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ABSTRACT

Current collaborative augmented reality (AR) systems establish a

common localization coordinate frame among users by exchanging

and comparing maps comprised of feature points. However, relative

positioning through map sharing struggles in dynamic or feature-

sparse environments. It also requires that users exchange identical

regions of the map, which may not be possible if they are separated

by walls or facing different directions. In this paper, we present

Cappella1, an infrastructure-free 6-degrees-of-freedom (6DOF) posi-

tioning system for multi-user AR applications that uses motion esti-

mates and range measurements between users to establish an accu-

rate relative coordinate system. Cappella uses visual-inertial odome-

try (VIO) in conjunction with ultra-wideband (UWB) ranging radios

to estimate the relative position of each device in an ad hoc manner.

The system leverages a collaborative particle filtering formulation

that operates on sporadic messages exchanged between nearby

users. Unlike visual landmark sharing approaches, this allows for

collaborative AR sessions even if users do not share the same field

of view, or if the environment is too dynamic for feature matching

to be reliable. We show that not only is it possible to perform col-

laborative positioning without infrastructure or global coordinates,

but that our approach provides nearly the same level of accuracy

as fixed infrastructure approaches for AR teaming applications.

Cappella consists of an open source UWB firmware and reference

mobile phone application that can display the location of teammem-

bers in real time using mobile AR. We evaluate Cappella across mul-

tiple buildings under a wide variety of conditions, including a con-

tiguous 30,000 square foot region spanning multiple floors, and find

that it achieves median geometric error in 3D of less than 1 meter.

1 INTRODUCTION

Driven by advances in visual-inertial odometry (VIO), simultaneous

localization and mapping (SLAM), and miniaturized depth sensing

technologies, we are seeing augmented reality (AR) become more

accessible on a wide variety of platforms. Mobile phones are now

equipped with dedicated hardware to enable richer AR experiences,

including multiple cameras, specialized processors, ultra-wideband

(UWB) ranging radios [3], and small LiDAR depth sensors. Navi-

gation applications like Google Maps, utilities like IKEA Place, and

games like Pokemon Go have shown some of the early potential

1Like its musical inspiration, Cappella utilizes collaboration among agents to forgo
the need for instrumentation

Figure 1: Cappella offers a distributed infrastructure-free

relative positioning framework that allows multiple mobile

users to create a collaborative AR session even in non-line

of sight.

of AR on mobile phones. These applications are typically built on

top of existing AR frameworks like ARKit, ARCore, MixedReality

Toolkit, and Vuforia.

Primarily driven by table-top gaming, we are now seeing appli-

cations where multiple users interact with shared content [2]. This

is relatively straightforward in controlled environments, where all

users can exchange a common set of reliable visual features. How-

ever, one could imagine extending these applications to larger and

more complex domains, where simple feature sharing is infeasible.

Take, for example, a first responder or firefighter application, where

teams of users navigate through a previously unexplored or harsh

(damaged/modified) environment while wearing an AR headset.

With a robust multi-user AR platform, first responders could see the

status and position of fellow teammates and the location of support

vehicles even through walls without any a priori scene informa-

tion. We already see this is a challenge in systems like the Army

Integrated Visual Augmentation System (IVAS) [49] which is using

modified Hololens 2 headsets for indoor/outdoor team awareness.

In the mobile phone context, this same type of platform could help

find a friend at a concert venue that is both large and with highly

dynamic lighting and dynamic staging.

Localization of users and other objects in the environment within

a common coordinate system is a critical requirement for wide-area

multi-user AR applications. In order to overlay virtual content from

the user’s perspective that is "anchored" to the physical world, it

is necessary to track the pose of the user’s display relative to the

world. As the user moves and rotates the display, the projected

content needs to move accordingly, which requires accurate 6DOF

motion tracking. With a single user, it is sufficient to perform this

tracking with respect to any arbitrary starting pose. However, the
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problem becomes more challenging with multiple users since each

tracking instance must share the same 6DOF origin. This problem

can be slightly simplified to 4DOF when the gravity direction for

all devices is assumed to be known using inertial (IMU) sensors.

