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Abstract

End-Stage Kidney Disease (ESKD) patients on hemodialysis suf-

fer from kidney failure, with the inability to remove excess fluid

causing fluid overload. This can cause many morbidities, and is

one of the most insidious and common risk factors for mortality

in ESKD patients. Existing solutions for fluid intake monitoring

such as self-report and weight gain monitoring are burdensome,

non-continuous, and usually administered in clinics only. It is then

critical to develop a ubiquitous fluid intake monitoring system

to help ESKD patients better control their fluid consumption. In

this study, we propose to leverage smartwatch sensor data (e.g.,

Photoplethysmography (PPG), Gyroscope, etc.) combined with a

temporal sensor relation graph neural network (TSR-GNN) to predict
fluid intake given past sensing data between two dialysis sessions.

Our empirical experiments highlight promising findings about the

feasibility of using ubiquitous sensing to predict fluid intake, and

demonstrate that the proposed model TSR-GNN outperforms the

selected baseline models in both accuracy and robustness. Addi-

tionally, an in-depth analysis of model interpretability by attention

weights and GNNExplainer variant is conducted to better under-

stand the inter-sensor interactions and sensor contributions to the

fluid intake prediction results.
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1 Introduction

Approximately 37 million Americans have chronic kidney disease

(CKD) – a decrease in the ability of the kidneys to cleanse tox-

ins from the blood and balance fluid volumes within the body [1].

Among CKD patients, 750,000 Americans suffer from the most se-

vere form of CKD - end stage kidney disease (ESKD); generally

diagnosed when kidney function falls below 15% of normal. While

some receive optimal therapy in the form of kidney transplants, an-

other 500,000 patients require mechanical blood cleansing known as

dialysis [3]. In addition, ESKD patients must follow unique dietary

restrictions to reduce the risk of kidney overworking. The most

onerous of these is the need to restrict fluid/water intake. Normally,

the kidneys and heart work in unison to keep only the necessary

amount of water in the blood vessels. However, patients with ESKD

suffer from kidney failure, with the inability to remove excess fluid

causing symptoms of swelling, pulmonary edema, and refractory

Figure 1: Fluid Balance and the dialysis schedule.

hypertension. Long-term consequences include markedly increased

risks of mortality from cardiovascular disease (CVD).

Dialysis therapy, substituting the natural work of the kidneys,

can be a life-saving treatment for ESKD patients, nevertheless it’s

challenging for most patients. As shown in Figure 1, the dialysis

schedule is fixed at four-hour treatment sessions delivered in a

dialysis clinic three times a week. The “long break” of Saturday

and Sunday, with significant fluid gains, is associated with the

highest levels of mortality [17]. To reduce the dangers of rapid

fluid gains and removal, patients are counseled to control their

fluid intake (e.g. minimize water intake to 32 oz (1 liter) or less per

day)[27]. However, in practice, this is nearly impossible, since thirst,

a basic human need, can be driven by the high sodium western

diets, dialysis sessions, and the attendant hypotension. Current

fluid management methods estimate how much fluid patients have

consumed by computing differences in weight between the last two

dialysis sessions. The weight-monitoring based fluid management

can be problematic, because patients are only monitored in the

clinic, most deaths happen at home and mainly because of fluid

overload (see mortality peak in Figure 1). It is then crucial to develop

new ubiquitous methods to monitor patients’ fluid consumption

on a more granular scale to help clinicians intervene in time. To

date, there has been no continuous method to monitor fluid intake

of ESKD patients in their natural environment.

Recent advancements in mobile technology and computational

methods for processing sensor signals provide novel opportunities

to address these gaps. Wearable digital devices (e.g. smartwatches

and smartphones) contain built-in motion and physiological sensors

(e.g., heart rate, respiration, galvanic skin response [GSR][34]) can

capture fine-grained human behavior information. In addition, a

plethora of existing works has demonstrated how human behaviors,
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monitored through mobile sensing, can be related to health-related

outcomes [7, 36]. Intuitively, the number of steps, location, hand

gestures and other factors can have an impact on fluid consumption,

these factors can also be captured by mobile sensing techniques.

In this work, we propose to leverage wearable sensing to design

a multimodal sensor framework that extracts signatures from mul-

tiple sensors on wrist-worn watches [2] and predicts fluid intake

of ESKD patients. The rational behind using multimodal sensing to

estimate fluid intake of ESKD patients is the fact that it is known

that fluid overload and over-hydration can manifest in patient’s

behaviors and physiology [42]. Several physiological biomarkers

that can be captured through sensors such photoplethysmography

(PPG to measure heart rate and heart rate variability), galvanic skin

response (GSR to measure features from sweat), bioimpedance (to

measure body composition), and pulse oximeter (SpO2 to measure

respiration) can correlate with fluid overload symptoms [12]. Simi-

larly, behavioral biomarkers such as mobility and physical activity

patterns are also expected to correlate with fluid overload of ESKD

patients.

There are multiple existing challenges when using multimodal

mobile sensing data to capture complex human behavior dynam-

ics such as fluids consumption. First, conventional sensor fusion

techniques fall short in terms of capturing the dynamic correlation

and complex interactions between heterogeneous sensor channels.

Second, different modalities of human behaviors can have varying

correlation levels with health outcomes. For example, patients’ ac-

tivity levels may have higher impact on fluid consumption then

other modalities. This implies that graph representations must

have different contribution levels to the learning targets, something

that is not captured in current sensor network embedding meth-

ods. Third, static feature aggregation of human behaviors cannot

capture temporal variations in human behavior dynamics. In this

study, we propose a temporal sensor-relation graph neural network

(TSR-GNN) to overcome the above challenges. TSR-GNN consists of
the following components: 1) sensor-relation graph learning to

automatically learn the dynamic relationships between different

sensor channels; 2) attention-based sensor network embeddings,

which can generate attention-weighted high-level topological sen-

sor embeddings; and 3) temporal connection learning to capture

the temporal dynamics within sensor interactions with respect

to the corresponding human behaviors. Our contributions can be

summarized as follows:

• We present a novel ubiquitous sensing method for personal-

level fluid consumption estimation.

• We propose a Temporal Sensor Relation Graph Neural Net-

work (TSR-GNN) with task-specific heterogeneous sensor pro-
cessing and temporal learning modules to generate graph

representation of on-body sensor network, capture multi-

hop complex sensor interactions and produce robust sensor

embeddings to predict fluid intake.

• We test our method in a real human-subject study involving

14 ESKD patients on hemodialysis, and demonstrate the su-

perior performance of TSR-GNN (MAE:1.03, F1:0.93 in weight

change prediction task, MAE:0.96, F1: 0.96 in self-reported

fluid intake prediction task) when compared to other state-of-

the-art models. We also conduct an interpretability analysis

to unveil the working mechanism of TSR-GNN and discuss
the clinical insights that can be extracted from this method.

