalance ratio Γ to 100, so that 𝑛𝑚𝑖𝑛 is equal to 30. Finally, 23,463
samples are obtained. We turn the 16 kilo samples per second (ksps)
audio file into Mel Spectrogram with the FFT window size of 1024,

...
.

....User 1

User 2

User N

a1 a2 a3 an

a1 a2 a3 an

a1 a2 a3 an

a2 a4

a7

a2 a4 a6

a8 

Test Set Training Set

Imbalanced

Figure 6: An illustration of our collected dataset. The letter
“a” in the block means activity.

the temporal sliding window size of 512 and the number of Mel
banks of 32. By this way, every one-second audio is turn to a 32×32
one-channel image. The number of nodes is set to 10 for this dataset.

6.2 Self-Collected IMU Dataset
IMU is a sensor modality that has been widely integrated into smart
phones and watches to support tasks such as sleep monitoring and
action recognition. Therefore, apart from the above two synthetic
long-tailed federated learning datasets, we also collect a real-life
IMU dataset for action recognition. Another major difference from
the two datasets above is that the tail effect of this dataset is in-
herent instead of introduced artificially. Specifically, the collected
IMU dataset includes 8 activities: sitting, walking/pacing, lying,
throwing, rummaging, stomping, hand-waving, and falling down.
The data collection procedure includes two stages, as shown in
Figure 6. In the first stage, volunteers are asked to only perform
one specific activity in a given time period. In the second stage, we
let volunteers do activities freely in the room for several minutes
so that every volunteer will generate a combination of different
activities at their will.

During the collection, an RGB video is also recorded whose
timestamp is associated with the IMU, exclusively for annotation
use. To restore the real distribution as much as possible, we do
not apply any other manipulation on the training data other than
removing those IMU frames that do not belong to the above 8
activities. In total, we collect 6,137 training samples from 30 people,
where each person is regarded as a node in federated learning.
Therefore, the number of nodes is 30. We note that the IMU dataset
can also be used to simulate the cross-silo setting by grouping 30
users intomultiple silos (e.g., families).Within each silo, data among
users is shared. In this paper, we split the data by person, which
generates more nodes and is a more challenging data allocation
approach. The distributions among nodes of our collected dataset
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Figure 7: The data distribution of our collected IMU dataset. We can observe a long-tail phenomenon of the global data as well
as the local imbalance of the local data. In addition, the global tail classes show a heavier class missing issue.

is shown in Figure 7. The sampling rate of the 9-axis IMU data
is 100Hz. To capture the temporal information, we slice the IMU
data sequence into multiple samples using a sliding time window
of 2s. If the snippet is shorter than 200 frames, we first repeat it
several times and then clip it to 200 frames. Therefore, we obtain a
1800-dimension (200 × 9) feature for each data sample.

7 EVALUATION
In this section, we conduct extensive experiments to evaluate the
performance of BalanceFL. First, we evaluate the accuracy on dif-
ferent datasets. Then we perform the evaluation on communication
overhead. In the next, we show the robustness under different par-
ticipation ratios and local epochs. Last but not least, we use an
ablation study to gauge the effectiveness of every proposed mod-
ule. Specifically, the following six baselines are compared with
BalanceFL:

(1) FedAvg [31]: the standard federated learning approach, where
all nodes use the conventional cross entropy loss for training.

(2) FedProx [26]: a state-of-the-art federated learning algorithm
to tackle the statistical data heterogeneity among nodes.
Compared with FedAvg, an L2 regularization term is added
to restrict the distance between the local model and the
global model for a better convergence.

(3) Centralized Training: the model trained on an overall
dataset aggregating all distributed data together, using the
traditional cross entropy loss.

(4) Balanced Softmax [36]: a state-of-the-art algorithm for
long-tailed recognition problem in the centralized setting,
where an unbiased extension of Softmax is used to tackle the
label distribution shift between the training and test dataset.

(5) Local Training: the model trained using only the local data
at each node, with a traditional cross entropy loss.

(6) Per-FedAvg [55]: a recent personalized federated learning
algorithm based on Model-Agnostic Meta-Learning (MAML)
[13]. During the test, we let each node perform one step
gradient descent on the downloaded global model for cus-
tomization. As can be seen in Figures 5 and 7, the dataset

shows not only class imbalance, but also data heterogene-
ity among clients, especially on tail classes. Compared with
FedAvg, which generates a global model for all clients, Per-
FedAvg is a baseline that could better addresses the data
heterogeneity, although it is not specifically designed for the
class imbalance problem.