Current AR frameworks like Apple’s ARKit and Google’s ARCore

provide multi-user support by sharing visual (and depth) features

between users to establish their coordinate system. As each user

detects distinguishable features in the environment, these features

are collected into a map using SLAM. By sharing this map, other

users can localize themselves if they detect the same visual features.

However, obtaining a successful feature match requires the users

to view the surrounding scene from a very similar perspective [2].

In addition, feature matching struggles if objects have been moved,

become occluded, or if lighting conditions have changed. In many

practical applications, users are often taking disjoint paths through

the environment, so there will likely be no common visual features

for map matching, either because the users are separated by walls,

are facing different directions, or because the environment is too

visually uniform. Additionally, in order to provide building-scale

coverage and beyond, it is necessary to maintain a large and dense

feature map, which quickly becomes impractical to store and share.

This paper addresses these challenges by proposing Cappella,

a distributed relative positioning framework that allows multiple

users to create an on-demand collaborative AR session. Cappella

uses peer-to-peer distance measurements to establish a common co-

ordinate frame, so it does not rely on any positioning infrastructure

or sharing of map data. In our implementation, range measure-

ments come from UWB radios, which are now available on the

latest generation of mobile phones and specialized AR headsets [3].

To our knowledge, Cappella is the first multi-user AR system to use

peer-to-peer ranging to establish a coordinate frame rather than

external infrastructure or feature maps. Cappella’s key innovation

is the design of a collaborative particle filter that jointly estimates

the poses of all AR users relative to each other. Since it does not rely

on sharing visual features, this approach is broadly applicable to

static or dynamic environments, both indoor and outdoor, including

scenarios where the need for visual pre-mapping is a nonstarter.

To achieve this, Cappella captures the local inertial information

from each individual AR user, providing a 6DOF odometry estimate

of this user over time. While tracking motion, Cappella collects

distance ranges (using UWB) to other users and combines these in-

formation sources using a particle filter. Like most inertial tracking

systems, VIO tracking estimates are smooth and locally accurate

but drift over time and are only relative to the start pose. UWB

ranges, on the other hand, provide absolute distance information

and do not drift over time, but they are infrequent and noisy. By

combining these complementary sensors, we achieve the best of

both worlds. The absolute nature of UWB ranges allows us to cor-

rect VIO drift over time, while noise in UWB readings is smoothed

by the VIO. In addition, the distributed architecture of Cappella

allows each user to locally estimate the pose of other AR users with

minimal message exchange between users.

One core challenge in implementing the joint particle filter is

the state-space explosion as the number of AR users grows, a com-

mon dilemma faced by the robotics community in systems which

track a large number of state variables. A common robotics so-

lution is to use Rao-Blackwell factorization (RBPF) to reduce the

required number of particles to a tractable level [59]. Whereas many

RBPF implementations, such as the popular LiDAR SLAM package

GMapping [25], perform factorization over a grid or landmark map,

Cappella performs factorization over other users’ locations. This

has a "collaborative" effect, wherein ranges to one user can improve

the location estimates of the other users. Compared to a more tra-

ditional particle filter where each user is tracked independently,

we show that the collaborative approach is able to improve accu-

racy while maintaining a reasonable memory footprint that grows

linearly with the number of tracked nodes. In addition, our filter

formulation allows for sporadic UWB and VIO updates, loosening

communication constraints in the system design over methods that

rely on fixed-rate updates.

In order to prototype Cappella in a teaming use-case, we devel-

oped a mobile AR application for iOS. Our technique is applicable

to any relative tracking system that uses inertial data and ranging

estimates and hence could also be applied to AR headsets in hands-

free applications like aiding first responders. Since UWB APIs are

not available to mobile phone developers at the time of this writing,

we created peer-to-peer ranging firmware for the MDEK1001 evalu-

ation module from Decawave. The firmware allows a phone to pair

with the MDEK module over BLE, which discovers and ranges with

any number of nearby UWB devices. The firmware is also able to

multiplex a BLE connection with the phone while simultaneously

performing low-power neighborhood discovery using a scalable

rate-adaptive round-robin protocol for ranging.