Our paper is organized as follows: Section 2 highlights the exist-

ing works related to fluid intake monitoring, mobile sensing, and

graph neural networks, explains why our solution is unique and

how it is useful for fluid intake estimation. Section 3 proposes a

temporal sensor relation based graph neural network approach to

better interpret raw sensor data and to predict the fluid estima-

tion accurately. Section 4 outlines the process of our ESKD fluid

monitoring study and describes the multi-modal sensing data we

collected from smart wearable devices. Section 5 provides compre-

hensive experiments and in-depth analysis of the effectiveness of

our proposed approach. Section 6 discusses the limitation and the

future directions of this research. Finally, Section 7 discusses the

conclusion of our findings related to using mobile sensing and its

potential for predicting fluid intake of ESKD patients.

2 Related Works

2.1 Fluid Intake Monitoring

Existing fluid intake monitoring research using ubiquitous devices

can be categorized as the follows: smart tables, cameras, smart

containers and wearable devices [10]. In the smart table-based so-

lution, by leveraging embedded table sensors (e.g. pressure sensor),

fluid instake can be estimated through measuring weight changes

of objects on a table surface. Zhou et al. developed a smart table

embedded with pressure sensors and force sensor resistors to mon-

itor the weight changes in containers [44]. However, the design

of smart tables to monitor fluid intake is dependent upon users’

compliance and willingness to place food/waters in specific areas

of the table. These directives can become burdensome, especially

for a population such as ESKD patients which is already enduring

a burdensome treatment. In the camera-based solution, fluid intake

is estimated based on drinking activity detection using computer

vision algorithms. Cippitelli et al. used a a depth and RGB camera,

installed on the ceiling, to monitor eating and drinking actions

[9]. Based of activity videos, Iosifidis et al. generated 3D volumes

of human body poses to detect eating and drinking activities[22].

These methods can generate privacy concerns and are dependent

upon the presence of cameras. The smart tables and camera-based

solutions are unable to deliver continuous fluid intake monitoring

because users can consume fluids where smart tables and cameras

are not available. In the smart container-based solution, liquid levels

are monitored through load and pressure measure, RFID, vibration

measure and acoustic sensors. As signal strength of RFID can be

impacted by liquid level, some researches have developed RFID-

based fluid intake estimation methods for drinking event detection

[23] and liquid level measurement [6]. Liquid resonance frequency

is measured through Wi-Fi signal phase change detection and has

been used to measure the liquid level in containers [32]. One of the

limitations of smart container-based solution is that people usually

do not consume fluids using only one specific container, which

can underestimate the fluid consumption of ESKD patients caus-

ing life-threatening results. Other researchers have used wearable

devices to estimate fluids. Mark et al. propose a body-worn audio

and motion sensors system to estimate food type and amount con-

sumed [30]. Other works weight fluctuation monitoring to detect
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fluid intake [5, 33]. A hierarchical fluid intake monitoring system is

proposed by Huang et al. to monitor fluid intake through drinking

activity detection, drinking gesture recognition and intake amount

estimation [20]. However, The existing wearable device-based meth-

ods are typically based on gesture recognition and rely on motion

sensors only. They have high error rate (near 40%-50%) and usu-

ally evaluated in a controlled experimental environment. In this

study, we deploy our Fluisense in real world situation and collect

multi-modal sensor data (physiological, behavioral bio-markers) to

provide accurate and robust fluid intake estimations. To the best of

our knowledge, this is the first work deploying a ubiquitous sensing

method to estimate fluid intake of ESKD patients.

2.2 Mobile Sensing

Sensor-rich smart devices such as smartphones and smartwatches

enable unobtrusive monitoring of human behaviors and passive

collection of behavioral and physiological signals in people’s natu-

ral environment. The sensors embedded within those devices (e.g.,

Global Positioning System (GPS), Galvanic skin response (GSR)

and accelerometer sensors) have been used to unveil bridges link-

ing human behaviors and relevant health outcomes [7, 8]. Dong

el at. demonstrate a sensor-based saliva cortisol level prediction

framework by leveraging Actigraphy devices with embedded ac-

celerometer and inclinometer [13]. By using the passively collected

people’s mobility information through GPS, Lin and Lyu el at. pro-

pose an interpretable machine learning model to predict health

conditions by analyzing people’s location traces with the associ-

ated points of interest [26]. Based on smartphone sensing, Huckins

et al. evaluate people’s travel pattern, phone usage, sleep behavior

and physical activities and use the fined-grained human behavior

features to estimate mental health metrics (e.g., depression and

anxiety) [21]. In this study, our Fluisense contains a diverse set of

sensors, such as Photoplethysmography (PPG), Accelerometer, and

Magnetometer, to encode complex human behaviors from multi-

ple perspectives and decode the high-level sensor embeddings to

predict fluid intake.

2.3 Graph Neural Networks

Graphs are ubiquitous with respect to their capacity to represent

multitudinous connected structures, such as social network, molec-

ular structure, transportation network, and biological interaction

graph [18]. As a consequence, graph neural networks (GNNs) have

been evolving and attracting increasing attention in both industry

and academia. In transportation, researches use graphs to represent

transportation network and develop numerous spatio-temporal

GNNs for traffic flow prediction, parking demand forecasting and

travel time estimation [24, 37, 43]. In recommender systems, graphs

represent the social network and interaction graph between users

and items, and graph based recommender systems have been de-

veloped and deployed in real world application, achieving superior

performance than traditional techniques in recommender systems

[28, 29, 31]. In mobile health, researchers use GNNs to capture com-

plex human behavior dynamics and translate the high level behav-

ior embeddings to predict health symptoms such as mental health

inference, biomedical marker prediction, and symptom detection

[13–15]. However, previous works modeling multimodal mobile

sensing data do not consider the complex interactions between

different sensors. In this study, our proposed TSR-GNN generates
graph representation of on-body sensor network and produce high-

level sensor embeddings by capturing dynamic sensor interactions

and temporal variations that can effectively characterize human

behaviors.

3 Methodology

3.1 Problem Formulation

Given a set of on-body sensors, denoted as S, our goal is to use the

multivariate time series data collected by S to predict fluid intake

values 𝑌 . In our proposed method, we generate a learnable sensor
embedding 𝐸𝑆 (𝑖) for each sensor 𝑆 (𝑖) ∈ 𝑆 , where 𝑖 = {1 · · ·𝑁 } (𝑁
is the number of sensors), and we denote the raw multivariate time

series sensor data as 𝑅𝑆 (𝑖) . To make predictions in real-time, we

divide 𝑅𝑆 (𝑖) into 𝑇 time windows and set 𝑅𝑡
𝑆 (𝑖)

, 𝑡 ∈ 𝑇 as the inputs

to predict fluid intake. The raw heterogeneous sensor signals in

𝑅𝑡
𝑆 (𝑖)

have different frequencies and cannot be fused naturally. To

make 𝑅𝑡
𝑆 (𝑖)

compatible with graph neural networks, we convert the

𝑅𝑡
𝑆 (𝑖)

into the same dimensional feature space 𝐹 𝑡
𝑆 (𝑖)

with a transfor-

mation function 𝑓 . Given the learnable sensor embeddings 𝐸 and

sensor data feature space 𝐹 𝑡 , the sensor relation graph structure
𝐺 can be learned from an attention-based GNN, refereed as an

attention-based Graph Isomorphic Network (GIN) [39]. The output

of 𝜙 (𝐺, 𝐹 𝑡
𝑆 (𝑖)

, 𝐸) is a graph-level embedding 𝐺𝐸𝑡 for fused sensory

data at time 𝑡 ∈ 𝑇 . We input the sequence graph embeddings 𝐺𝐸
into a recurrent neural network and produce the final prediction

set 𝑌 .