The above six baselines can be divided into three groups. Baseline
(1) and (2) generate only one global model for all nodes. Baseline
(3) and (4) are in the centralized setting, which also generate only
one model, while baseline (5) and (6) will generate one model for
every node.

7.1 Implementation
We design and implement the BalanceFL prototype on a cloud
server equipped with 32 virtual CPU cores and 4 Nvidia TiTAN
Xp GPUs, where each provides 12 GB graphic memory. We use
multiprocessing to simulate the multiple nodes in federated learn-
ing. Specifically, we let one process handle the works of the server
including the node selection and model aggregation. For every
node, we create one process for managing the local model updat-
ing and the data migration between the CPUs and the GPUs. The
communication between the server and nodes is implemented by
inter-process communication using Python3. The deep learning
parts are implemented using PyTorch.

For the image recognition and key word sensing task, we use
ResNet-8 [16] followed by one fully-connected layer and one soft-
max output layer as the deep learning model. For the task of activ-
ity recognition on the IMU data, we adopt a randomly initialized
encoder-decoder-like deep neural networks (DNN) composed of
three fully connected layers with hidden unit size of 256, 128, 256,
respectively. In all experiments, we use Adam as the optimizer for
local update with a learning rate 0.005 and a momentum 0.9. The
local batch size is 64 and the default local epoch is 5. The knowl-
edge distillation temperature in Equation 4 is set to 2, which aligns
with the suggestion in [17]. For FedProx, the hyper-parameter 𝜇
to control the strength of the regularization is set to 0.05. For all
federated learning methods, we limit the maximum global learning
round to 200 to avoid prohibitively high communication costs.
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Figure 8: The accuracy of competingmethods onCIFAR10-LT
dataset under different 𝜏 . For local training and Per-FedAvg
where one model is generated for every node, we use the
Boxplot to summary the accuracy of all personalized models.

Figure 9: The accuracy of competing methods on Speech
Commands-LT dataset.

Figure 10: The accuracy of different methods on our collected
IMU dataset. As data is naturally divided by person ID, there
is no 𝜏 .

7.2 Accuracy on Different Datasets
Considering the randommini-batch sampling during the local train-
ing, we repeat the experiments in this Section for three times and
use multiple bars to show values from different trials. The results on
CIFAR10-LT are shown in Figure 8. It can be seen that our approach
greatly outperforms all other federated learning approaches under
all 𝜏 values. Specifically, when 𝜏 = 2, our approach improves the
absolute accuracy over all classes of FedAvg from 37.2% to 58.3%,
where the relative improvement is up to 56.7%. Extremely, for the

five tail classes, the absolute mean accuracy of FedAvg is only 1.7%,
while BalanceFL achieves 50.6%.

In addition, due to the class missing issue, the local training
baseline fails to gain any recognition capability on some absent
classes, leading a very poor overall performance. The personalized
federated learning approach (i.e., Per-FedAvg) improves the local
training by taking advantage of the knowledge from other nodes.
However, it still falls short in our setting, as it assumes the training
data distribution and the test data distribution are identical for
every node, while the goal in our setting is to train a model from an
imbalanced training dataset that can achieve a high overall accuracy
of all classes (i.e., the mean value of all class-wise accuracy). Notably,
the centralized training achieves a much higher accuracy than the
FedAvg, although neither of them considers the issue of global
imbalance. There are two reasons behind. First, the knowledge of
tail classes are much harder to be accumulated in the federated
setting than the centralized one due to the node-side catastrophic
forgetting phenomenon, as analysed in Section 4.2. Second, the
data heterogeneity among nodes in federated learning (as shown
Figure 5) imposes challenges to the convergence, making the finally
obtained model biased from the optimal one. FedProx, to some
extent, alleviates this challenge by adding a regularization term
to restrict the local updates. Still, it does not consider the global
imbalance, which leads to a poor performance on the tail five classes.