We evaluated the performance of our system in many environ-

ments across four different buildings, including long corridors, dif-

ferent sizes of rooms separated by concrete, drywall, and various

other construction materials. We tested in static as well as dynamic

environments with moving people, furniture, and changing light-

ing. One of our tests includes five users moving around a large

contiguous 3-floors area (30,000+ sq ft) within an office building.

We moved furniture and toggled lighting in several tests to simu-

late more dynamic elements often found in the wild. In each test,

the users walked freely, creating many non-line-of-sight (NLOS)

scenarios with multiple walls between users. Across all of these

experiments, Cappella provides a mean 3D geometric error per-

formance of 0.9 m between users given different random walking

paths. In addition, we observe that the quality of AR performance

is sensitive to more than just geometric positioning error. Camera

lens parameters, bearing, and distance combine to define visual

registration errors that are highly dependant on the scene geom-

etry. To better capture these effects, we also evaluate our system

in terms of pixel error, which more accurately captures the visual

displacement errors experienced by users. We observe that Cappella

provides significantly lower pixel error compared to baseline meth-

ods. Our application source and UWB firmware are all open-source

and available on GitHub.

Our core technical contributions are:

• An infrastructure-free multi-user AR system with real-time

6DOF positioning of users relative to each other.

• A distributed Rao-Blackwellized Particle Filter (RBPF) formu-

lation and implementation that uses VIO and UWB readings

complementarily to jointly estimate the user positions.
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• An energy-efficient peer-to-peer UWB protocol with open-

source firmware tailored toward wide-area relative position-

ing.

• An open-source end-to-end implementation and thorough

evaluation of the proposed system. Our code is available on

GitHub (https://github.com/WiseLabCMU/slam3d)

2 RELATEDWORK

The topic of indoor positioning has received much attention over

the past several decades for applications ranging from first respon-

der tracking to autonomous drone navigation. In the context of

multi-user AR, a key requirement is to be able to track several

individuals relative to one another. There have been a plethora

of approaches that satisfy this requirement, and we observe that

they can be broadly classified based on how they establish a com-

mon coordinate frame between individuals: (1) static infrastructure

systems, which use pre-placed, explicit infrastructure as a com-

mon reference, (2) dynamic mapping systems, which create maps

of implicit infrastructure through environmental sensing and share

these maps to provide a common reference, or (3) infrastructure-free

systems, which forgo infrastructure entirely and instead use direct

peer-to-peer measurements.

Systems based on static infrastructure have the fundamental

limitation that they need to be installed a priori, so their use in AR

is limited to environments that have been selectively prepared. Dy-

namic mapping systems relax this requirement by generating maps

of the environment to use as impromptu infrastructure, but can

be unreliable in dynamic environments where changes in lighting

conditions or displacement of objects can make maps outdated or

ambiguous. Infrastructure-free systems like Cappella enable AR

applications in more general environments where mapping may

be infeasible or ineffective.

2.1 Static Infrastructure Systems

There are many types of localization systems that rely on static

infrastructure to establish a common coordinate frame. Outside-in

tracking systems like OptiTrack use motion tracking cameras or

other forms of active sensing in the environment to estimate the

locations of several users. These systems are often expensive and

are restricted to a small area of operation where the infrastructure

is installed. Alternatively, visual fiducial markers, such as ARTags

[30, 39] and AprilTags [29, 62, 67], are frequently used in AR sys-

tems to provide a reference between the physical environment and

virtual objects. While these passive markers can be accurately lo-

calized with only a camera and low computational requirements,

they only provide a location estimate when the tag is within the

field of view of the camera, which means a dense deployment is

required for wide-area coverage.