3.2 Overview of TSR-GNN
The goal of our proposed prediction framework is to learn the

relationship between different on-body sensors, and predict the

interdialytic fluid intake by learning the sensor interactions indica-

tive of fluid intake. This considers the inner connections between

sensors and reduces the noise from possible sensor information loss

comparing to traditional neural network methods. Our approach

has four major components:

1. Heterogeneous Data Transformation, maps the original het-

erogeneous raw sensor data 𝑅 into a sensor feature space 𝐹 with a

unified dimension.

2. Sensor Relation Graph Learning, learns the relationship be-

tween sensors and constructs a sensor relation structure graph 𝐺
based on the correlation between learned sensor embedding vectors

𝐸.
3. Attention-Based GNN, generates a fused graph-level embed-

ding 𝐺𝐸 given relation graph structure 𝐺 and sensor feature 𝐹 .
4. Temporal Connection Learning, learns sequential graph em-

bedding 𝐺𝐸 within time domain 𝑡 ∈ 𝑇 .
The overall structure has been provided in figure 2. Our pro-

posed TSR-GNN is inspired by Graph Deviation Network (GDN)

[11] and Multivariate Time series Graph Neural Network (MTGNN)

[38]. Both MTGNN and GDN can automatically learn inner time

series interaction between two variables, and encode the learned

between-variable interdependence to generate high-level node rep-

resentations from multivariate time series input. However, in our
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Figure 2: The diagram of TSR-GNN model with multivariate time series sensor data.

case, as we have multi-modal sensor data as input, and patients

fluid intake amount as output, both models cannot deal with het-

erogeneous sensory data and predict graph-level results. To address

this, we propose heterogeneous data transformation to trans-

form the sensory data that have varying dimensions in each type

of sensor. Also, our method uses Sensor Embeddings inspired by

BERT to produce parameterized sensor embeddings that can de-

scribe the unique characteristics of each senor. In addition, instead

of targeting node forecasting tasks in GDN and MTGNN, we gener-

ate a sequence of synthesized graph embeddings that can capture

and fuse dynamic sensor interactions to target the prediction of

a instance/whole graph. Finally, we add a temporal connection

learning module to learn the temporal relationship between in-

stances whichmodels the period change of ESKD patients behaviors.

3.3 Heterogeneous Data Transformation

Different sensors can have different frequencies and units of data.

For example, the Photepletosmnography sensor (PPG) sampled at

100HZ can have significantly more observations than GPS sensor

which is typically contains only few observations in a given hour.

Therefore, the raw data 𝑅𝑡
𝑆 (𝑖)

from different sensor 𝑆 (𝑖) cannot be

directly fed to our graph neural networks.

To address the above problem, we first use a transformation

function 𝑓 to transfer the heterogeneous raw sensor data into a

homogeneous feature space, described as

𝐹 𝑡𝑆 (𝑖) = 𝑓 (𝑅𝑡𝑆 (𝑖) ), 𝑖 ∈ {1 · · ·𝑁 } (1)

The transformation function of each sensor 𝑓 can be a universal

mapping (i.e. MLPs) that can be learned during the training process,

or it can simply be some handcrafted features extracted from the

original data, like Min, Max, Variance in statistic domain; Abso-

lute energy, Entropy in temporal domain; or FFT mean coefficient,

Fundamental frequency in spectral domain. The main purpose is

to convert heterogeneous data into a homogeneous form. We use

both methods in our experiments and present results with the best

performance.

3.4 Sensor Relation Graph Learning

In multi-modal sensing applications, sensors can be related in dif-

ferent ways. For example, heart rate and step count sensors are

intuitively connected because when an increase in activity levels is

expected to cause an increase heart rate. Due to the neighborhood

aggregation process of graph neural networks, connecting similar

sensors in one graph can fuse sensor features together, reducing

noise (e.g, missing values in data collecting) in single sensor and

improve performance of the predictive model.

Sensor Embedding, As illustrated in section 3.3, different sensors

can have various types of data, and these data can be related in a

non-linear complex way. We adopt the sensor relationship learn-

ing method from [11, 38] with random initialized trainable sensor

embedding vectors 𝐸𝑆 (𝑖) ∈ R
𝑑 , 𝑆 (𝑖) ∈ 𝑆 .

These embeddings are trained along with the attention-based

GNN model, and can be gradually refined along with the relational

structure and prediction result. 𝐸 has the following properties: 1)

similar embeddings indicate similar sensor behaviors, and 2) similar

sensor behaviors have a high probability that are correlated together.

We use the top k correlation of these embeddings to construct a

relational graph and let 𝐸 perform as attention weights in GNN

neighborhood aggregation steps.

Relational Graph Construction, In order to represent the con-

nection between sensors, we use directed graph𝐺 = (𝑆, 𝑅𝑒), where
sensors 𝑆 are the vertex and relations 𝑅𝑒 are the edges. If the sensor
𝑆 (𝑖) has proven to be helpful to model the behavior of 𝑆 ( 𝑗), where
𝑖, 𝑗 ∈ {1 · · ·𝑁 }, then a directed relational edge 𝑅𝑒𝑖, 𝑗 will be formed

289



Figure 3: Constructing graph edges according to sensor embedding

similarity.

(shown in figure 3), and the edge weight is

𝑅𝑒𝑖, 𝑗 = 𝑠𝑖𝑚(𝐸𝑆 (𝑖) , 𝐸𝑆 ( 𝑗) ) =
𝐸T
𝑆 (𝑖)

𝐸𝑆 ( 𝑗)

| |𝐸𝑆 (𝑖) | | · | |𝐸𝑆 ( 𝑗) | |
(2)

To construct the desired sensor relational graph 𝐺 , the model
selects the top 𝐾 closest neighbors of a sensor node 𝑆 (𝑖) according
to the similarity equation 2, and 𝑘 is a hyperparameter that can be

tuned to control the sparsity of 𝐺 .

𝑅𝑒𝑖, 𝑗 = ∅, { 𝑗 ∉ 𝑎𝑟𝑔𝑡𝑜𝑝𝑘 (𝑅𝑒𝑖,𝑛, 𝑛 ∈ {1 · · ·𝑁 })} (3)

3.5 Attention-Based Sensor Neural Networks

To generate an embedding vector which contains all nodes’ informa-

tion at time 𝑡 , a graph-level representation 𝐺𝐸𝑡 of graph structure
𝐺𝑡 , node features 𝐹 𝑡 , and sensor embeddings 𝐸 is learned by a spe-

cially designed GNN which takes sensor interaction behaviors as

an input feature.

The design of the desired attention-based GNN is described

below:

Graph neural networks (GNNs), including graph convolutional

networks (GCNs), Graph Isomorphic Networks (GINs), Graph At-

tention Networks (GATs), are all neural networks that perform

graph convolution operations on graph structured inputs.