The results on Speech Commands-LT dataset and our collected
IMU dataset are shown in Figure 9 and Figure 10, respectively.
They demonstrate a consistent pattern with those on CIFAR10-LT.
Regarding the accuracy over all classes, the relative improvement
on FedAvg is up to 39.5%, 18.5% respectively. We note that the
performance of baselines (except the local training) on the IMU
dataset shows a smaller gap compared to the two synthetic datasets.
This is because the tail effect is less severe. The imbalance ratio is 100
on both synthetic datasets but is 24.8 (2154/87) on the IMU dataset.
We also observe that results from different trials do not show large
differences on the overall accuracy of all classes. However, the
accuracy of different trials shows a larger deviation on tail classes.
This is because there might be a trade-off between the accuracy of
head classes and tail classes, and the neural network can be biased
towards either the head classes or the tail classes in different trials.

7.3 Communication and Compute Overhead
Communication costs are of great importance of the federated learn-
ing for IoT applications [31]. We measure the communication over-
head by calculating the total amount of data transferred between
nodes and the server before the convergence. Here, we assume that
the convergence is achieved when the global model reaches 98% of
the maximum accuracy at the first time. The results are shown in
Table 2. We can see that BalanceFL reduces the communication cost
of FedAvg by 75%, 33.6%, 68.6% on three datasets, respectively. Here,
the communication costs are determined by both the size of the
model and the convergence speed. On the IMU dataset where the
model size is small, 30 nodes in total trigger 1.5 GB communication
traffic, where the amortized one for every node is only 50 MB. We
believe that such an affordable communication cost will make our
framework appealing for real-world deployments of IoT systems.
To intuitively visualize the improvement of our approach, we plot

268



BalanceFL: Addressing Class Imbalance in Long-Tail Federated Learning IPSN’22, May 4-6 2022, Milan, Itlay

Table 2: Summation of triggered communication traffic of all
nodes during the whole training.

Dataset Model Ours FedAvg FedProx

CIFAR10-LT ResNet-8 6.10 GB 24.40 GB 46.42 GB
Speech-LT ResNet-8 17.83 GB 26.87 GB 43.64 GB

IMU FC-3 1.50 GB 4.78 GB 5.84 GB

Figure 11: The curve of training and test accuracy of three
approaches on our collected IMU dataset. Compared with
other two baselines, BalanceFL converges to a higher test
accuracy with much fewer rounds.

curves of the training and test accuracy of the three approaches
in Figure 11. It can be seen that although their training curves
are very close to each other, BalanceFL quickly reaches its maxi-
mum accuracy on the test set, while FedAvg and FedProx suffer
the small slope. We believe the reason is that FedAvg and FedProx
lack the technique to handle the unbalancing issue. As a result,
there exists a mismatch between their optimization targets (i.e., an
imbalanced distribution) and the real distribution of the test data
(i.e., a balanced distribution). Regarding the compute overhead, we
evenly distribute all clients on 3 GPUs and record the local training
time over rounds. The results are shown in Table 3. On all datasets,
our approach incurs longer local update time than FedAvg. This is
because the knowledge inheritance mechanism requires forward
passes of the teacher model, where both the model initialization and
inference cost extra time. Besides, the feature-space augmentation
also consumes time to calculate the overall co-variance matrix of
all features. This calculation is performed once per federated round,
and is executed on the CPU in the current implementation. On the
IMU dataset, although the absolute time cost is still very small, we
can observe a huge relative increase of the compute time. This is
due to the fast backpropagation of the lightweight IMU network on
GPUs, which leads to a very small base number. In cases where the
communication is the major bottleneck, the compute overhead of
BalanceFL is acceptable, considering that the fewer communication
rounds required compared with FedAvg.

7.4 Robustness Analysis
In this Section, we analyze the robustness of BalanceFL under dif-
ferent participation ratios and local epochs. Similar to Section 7.2,
we repeat the experiment for three runs and use multiple bars to
show results of different trials.

Table 3:Mean local update time of all clients in each federated
round. The local epoch number here is set to 5. The unit is
second.

Dataset FedAvg FedProx Ours

CIFAR10-LT 13.6 14.5 18.2
Speech-LT 28.2 29.6 40.9
IMU 0.2 0.3 1.1

Figure 12: Accuracy of competing methods under three dif-
ferent participation ratios. The local epoch is 5. In the partial
participation case, selected clients in each round are the same
for three baselines, while they are different among trials.