Beacon-based solutions provide continuous localization using

UWB [44, 47, 57], BLE [15, 56], or ultrasound [24, 31, 33] ranging.

These technologies are frequently combined with some form of

odometry, either from an IMU or VIO, to smooth the location output

and reduce the density of beacons required [18, 23, 35, 47, 52, 58, 61].

Cappella takes an approach similar to these systems, but rather

than relying on fixed beacons in the environment, it instead uses

peer-to-peer UWB ranges between users. This eliminates the need

for any infrastructure, which enables AR applications to be un-

tethered from specific physical spaces. Other works that take this

approach of peer-to-peer ranging will be explored in Section 2.3.

2.2 DynamicMapping Systems

Simultaneous localization and mapping (SLAM) is a class of vision-

based localization techniques for identifying and then leveraging

features in an environment to track the position of a moving device.

These methods use either monocular cameras [1, 5, 20, 40], depth

cameras [4, 36, 66], or stereo cameras [9, 11, 65] to detect visual

features from the scene, extract the 3D coordinates of the features,

and determine the device’s 6DOF pose. These coordinates, however,

are only relative to an arbitrary origin point that is not common

across devices or across tracking sessions on the same device.

Collaborative AR and VR systems have been discussed in the aca-

demic literature as early as the late 90’s [8, 37, 46, 54], where special-

ized localization systems were used to combine coordinate frames.

More recent developments in AR frameworks, such as Google’s

ARCore, Cloud Anchors, Apple’s ARKit, and Microsoft’s Spatial

Anchors have enabled multi-user capabilities. In these systems,

each AR device individually performs SLAM to capture the visual

features of the physical space relative to its local coordinate sys-

tem. The users then share these visual maps to establish a common

coordinate system and estimate the pose of other users. To share

these maps between the users, Google ARCore uses a cloud-based

architecture, which combines these maps centrally and sends the

updated maps to all the users. Apple ARKit uses a peer-to-peer

architecture, where the host of the AR session shares its current

map with the users joining the session. However, any of these tech-

niques impose significant communication overhead [53]. These

maps consist of dense visual features, 3D meshes, or raw point

clouds, which are usually large and difficult to transfer. In addition,

the map matching algorithms assume a significant overlap between

all of the users, which becomes unwieldy in terms of network traffic

and computation in large areas. In many realistic scenarios, users

often take disjoint paths through the environment, thus making

map matching much more challenging and substantially increasing

the convergence time.

2.3 Infrastructure-Free Systems

Traditional localization systems typically have the goal of estimat-

ing the "absolute" location in a fixed coordinate system that is

mapped to the physical space using external systems. In this sense,

the idea of "localization" is inherently tied to the existence of some

form of infrastructure from which to base the measurements. How-

ever, reliance on infrastructure is infeasible in many AR scenarios,

especially in the presence of multiple users. Instead, Cappella deter-

mines the relative positions between users to establish a common

coordinate system for multi-user AR applications. For example,

to display a virtual overlay of an object on the screen, it uses the

knowledge of the object’s position relative to the user itself instead

of anchoring it to the physical space.

The concept of relative localization has been used in sensor net-

work localization for collectively locating stationary [41, 55] and

mobile [21, 38, 51] nodes with respect to each other. These works

provide the theoretical foundation for network localization using
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graph theory [7, 13, 21, 22, 28, 48] or Bayesian inference methods

[14, 45]. However, most of these systems are only evaluated in sim-

ulation and either do not run in real time, are limited to 2D tracking,

or do not provide enough accuracy for AR applications.

Infrastructure-free localization has also been explored in robotics

for localizing teams of drones or ground robots with respect to each

other [14, 16, 35, 47], either by utilizing visual object detection [43,

60, 68] or fusing odometrywith distancemeasurements [6, 12, 26, 27,

34, 34, 35, 64]. These solutions primarily use either windowed graph-

based optimization or online filtering to perform sensor fusion.