Then layer-wise propagation at layer 𝑙 in GCN [25] can be ex-

pressed as

𝑋 (𝑙+1) = 𝜎 (�̃�−
1
2 �̃��̃�−

1
2𝑋 (𝑙)𝑊 (𝑙) ). (4)

where W is a trainable weight matrix which applies a shared

linear transformation to every node, and D, A are graph structure

properties like node degrees and adjacent matrix. The propagation

process aggregate 1-hop neighborhood information

GATs assign attention weights for each node 𝑣 when doing the
neighborhood aggregation.

𝑧𝑣 = 𝜎 (
∑

𝑢∈N(𝑣)

𝛼𝑣,𝑢𝑊𝑡 ), (5)

Where the 𝛼𝑣,𝑢 indicates the contribution coefficient for each

sensor node to its connected sensors. The proposed attention-based

GNN method adds sensor embeddings as graph structure controller

and an augmented feature in on-body sensor network prediction.

Sensor embedding enabled attention aggregation, unlike the

existing GNNs, the neighborhood aggregation process of TSR-GNN
incorporates sensor embedding vectors 𝐸 along with node features

𝐹 𝑡 . The attention coefficient between sensors is calculated by the

feature-sensor combination.

First, we concatenate the node feature 𝐹 𝑡
𝑆 (𝑖)

and sensor embed-

ding 𝐸𝑆 (𝑖) of sensor 𝑆 (𝑖) to generate a new variable 𝑐𝑡
𝑆 (𝑖)

,

𝑐𝑡𝑆 (𝑖) = 𝐸𝑆 (𝑖) ⊕𝑊𝐹 𝑡𝑆 (𝑖) (6)

where ⊕ denotes a concatenation. Then, we assign a learned

coefficients vector 𝑎 for the attention mechanism and calculate

attention 𝛼𝑖, 𝑗 between 𝑆 (𝑖) and its neighbor 𝑆 ( 𝑗)

𝜋 (𝑖, 𝑗) = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎T (𝑐𝑡𝑆 (𝑖) ⊕ 𝑐𝑡𝑆 ( 𝑗) )) (7)

𝛼𝑖, 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜋 (𝑖, 𝑗)) (8)

where 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 is a non-linear activation function used to

compute the attention vectors, and the final attention coefficient 𝛼
is normalized by softmax function in Eq. 7.

The new neighborhood aggregation/node embedding 𝑁𝐸𝑆 (𝑖) for
sensor 𝑆 (𝑖) with attention can be represented as

𝑁𝐸𝑆 (𝑖) = 𝑀𝐿𝑃 (𝛼𝑖,𝑖𝑊𝐹 𝑡𝑆 (𝑖) +
∑

𝑗 ∈N(𝑖)

𝛼𝑖, 𝑗𝑊𝐹 𝑡𝑆 ( 𝑗) ) (9)

where multi-layer perceptrons (MLP) is an aggregation function

suggested by [39].

Output graph representation, After we have all node embed-

dings in Eq. 10, we interact the sensor embeddings 𝐸 with node

embeddings 𝑁𝐸, in order to take sensor characteristic as an aug-
mented feature for the final prediction. The interactive node-sensor

embedding 𝑁𝑆𝐸𝑡 at time 𝑡 is

𝑁𝑆𝐸𝑡𝑆 (𝑖) = 𝑁𝐸𝑡𝑆 (𝑖) � 𝐸𝑆 (𝑖) (10)

� can be anything that interact two matrices (i.e. element-wise

multiplication, concatenation), we use element-wise multiplication

here.

The final graph embedding 𝐺𝐸𝑡 at time 𝑡 is pooled by all 𝑁𝑆𝐸𝑡 .

𝐺𝐸𝑡 = 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑁𝑆𝐸𝑡𝑆 (𝑖) ), 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 ∈ {𝑀𝐿𝑃,𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒} (11)

where 𝑖 ∈ {1 · · ·𝑁 }.

3.6 Temporal Connection Learning

All of our previous steps are at a single timestamp 𝑡 , the temporal
and periodical information is also critical for a continuous fluid

intake prediction. For example, people tend to drink more water

in a specific range of time or after a dialysis session. Therefore,

we introduce a recurrent neural network method to connect all

graph-level embeddings 𝐺𝐸𝑡 , 𝑡 ∈ 𝑇 .

𝑎𝑡 = 𝑓1 (𝑊𝑎,𝑎𝑎𝑡−1 +𝑊𝑎,𝐺𝐸𝑡𝐺𝐸𝑡 ), 𝑓1 ∈ {sigm, tanh} (12)

𝑌𝑡 = 𝑓2 (𝑊𝑦,𝑎𝑎𝑡 ) (13)

where, 𝑎 is the hidden layer of RNN, 𝑓2 the last layer of RNN.
Given a ground truth fluid intake value 𝑌𝑡 at time 𝑡 , the regression
loss 𝐿 for minimization can be calculated by Mean Squared Error

(MSE):

𝐿 =
1

𝑁

𝑁∑
𝑖=1

(𝑌 𝑡
𝑖 − 𝑌 𝑡

𝑖 )
2 (14)

The classification cross entropy loss can be represented as:

𝐿 = −
𝐶∑
𝑖

𝑌 𝑡
𝑖 𝑙𝑜𝑔(𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑌 𝑡

𝑖 )) (15)

where 𝐶 is the number of classes.
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3.7 Training Process

The detailed training process of the proposed method is outlined in

Algorithm 1. It is to be noted that our TSR-GNN framework does not
rely on more hyper-parameters than the basic ones for classic GIN,

LSTM, GAT, and ST-GIN models. In this work, our model takes

the raw sensor data streams as input and generates fluid intake

predictions.

Algorithm 1: Training Algorithm for TSR-GNN

Input: {𝑅𝑡𝑆 , 𝑡 = 0, . . .𝑇 }, 𝑒𝑝𝑜𝑐ℎ𝑠
Initialize: {𝐸𝑆 (𝑖) |𝑖 ∈ 1, . . . 𝑁 ← 𝑅𝑎𝑛𝑑𝑜𝑚},

{𝑅𝑒0 = 1|𝑅𝑒0 ∈ 𝐺0},𝑊 ← 𝑅𝑎𝑛𝑑𝑜𝑚,

𝛼 ← 𝑅𝑎𝑛𝑑𝑜𝑚, 𝜃 ← 𝑅𝑎𝑛𝑑𝑜𝑚, ℎ0 ← 𝑅𝑎𝑛𝑑𝑜𝑚
Output: {𝐺𝑡 |𝑡 = 0, . . . ,𝑇 }, {𝑌 𝑡 |𝑡 = 0, . . . ,𝑇 }

1 for 𝑒𝑝𝑜𝑐ℎ ∈ {1 . . . 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠} do
2 for 𝑡 ← 0 to 𝑇 do

3 for 𝑖 ∈ {1 . . . 𝑁 } do
4 𝐹 𝑡

𝑆 (𝑖)
← 𝑓 (𝑅𝑡

𝑆 (𝑖)
)