Different Node Participant Ratio. In real-world scenarios, it is
impractical for all nodes to participate in the federated optimization
in every round. For example, a mobile phone will only volunteer to
participate when it is charged or under the free WiFi connection.
Therefore, it is important for the framework to keep robust when
some of the nodes are unavailable in some rounds. The results
on CIFAR10-LT (𝜏 = 2) are shown in Figure 12. BalanceFL can
keep robust under different participation ratios and consistently
outperform another two generic federated learning approaches:
FedAvg and FedProx. We note that, the performance under 10 nodes
is better than that under 20 nodes, because each node has more
data and suffer slighter local imbalance and data heterogeneity.
The performance of FedAvg under participation ratio 0.2 is slightly
better than that under 1 (i.e., the full participation case). This is
due to the distribution gap between the training and test data, so
that the distribution of aggregated data from certain clients may
coincidentally be more similar to the test data distribution than the
aggregated data from all nodes.
Different Local Epochs. As shown in Figure 13, we test the
performance of BalanceFL under different local epochs on CIFAR10-
LT (𝜏 = 2). We can observe that BalanceFL outperforms FedAvg and
FedProx by a large margin under all settings. In addition, we plot
the curves of the test accuracy of three approaches. As shown in
Figure 14, our approach consistently achieves a higher convergence
speed than other two baselines.

7.5 Ablation Study
We also perform an ablation study of BalanceFL. In total, four tech-
niques are introduced in our framework: knowledge inheritance,
balanced sampling, feature-space augmentation and smooth regu-
larization. Table 4 shows the experimental results when some of
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Figure 13: Accuracy under the setting of different local
epochs in the full participation case.

Figure 14: Curves of the test accuracy over rounds under
different local epochs.

Table 4: Ablation study for BalanceFL. Without either the
knowledge inheritance or the inter-class balancing tech-
nique, the performance will degrade drastically, which is
consistent with the discussion in Section 4.2.

Knowledge
Inheritance

Inter-Class Balancing
AccuracyBalanced

Sampling
Feature-
Space Aug.

Smooth
Reg.

✓ ✓ ✓ ✓ 58.3±0.2%
✓ ✓ ✓ × 57.1±0.3%
✓ ✓ × × 55.8±0.2%
✓ × × × 49.8±0.3%
× ✓ × × 38.4±0.4%
× × × × 37.2±0.4%

components are disabled on CIFAR10-LT dataset with 𝜏 = 2. Results
are reported in mean and standard deviation. Specifically, the first
row represents our approach while the last row represents FedAvg.
This experiment also shows that knowledge inheritance and the bal-
anced sampling are two most important components, which tackle
the class missing issue and local class imbalance, respectively.

8 DISCUSSION AND CONCLUSION
We propose BalanceFL, a long-tail federated learning framework
that can robustly learn both common and rare classes from a real-
world dataset, simultaneously addressing the global and local data
imbalance problems.We perform the evaluation using three datasets
from three different data modalities. The results show that under
all datasets, BalanceFL performs significantly better than other

federated approaches. Specifically, on the long-tailed version of CI-
FAR10, BalanceFL outperforms the FedAvg by up to 56.7% in terms
of accuracy, while incurring 75% less communication overhead.

Like most current federated learning methods, our proposed
framework requires the exchange of models between the server and
nodes, which potentially can result in the privacy leakage. For exam-
ple, by compromising the server and performingman-in-the-middle
(MITM) attack, a strong attacker may infer the categories of the data
on the node. Some privacy protection techniques, like differential
privacy [12], thus can be combined with our framework to protect
clients from attackers. In addition, some recent works [4, 53, 55]
point out that, due to the latent relationship between meta-learning
[13] and federated learning, the obtained global model by federated
learning has high generalizability. Therefore, by applying post-
processing (e.g., fine-tuning) to the global model, the local model
can simultaneously achieve high generic and personalized perfor-
mance. We will leave the adaptation of BalanceFL to a personalized
federated learning setting as the future work. Moreover, as men-
tioned in Section 3.2, we assume every class is of equal importance.
The extended version of it where classes have different levels of
importance, will be our future work. Finally, although we address
the federated long-tail learning problem from both perspectives of
class missing and local class imbalance, the proposed algorithms
can still be optimized. For instance, we may use adversarial train-
ing [5] for better feature-space augmentation, and we may apply
extra client selection strategies [14, 25] to improve the utility and
the fairness of federated learning. The large-scale validation in the
cross-device federated setting will also be left for our future work.
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