With Cappella, we also seek to fuse visual odometry with peer-

to-peer UWB ranges. In fact, the problem formulation for multi-user

AR is the same as that used in the robotics community for multi-

robot localization. However, most of the above approaches are

limited in their applicability to wide-area (building-scale) tracking.

The evaluations are limited to small scenarios with short trajecto-

ries where devices remain in line of sight (LOS) most of the time.

[63] and [64] have a similar problem formulation to Cappella, where

tightly-coupled visual-inertial fusion is performed first, and then

UWB ranges are incorporated in a second-level optimization step,

but use windowed optimization and only evaluate their approach

for short LOS traces. [34] and [12] use particle filtering like Cappella,

but only work in 2D.

In this paper, we present a distributed relative positioning frame-

work based on a collaborative particle filtering approach that en-

ables wide-area relative 6DOF pose estimates of AR users without

requiring any pre-existing infrastructure, prior mapping, known

initial position, or line-of-sight operation.

3 SYSTEMOVERVIEW

This section provides an overview of the high-level system blocks

and filtering algorithm needed to perform relative localization and

display AR content on the screen.

3.1 Problem Formulation

We consider an indoor scenario consisting ofN mobile users (nodes),

all with unknown positions and orientations. The positions are un-

known in 3D, but we assume that all nodes are able to measure

the direction of gravity using their on-board accelerometers, which

provides a common reference for two of the three orientation di-

mensions. Therefore, each node has four remaining degrees of un-

certainty (three positional and one rotation about the gravity axis).

Each mobile user has an AR display device and wants to posi-

tion all other users, defined as target devices, with respect to itself,

without requiring any a priori knowledge of the physical space

or pre-installed infrastructure. The positioning framework has to

work in real-time on limited compute platforms and needs to scale

feasibly with the number of devices being tracked. All AR devices

are equipped with two sensor systems:

• VIO tracking:Many devices that support AR, including smart

phones and most AR headsets, provide developer access to their

internal VIO tracking. VIO tracks the motion of the camera by

fusing detected visual feature points with inertial sensor data, in-

cluding accelerometers and gyroscopes. The output of VIO is the

position and orientation of the device with respect to the refer-

ence frame defined at startup, with the +y axis pointing towards

Figure 2: System Overview. A mobile user’s device locates

several other target devices using a combination of VIO

tracking and UWB ranging. 6DOF relative tracking enables

AR overlays to be drawn on the display.

the direction of gravity, which VIO is able to estimate using the

accelerometer. Even though VIO provides the camera displace-

ment over time, there is no common origin between multiple

users to extract their relative positions, apart from a common

gravity axis. Another challenge of VIO data is the accumulated

drift error over time and sensitivity to environment conditions,

such as lighting and motion. [50] contains a popular open-source

VIO implementation; Cappella uses whatever source of VIO the

AR platform provides.

• UWB ranging: Among various wireless ranging technologies

that can penetrate obstacles (e.g. Bluetooth, UWB, WiFi, ultra-

sound), UWB is the most promising technology to combat mul-

tipath propagation in cluttered environments [52]. As a result,

we are seeing the appearance of UWB chips on the latest mo-

bile phones, providing peer-to-peer ranging [3]. However, each

UWB-equipped device is only capable of measuring its distance

to neighboring devices that are in range (<10−20m). Given the
mobility of users, we cannot assume that range measurements

occur synchronously or with any sort of regularity, resulting in

sparse measurements that are difficult to use for real-time posi-

tioning. Additionally, UWB will occasionally provide erroneous

measurements due to multipath in NLOS conditions.

• Data Communication:We assume that each user’s device can

communicate its state information to any neighbors in a peer-

to-peer manner. This requires relatively low data rate exchanges

and could either leverage the UWB transmissions directly or use

an ad hoc method like WiFi Direct or Bluetooth. One of the key

benefits of our collaborative filtering approach is that devices

only need to exchange data with their neighbors that are replying

to UWB messages (not a fully connected network).