5 𝑅𝑒𝑖 ← {Re𝑡𝑖, 𝑗 = 𝑠𝑖𝑚(𝐸𝑆 (𝑖) , 𝐸𝑆 ( 𝑗) ) | 𝑗 ∈ {1 . . . 𝑁 }}

6 𝑅𝑒𝑖 ← {{Re𝑖, 𝑗 = ∅, { 𝑗 ∉ 𝑎𝑟𝑔𝑡𝑜𝑝𝑘 (𝑅𝑒𝑖,𝑛, 𝑛 ∈
{1 · · ·𝑁 })}} # k candidates neighbors selection,
form graph structure

7 𝑐𝑡
𝑆 (𝑖)

←E𝑆 (𝑖) ⊕𝑊𝐹 𝑡
𝑆 (𝑖)

8 𝜋 (𝑖, 𝑗) ← {𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎T (𝑐𝑡
𝑆 (𝑖)

⊕ 𝑐𝑡
𝑆 ( 𝑗)

)) | 𝑗 ∈

{1 . . . 𝑁 }

9 𝛼𝑖, 𝑗 ← {𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜋 (𝑖, 𝑗)) | 𝑗 ∈ {1 . . . 𝑁 }}

10 𝑁𝐸𝑆 (𝑖) = {𝑀𝐿𝑃 (𝛼𝑖,𝑖𝑊𝐹 𝑡
𝑆 (𝑖)

+∑
𝑗 ∈N(𝑖) 𝛼𝑖, 𝑗𝑊𝐹 𝑡

𝑆 ( 𝑗)
) | 𝑗 ∈ {1 . . . 𝑁 }}}

11 𝐺𝐸𝑡 ←Concatenate({NE𝑆 (𝑖) |𝑖 ∈ {1 . . . 𝑁 })

12 𝑌 𝑡 , ℎ𝑡 ←LSTM(h𝑡−1,𝐺𝐸𝑡 )

13 𝑙𝑜𝑠𝑠 ←MSE(Y𝑡 , 𝑌 𝑡 )

14 Update the Sensor Embeddings, Attention-GNN, and

LSTM model parameters 𝐸𝑆 ,𝑊 and 𝜃 according to

the loss by gradient descent

Inputs. After the collection of N channels multi-modal sensory

data from a smartwatch 𝑆 , the system stores these streams 𝑅𝑆 and

divide them into time windows which fall in between every two

dialysis sessions (typically 2 days worth of data). The divided stream

data 𝑅𝑡𝑆 presents as graph node attributes according to its modal-
ity(e.g., PPG node, GPS node, Step Count node, etc.).

Initialization. To capture the salient features of each sensor and

to model the complex relationships between them, we introduce the

sensor embeddings 𝐸𝑡𝑆 , which are initialized randomly at 𝑡 = 0 and

are learned during training. The sensor relation graph𝐺0 = (𝑆, 𝑅𝑒0)
is simply initialized as a fully connected graph because the sensor

relation set 𝑅𝑒0 are initialized to 1. The setup of GNN weights𝑊 ,

attention weights 𝛼 , LSTM parameter weights Θ and LSTM hidden

state ℎ0 follow random initialization.

Overall algorithm. Algorithm 1 shows the overall proposed

model training scheme. After initializing all the weights, hidden

state, and sensor embeddings, the algorithm takes the raw sensor

data taking form of time windows, transforms the raw input data

into homogeneous form and feeds the data into a graph structure

construction process. The graph is generated by calculating the

cosine similarity between different sensor embeddings. Then, we

feed both graph structure adjecent matrix and homogeneous sensor

features into an attention-based graph neural network (GNN) to

get the node embeddings for each sensor. After that, we interact

the node embeddings with the sensor embeddings to get the final

sensor representation, interactive node-sensor embeddings. Finally,

we concatenate all node-sensor embedings to a graph embedding,

and use the recurrent neural network (RNN) to connect all the

graph embbedings in every timestamp and predict the fluid intake

amount at that timestamp. The model parameters and learnable

sensor embeddings are updated based on the MSE/Cross Entropy

Loss.

The detailed hyper-parameter settings of TSR-GNN model train-
ing are discussed in Section 5.1.

4 Study and Data Description

Data Collection After getting approval from the Institutional Re-

view Board, N=14 ESKD patients were recruited from the Kidney

Clinic to participate in a study investigating the use of wearable

sensing to estimate fluid intake around 4-weeks. Participant’s age

was recorded as follows: 26-40: 21.42%, 41-55: 35.71%, 56-65: 28.57%,

66+: 14.29%, with 64.29% female, 28.57% male, and 7.14% trans-

gender. Participants belong to 4 different ethnic groups: 57.14%

are Caucasian, 14.29% are African, 21.43% are African American,

and 7.14% are Asian. Majority of them (92.86%) are right-handed.

Participants were given an Android smartwatch with an in-house

developed app pre-installed (Fluisense, available on Android play

store [4]). Patients were asked to log their fluid intake through the

app by choosing from a list of predefined volumes each time they

consume any liquid (e.g., 2oz, 4oz, 12oz, etc.). The app computed

and displayed the self-reported daily volume intake to help patients

monitor their own fluid consumption (Figure 5). The Fluisense ap-

plication also stores all stream sensor data in real-time and uploads

all recorded data to Amazon AWS S3 when internet is available.

Participants were compensated up to $100 for completing the study.

Modality Description

Heart Rate The number of heartbeats per per minute

PPG Detects volumetric changes in blood in peripheral circulation

Step Count Measures the number steps and distance traveled

GPS Longitude and latitude of locations

Compass Captures the directions with respect to the North and South

Gyroscope Senses the change in rotational angle per unit of time

Sound Amplitude of sound waves

Battery Monitors the smartwatch’s battery level

Light Measures ambient light in lux

Magnetometer Measures the direction and strength of the magnetic field

Weight Changes Measures of weight change before and after dialysis sessions

Self-Reported Intake Self-reported fluids consumed in a given period

Table 1: Multi-modal Sensory Data Description

Patients received text messages twice a day (9am and 8pm) to

remind them to use the watch app and the smartscale. We also
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recorded patients’ weights before and after each of the thrice-

weekly dialysis sessions. Data was automatically and periodically

synced to a secure amazon cloud storage. Participants were com-

pensated with up to $100 in gift cards for completing the study.

(a) Weight change distribution (b) Self-reported fluid intake distribution

Figure 4: Distribution of Interdialytic weight change (M=3.18,

SD=1.38) and Interdialytic self-reported fluid intake (M=2.97, SD=2.12),

both unit in kg.

The goal of this study is to investigate how wearable sensors

data can capture patient objective fluid intake biomarkers from the

continuous sensor streams available on wearable devices. FluiSense

can passively collect bio-behavioral features such as cardiovascular

reactivity, activity levels, and mobility patterns that are hypothe-

sized to correlate with fluid intake and motivate use to generate

sensor network embeddings to encode the complex fluid-intake

related human behaviors. The collected sensor data are summarized

in Table 1.

Ground truth For ground truth𝑦, we use weight changes between
dialysis sessions and interdialytic self-reported fluid intake data as

our prediction labels. The rationale for using weight change and

self-reported fluid consumption ground truth is because those two

measures characterize both objective and subjective fluid consump-

tion and because they represent the current clinical practice for

measuring fluid consumption in the clinic. Because ESKD patients

do not have the capability to remove fluid in their body, the weight

change can reflect the real interdialytic fluid intake. Though the

self-reported data may produce certain errors due to limitations in

self-report methods (e.g., forgetfulness and personal perception),

we found it to correlate with weight changes (with P<0.01, r>0.25),

thus can provide more granular fluid intake data. Patients recorded

fluids in total 496 times, Figure 4 shows the distribution of weight

change and self-reported fluid intake data. The average interdia-

lytic weight gain is 3.18 kg +/- 1.38 and the average self-reported

interdyalic fluid consumption is 2.97 kg +/- 2.12.

5 Experiments

We design our experiments to evaluate TSR-GNN, focusing on the
following research questions:

• RQ1: How do TSR-GNN and its ablations compare to the baseline
methods?

• RQ2: How to interpret the node/sensor contribution and corre-

lation in fluid intake predictions by using TSR-GNN?

Figure 5: The user interface of the FluiSense smartwatch app

• RQ3: What are the impacts of the major model hyper-parameters

including training epoch, top-k, attention, and sensor embedding

on TSR-GNN?

5.1 Experimental Setting

DatasetsWe summarize our fluid intake task into two major parts,

one is a regression task, which estimates the precise quantity of

fluid intake (in KG) between two dialysis sessions changeor on a

daily basis. Another one is a classification task in which we divide

the ground truth labels into 5 categories depending on their 5%,

25%, 50%, 75%, 90% percentiles, and predict the fluid intake level

accordingly. The reason we choose the above 5 categories is because

these are common percentiles used in statistical analysis. Further-

more, when fluid consumption is greater than 50% percentile, this

can represent higher chances of fluid overload. Through these two

tasks, a rigorous evaluation of the proposed method on different

levels of granularity has been provided to study the feasibility of our

proposed mobile sensing method and its effectiveness at detecting

peaks in fluid accumulation that can indicate fluid overload. The

Leave-one-subject out cross validation is one of the most common

testing methods in this field. Thus, we split N=12 participants as

training sets, N=1 as validation sets, and last N=1 as test sets. To test

the robustness of our method, we perform 12-fold cross-validation

over all collected data. Two time granularity levels have been tested:

(1) training and testing performed on a two-days time granularity

which represent the time between two consecutive dialysis ses-

sions. This is driven by the fact that the weight pre/post dialysis

has been measured during the thrice per weekly dialysis sessions

typical two days apart. (2) training and testing on daily basis to

test the performance of our model when making more fine-grained

predictions.

Baselines, We compare TSR-GNN with 7 baselines (including one
ablation), representing two types of regression methods, 1) Statis-

tical machine learning (Mean, Support Vector Machine, Decision

Tree), 2) Deep learning and GNNs (GIN, Long-Short Term Memory,

Spatial-Temporal GIN).

• Mean Model, calculates the mean of training data, treat the

mean as prediction result for test data.

• SVR/SVM [16], Support Vector Regression/Support Vector

Machine, is a classic regression/classification method based

on support vectors.

• DTR [35], Decision Tree Regression/Decision Tree, is a sta-

tistical machine learning method based on information gains.

• GIN [39], Graph Isomorphism Network (GIN) is a variant

of GCN with MLP neighborhood aggregation, specifically
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for graph-level representation, we trained this model with a

strongly connected sensor graph.

• LSTM [19], Long-Short Term Memory (LSTM) is a type of

recurrent neural network that learns the timeseries informa-

tion between data.

• ST-GIN [40], Spatial-Temporal GIN (ST-GIN) is a variant of

ST-GCN, specifically, use a GIN model connect to an LSTM

model to reserve both temporal and spatial information.

• SR-GNN, is ablation of our approach, without learning tem-

poral information from data (w/o LSTM).

Metrics,We chooseMeanAbsolute Error (MAE), RootMean Squared

Error (RMSE), and F1 measurements with standard errors as our

evaluation metrics:

𝑀𝐴𝐸 =
1

𝑁

𝑁∑
𝑖=1

𝑦𝑖 − 𝑦

,

𝑀𝑆𝐸 =

√√√
1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦)2

. Given the regression nature of our fluid intake monitoring tasks,

the MAE, and RMSE are two most common metrics that evaluating

the performance of the model in regression analysis and they are

sensitive to different types of errors (e.g. RMSE is more sensitive to

outliers).

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 · 𝑃𝑟𝑒𝑐 · 𝑅𝑒𝑐

𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐
is a classification metrics which balanced the precision (𝑃𝑟𝑒𝑐) =
𝑇𝑃/𝑇𝑃 + 𝐹𝑃 and recall rate (Rec) = 𝑇𝑃/𝑇𝑃 + 𝐹𝑁 , where𝑇𝑃 ,𝑇𝑁 , 𝐹𝑃 ,
𝐹𝑁 are the numbers of true positives, true negatives, false positives,

and false negatives.

Training Setting, we perform a cross-validation grid search to

select the best hype-parameters for all models including baselines

with the following default values, we set the number of GIN layers to

2, LSTM layers to 1, the embedding size of all layers in all models to

32. For TSR-GNN, the learning rate is select from 5e-2, 5e-3, 5e-4, 5e-5,

epoch size 50, 100, 200, 300, 400, 500, we find 𝑡𝑜𝑝𝑘 closest neighbors

𝑘 in 3-10. We use the same GIN model for all baselines that involve

GNN. All experiments are performed on an 8GB NVIDIA GeForce

RTX 3070 GPU.

The main cross-validation experiment results are shown in table

2.

5.2 RQ1. Performance and Feasibility of

TSR-GNN
Performance, All 7 baselines are included in the performance com-

parison presented in table 2. TSR-GNN achieves better results com-
pared to all baselines on bothWeights Change and Self-reported

prediction tasks. Specifically,

(1) Almost all methods can significantly surpass the Mean Model

in every aspects, which shows the potential prediction power of

collected multi-modal sensor data. Specifically, in weights change

estimation task, TSR-GNNMAE is improved 18.60%, RMSE improved

33.54%, and F1 score increased 60.57% compare to the mean model.

(2) Statistic methods (support vectors, decision trees) performed

better in regression tasks, and deep learning approaches have higher

F1 scores in classification tasks. TSR-GNN can beat both statistic

methods and deep learning methods in regression and classification

tasks. TSR-GNNMAE is improved 8.3%, RMSE improved 23.44%, and

F1 score increased 3.88% compared to the second best model.

(3) Deep learning based models (including TSR-GNN), have better
performance from a robustness perspective. They have relatively

smaller standard deviation across all validation folds.

(4) Generally, methods without LSTM ablations (GIN, SR-GNN)

are slightly inferior to models with LSTM (ST-GIN, TSR-GNN),

which demonstrates that the temporal information between time

windows are useful when predicting fluid intake.

(5) TSR-GNN and SR-GNN both overperformed other baseline mod-
els, especially on graph neural network models, which shows the

potential of leveraging sensor embeddings and sensor interactions.

Since, the baseline graph models GIN and ST-GIN do not consider

the sensor relations.

Figure 6: Mean confusion matrix of our TSR-GNN method when pre-
dicting the interdialytic weight change.