3.2 SystemArchitecture

Cappella adopts a scalable distributed architecture in that each de-

vice computes the relative pose of its neighbors using peer-to-peer

distance measurements. To deal with the sparsity of UWB read-

ings, range measurements are combined with local camera VIO

traces. The absolute nature of UWB ranging allows it to correct

VIO drift over time. Finally, Cappella leverages the presence of mul-

tiple users and their mobility to collaboratively estimate the relative

position of all users, improving the overall positioning accuracy
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while maintaining low computational overhead. An overview of

Cappella framework is depicted in Figure 2. Upon startup of an AR

app, the AR session tracks the pose of the device using VIO from

the AR API and begins collecting UWB ranges from neighboring

devices. These measurements are then passed to a particle filter

to estimate each device’s relative location. The following sections

elaborate on Cappella’s collaborative pose estimation technique

and the underlying challenges.

4 RELATIVE POSE ESTIMATION

Here we describe our relative positioning framework, which uses

a particle filter for tracking the N −1 target devices relative to the
display device. We start by explaining a simple approach that tracks

each target device independently and then demonstrate how it can

be enhanced by tracking all devices jointly, using Rao-Blackwellized

particle filtering (RBPF) to ensure that the problem remains tractable

as N grows.

4.1 AR Projection with Relative Coordinates

To project another user’s location onto the AR display, a reference

coordinate system is required. Since Cappella aims to do so in an

infrastructure-free fashion, we formulate the target device render-

ing relative to the current pose of the AR display rather than using

absolute coordinates. The pixel coordinates of the virtual object on

the display are defined as [u,v]T :

[u ′,v ′,w ′]T =K ∗D−1O ∗VO (1)

[u,v]T = [u ′,v ′]T /w ′ (2)

where DO is a 4x4 matrix encoding the 6DOF pose of the display

relative to some arbitrary origin, VO is a 4x1 vector encoding the

3DOF position of the target device relative to that same origin, and

K is a 3x4 matrix encoding the intrinsic properties of the virtual

camera such as resolution, and focal length [32]. We can simply

combine the first two matrices as:

VD =D
−1
O ∗VO , (3)

where VD is now the 4x1 vector representing the position of the

target object relative to the display. As such, there is no require-

ment to explicitly track a global origin as long as all of the virtual

content is converted to the display device’s local coordinate system

before rendering. This can be achieved by simply tracking each

user’s position and orientation relative to the display device and

transforming that user’s local AR content accordingly.

4.2 Particle Filter (PF) Formulation

A particle filter for our state estimation has the following bene-

fits: (i) it is computationally easy to run online, (ii) it allows us to

use arbitrary noise models to describe VIO and UWB errors, (iii)

it can maintain multiple hypotheses when the solution space is

underdetermined, and (iv) it is agnostic to update rate, so range

measurements can be performed asynchronously while targets are

moving. It is notable that this approach allows a location estimate

to be available at the same rate as VIO updates, not just when

range measurements are performed. This means that AR content

can move accurately at a high framerate even when UWB ranges

are slow or temporarily unavailable.

4.2.1 State Space. We wish to track each deviceV
(i)
D

relative to the

display D. Each VD consists of three positional components, x , y,
and z. In addition, since the VIO estimates from each device are

with respect to a separate origin with a separate orientation, we

need to add components to the state space to track the orientation

of each device as well. By default, each VIO origin will have its +y
axis aligned with the gravity vector (up). Therefore, Cappella only

needs to estimate a single orientation angle θ around the vertical
(+y) axis for each VD .

Internally, VIO tracks the vertical direction using the device’s ac-

celerometer. While accelerometer bias, scale, and off-axis error can

cause slight pitch and roll deviation between devices, we found this

to not be a significant error in practice worthmodeling in the estima-

tor. The yaw angle, however, is completely indeterminate between

devices with different starting orientations 2. Thus, our state-space

for each tracked device has 4 dimensions: x (i), y(i), z(i), and θ (i).
The particle filter works by sampling from this state space and

tracking the weighted samples as measurements become avail-

able. Roughly speaking, VIO measurements for device i update

the positions of the samples in [x (i),y(i),z(i),θ (i)]-space and UWB

measurements between the display device and device i update the
relative weights of the particles according to their agreement with

the measured distance. These measurement functions are described

in more detail in the following sections.