Feasibility, To prove the feasibility and effectiveness of our mobile

sensing system, we select our best model TSR-GNN to analyze its
prediction results. First, we calculate the error percentage of our

regression tasks by

𝐸𝑅 =
100

𝑁

𝑁∑
𝑖=1

|
𝑦𝑖 − 𝑦𝑖

𝑦𝑖
|

The statistic of ground truth labels between two dialysis sessions

is shown in table 3, and the average error percentage of our model

for both weight changes and self-reported fluid intake is around

32%-33%, compared to the state-of-art wearable sensing solution

based on motion sensors [20], the average error percentage reduced

8.68%.

The classification tasks also demonstrates the potential of our

method. We draw an average confusion matrix figure 6 over 9 folds

of validations (the rest 3 folds do not have all five labels) on weight

changes prediction. The confusion matrix shows that our system

maintains high accurate fluid intake level prediction, even when

the quality level is above 95% where we recorded a high 97.82%

accuracy, similar result in regression task, as shown in red arrows

in figure 7, our approach can capture the high peaks in continuous

fluid intake estimation.
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Weights Change Self Reported
Model

MAE RMSE F1 MAE RMSE F1

Mean 1.2669 ±0.3172 2.1820 ±2.3353 0.3682 ±0.0790 1.5195 ±0.3645 3.3823 ±0.7793 0.6556 ±0.1408
SVR/SVM 1.1247 ±0.3340 1.8942 ±2.1731 0.3571 ±0.1653 1.1534 ±0.4454 2.3678 ±0.8630 0.5308 ±0.1282
DTR/DT 1.1584 ±0.4216 2.0132 ±1.3925 0.8510 ±0.2065 1.3231 ±1.1058 2.8329 ±1.7406 0.8887 ±0.2169
GIN 1.5688 ±0.3046 1.8571 ±0.2980 0.8571 ±0.1437 1.3519 ±0.3987 2.1335 ±0.7642 0.8066 ±0.0578
LSTM 2.5126 ±0.3613 3.1186 ±1.9921 0.8429 ±0.2108 1.6365 ±0.5047 2.7184 ±0.8616 0.9182 ±0.1627
ST-GIN 1.3244 ±0.2287 1.6337 ±0.2501 0.8621 ±0.1537 1.2762 ±0.3235 1.8495 ±0.4633 0.9161 ±0.1358
SR-GNN 1.0547 ±0.2331 1.4923 ±0.2776 0.9074 ±0.1879 1.0152 ±0.3051 1.6391 ±0.4180 0.9211 ±0.1107
TSR-GNN 1.0313 ± 0.2372 1.4501 ± 0.2953 0.9337 ± 0.1816 0.9573 ± 0.2618 1.5523 ± 0.2514 0.9570 ± 0.0640

Table 2: The performance of Interdialytic fluid intake predictions.

Label Type Mean Min Max EP

Weights Change 3.18 0.2 6.50 32.43%

Self-reported 2.97 0.12 10.85 32.25%

Table 3: Ground truth label statistics. EP denotes the Absolute Error

Percentage to the Mean value.

Figure 7: An example of regression results generated by TSR-GNN.
This example generated from one random participant illustrates how

our method is able to accurately detect peaks in weight change. This

is a crucial step to designing interventions in the future to help ESKD

patients better anticipate and mitigate potential dangerous fluid over-

load.

To further test the feasibility of using our method for monitoring

fluid intake between clinical visits, we replicated the experiment on

daily basis to predict the self-reported fluid intake . The reason why

we only evaluate TSR-GNN on self-reported fluid intake is because
the weight changes are only measured during the dialysis sessions.

The results in table 4 shows similar trends in which we can see how

TSR-GNN significantly outperformed all the other baselines in MAE,

RMSE and F1 perspectives when predicting the daily fluid intake.

This experiment demonstrates the prediction power of our model

on a “between visits” granularity.

Self Reported
Model

MAE RMSE F1

Mean 0.9869 ±0.1439 1.1951 ±0.1822 0.6366 ±0.0688
SVR/SVM 0.5975 ±0.3019 1.3886 ±0.5425 0.7863 ±0.0594
DTR/DT 0.9278 ±0.2094 1.2237 ±0.2610 0.7844 ±0.1565
GIN 0.7972 ±0.2034 1.0580 ±0.2493 0.8657 ±0.1029
LSTM 1.0273 ±0.0273 1.3880 ±0.0395 0.8342 ±0.0472
ST-GIN 0.7155 ±0.3803 0.9109 ±0.4479 0.9078 ±0.0969
SR-GNN 0.4397 ±0.1054 0.5705 ±0.1317 0.9231 ±0.0522
TSR-GNN 0.4183 ± 0.0866 0.5292 ± 0.0951 0.9497 ± 0.0325

Table 4: The performance of daily self-reported fluid intake predic-

tions.

Figure 8: Sensor importance 1D heatmap. Darker node indicate

higher importance (dark blue to light green).

5.3 RQ2. Interpretability of our TSR-GNNModel

Node Importance via GNNExplainer. To identity which nodes

are more important than others at predicting fluid intake, we adopt

GNNExplainer [41] on our converged model to create a node im-

portance heatmap shown in figure 8. The original GNNExplainer

learns an optimized 𝑋 𝐹
𝑠 which maximizes the mutual information

between GNN’s prediction Y and the distribution of possible sub-

graph structures (𝐺𝑠 , 𝑋
𝐹
𝑠 ), where G is the subgraph structure, and

X is the subgraph features. It uses a learnable feature mask 𝐹 to

select features from 𝑋𝑠 , they redefine the subgraph features 𝑋
𝐹
𝑠 as

𝑋𝑠 � 𝐹 . However in our case, we need node importance over feature
importance, so we re-defined 𝑋 𝐹

𝑠 = 𝑋𝑁
𝑠 to 𝑁 �𝑋𝑠 , where 𝑁 acts as

a learnable node mask, to highlight influential nodes.

The 1D heatmap identifies the most important nodes/sensors in

the fluid intake prediction task. Location, photoplethysmography

(PPG), and gyroscope sensors stood out as the most significant

predictors of fluid intake. This can be justified by the followings: 1)
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Figure 9: Sensor relation graph according to edge attention weights.

Mobility patterns captured from GPS locations can represent how

active a particular patient is. We hypothesize that patients who are

more physically active tend to drink more water to compensate for

the lost water (through sweat) during physical activities. 2) PPG sen-

sor, which generates an optically obtained plethysmogram that can

be used to detect blood volume changes in the microvascular bed

of tissue contains many physiological markers that can correlate

with fluid overload (when ESKD patients drink water more than

the standard). Heart rate variability, respiration rates, and blood

oxygen levels are all indicative of fluid overload and are embedded

within the PPG’s plethysmogram. 3) the gyroscope sensor can char-

acterize low-level motion data and is able to distinguish between

different gestures indicative of drinking activities. We hypothesize

that this sensor was less important than location and PPG because

participants tend to wear the watch on their non dominant hand,

so this sensor may have missed those instances when participants

used their dominant hands when consuming fluids.

Sensor Relation/Interaction via Edge Attention, Edge weights

learned by the attention network indicate the relation between

sensor nodes. We draw a sensor relation plot depicted in figure

9 using 𝑡𝑜𝑝𝑘 = 3 to present the most reliable inner relationship

between those multi-modal sensors.

The sensor relation figure indicates that the importance of each

node’s neighbors inmodelling the node’s behavior (inner-interaction),

and the relation between sensor embeddings. From figure 9, physi-

ological biomarkers like PPG and heartrate have inner-connection

indicating that they are similar and correlated. This finding proves

how validated our approach is because heart rate is known to be

extracted from PPG (by estimating the beat-to-beat intervals from

the PPG signal). Some behavior biomarkers like step count and loca-

tion are dependent on contextual sensors such off-body and sound.

It’s intuitively reasonable, since step count stops when wearable-

devices are on off-body status and since noise levels vary based on

the typle of location (e.g. indoor vs. outdoor). We only select top3

attention weights as edge between nodes, others still have other

types of relationship with lower weights/weaker interaction.

In summary, 1) The sensor nodes in our model has interpretable

contribution in the fluid intake estimation. The physiological and

behavioral sensors contribute the most to the prediction result; 2)

the attention weights help to find closely related sensors that have

stronger inner-connection between each other.

5.4 RQ3. Hyperparameter Study

In table 2, we compare TSR-GNN with an ablation SR-GNN (without
LSTM temporal information learning), the result shown SR-GNN lead
to inferior performance on both regression and classification tasks.

In this section, we present detailed results about hyper-parameter

(learning curve, topk selection) and other ablation (w/o attention)

analyses of TSR-GNN. We draw three figures to show the model

sensitivity to hyperparameters and ablations.

As we observed from the learning curve figure 10 (a), TSR-GNN
converges rapidly after 20-50 training epoch and achieve the best

performance on test set after 100 epochs, other deep learning meth-

ods such as LSTM do not converge as the training epoch goes up.

While SR-GNN converges quickly after 5 epochs, the regression error
remain the same for the rest epochs, which indicates the proposed

model w/o LSTM can converge quickly, and model with LSTM

involves more parameters to train.

(a) Training curves vs. MAE (b) TopK vs. MAE

Figure 10: Hyperparamter sensitivities.

Moreover, as shown in figure 10(b), the performance of TSR-GNN
and SR-GNN are robust to the neighbor size of 𝑡𝑜𝑝𝑘 , where 𝑡𝑜𝑝𝑘 =
2, 3 provide slight better performance than smaller and extremely
big size.

Finally, to further understand the effectiveness of our designed

attention-based model, we draw a bar plot in figure 11 to compare

TSR-GNN with TSR-GNN w/o attention or w/o sensor embedding in
node aggregation.

(a) Full vs. w/o Attention Ablation (b) Full vs. w/o sensor embedding

Figure 11: Model ablations compression.

To guarantee the fairness in model evaluation, we set the same

set of parameters in both models including the same 𝑡𝑜𝑝𝑘 and
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learning rate. From figure 11 (a) and (b), the full TSR-GNN model
achieves better result than TSR-GNN model without attention and
sensor embeddings, indicating the effectiveness of the attention

mechanism and learnable sensor embeddings applied here.

6 Discussion and Future Work

To the best of our knowledge, this is the first ubiquitous fluid in-

take monitoring method applied to ESKD patients using relational

graph neural networks and on-body multi-modal mobile sensing.

Instead of predicting the fluid intake behavior by inaccurate static

single sensor estimation (e.g., gesture recognition), we introduce

the importance of temporal information and multi-modal sensor

interaction. Though the computational cost is higher than former

methods, the proposed solution outperformed the-state-of-the-art

predictive modeling models when predicting fluid intake of ESKD

patients. The concept of sensor relationship is not only useful in

fluid prediction task, but can also be applied to many other domains

involving sensor networks.

Clinical implications 1) Our work provides evidence that mobile

sensing techniques (e.g., GPS, PPG, Gyroscope, etc.) are potentially

useful in designing accurate, ubiquitous, and unobtrusive fluid

management systems and can perform as an additive system to

the clinical examination, hemodynamic monitoring and weight

assessment done three timesweekly on dialysis. This can potentially

help key stakeholders (patients, clinicians, providers, organizations)

and represent a major component for next generation personalized

intervention for dialysis patients. 2) Our work can provide rich

information about patients’ fluid intake patterns which can be

leveraged to design adaptive personalized, context-relevant health

services and treatment plans. 3) Although the time granularity

tested in this work is in the order of one day and two days (time

between two dialysis sessions), the same work can be used on

varying time scales (e.g., hours, weeks, etc.).

Limitation We acknowledge that our current work is subject to

the following limitations. 1) Our sample size is small. The collected

data was generated from N=14 ESKD patients only. This is mainly

due to the challenges associated with recruiting ESKD patients who

tend to be less tech-savvy (due to age), have many commodities

that interfere with the data collection (e.g., vision problem), and

are busy with the burdensom dialysis treatement. Given all these

challenges, the longitudinal dataset collected in this study is still

unique and is still the first in its kind containing wearable sensing

data from ESKD patients over multiple weeks. 2) There are multiple

sensors that have not been investigated in this study (e.g., bio-

impedance and sleep quality) that can have significant correlation

with fluid overload. Those sensors were not present on the Fossil

Gen 5 smartwatch used in this study.

In the future, we plan to replicate this study in a larger sample

size, while including other sensing modalities and while collecting

ground truth data on a more granular scale (e.g., every day). We

will also develop forecast models to forecast the trajectories of fluid

accumulation over time (e.g., in the next 24h, 48h, etc.) These addi-

tional and fully powered studies will allow us to better assess the

clinical significance of our efforts, including establishing accuracy

thresholds for mobile fluid sensing techniques (relative to and in

combination with clinical examination, hemodynamic monitoring

and in-clinic weight assessment), as well as determining minimally

clinically important differences and effect sizes for different mo-

bile fluid sensing modalities and modeling procedures. Likewise,

the aforementioned studies are needed to determine the potential

for mobile fluid sensing techniques to change fluid monitoring

practices and recommendations in ESKD patients.

7 Conclusion

In this work, we present a novel wearable sensing fluid intake mon-

itoring system, which combines multi-modal sensing and graph

neural networks to collect physiological biomarkers, behavioral

biomarkers, and contextual markers of fluid intake. To better lever-

age multi-modal sensor data, we propose a novel temporal sensor-

relation graph neural network (TSR-GNN) to capture the inner rela-
tionship between different sensors and fuse sensor’s data accord-

ingly. The real-world empirical experiments demonstrate that our

method overperformed all other baseline methods in both regres-

sion and classification tasks for interdialytic fluid intake estimation.

Especially, TSR-GNN reduces the average error percentage by 8.68%

compared to the state-of-arts fluid intake estimation methods, and

achieve 97.82% f1 score on extreme fluid overload situation. The in-

depth interpretability analysis provides a view of how physiological

and behavioral sensors contribute to the prediction power.

Our proposed fluid intake monitoring solution can provide con-

tinuous and unobtrusive fluid manage solution to many health

conditions in which fluid monitoring is critical. The interpretabilies

of our model can also provide a fluid intake featurization cookbook

to future fluid monitoring research.
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