4.2.2 VIOMeasurements. VIO, like other forms of odometry, tracks

a device’s motion over time relative to some arbitrary origin. It mea-

sures dx , dy, and dz. Although AR frameworks on mobile devices
normally perform loop closure to help mitigate drift, there is still

a steady accumulation of integration error that occurs in practice,

both in position and orientation about the vertical axis. Based on em-

pirical data collected from Apple ARKit and also the results shown

in [52], wemodel these errors as Gaussianwith small standard devia-

tionsσxyz andσθ , respectively. This small amount of noise accounts
for minor errors in feature matching, scale estimation, and IMU

biases that are present in VIO measurements but are not modeled in

the particle filter. The state update equations for VIO at time t are:

x (i)(t+1)=x (i)(t)+dx ∗cosθ (i)+dz∗sinθ (i)+N (0,σ2
xyz ) (4)

y(i)(t+1)=y(i)(t)+dy+N (0,σ2
xyz ) (5)

z(i)(t+1)=z(i)(t)+dz∗cosθ (i)−dx ∗sinθ (i)+N (0,σ2
xyz ) (6)

θ (i)(t+1)=θ (i)(t)+N (0,σ2
θ
) (7)

We note that, although the linear velocity error σxyz and rotational
velocity error σθ are modeled as Gaussian in our formulation, there
may be some unexpected errors in VIO (such as large jumps) that

would fall in the tail of the distribution. We correct such errors us-

ing resampling techniques that account for the possibility of these

jumps (see "kidnapped robot problem" in [59]).

4.2.3 UWBMeasurements. UWB measurements occur frequently

but sporadically between pairs of nodes. They give a measurement

of the distance between a pair of nodes, with an error that is roughly

Gaussian with standard deviation σr [52]. However, consecutive
UWB measurements between the same pair of devices are not

2While compass measurements can sometimes be used as an absolute yaw reference,
they tend to be unreliable indoors [52].
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Figure 3: Cappella’s particle filter formulation jointly es-

timates multiple user positions (D and Vi ) by combining
UWB (Zi ) and VIO (Ui ) measurements. The measurement
dependency graph illustrates that each Vi is conditionally
independent given D, since each UWB measurement Zi de-
pends only on the pose ofVi and D (no UWBmeasurements
are taken between Vi and Vj for i � j). Using Bayes’ rule, the
joint distribution can be factorized as shown, resulting in

the Rao-Blackwellized formulation in the box.

perfectly independent, which breaks an assumption for Bayesian

estimation techniques. This is due to systematic errors like antenna

delay, clock frequency offsets between devices, and environmental

conditions such as material penetration and multipath. Thus, using

a Gaussian error model for these measurements in the particle filter

can lead to false convergence and particle impoverishment, which

are common issues for this type of estimator.

To combat these issues, we instead use a uniform probability

model for UWBmeasurements. This way, several consecutive UWB

measurements will not cause the particle weights to diminish as

long as they fall within the bounds of the uniform model. The dis-

tribution extends ±3σr from the measured range, and we assume

there is a Pnlos chance that the UWB range is entirely wrong due

to NLOS errors. The probability model for obtaining a UWB range

Zi between the display device D and the target device V
(i)
D

is thus:

P(Zi j )=

{
Pnlos if | ‖V

(i)
D
−D‖−Zi |>3σr

1−Pnlos otherwise
(8)

By modeling the UWB error as uniform and applying a universal

Pnlos floor to the probability function, we can take advantage of
the accuracy of the range measurements while still accounting for

the possibility of NLOS ranges occurring. We demonstrate this in

Section 6, where we evaluate the performance of Cappella across

a wide array of environments in both LOS and NLOS conditions.

4.3 Collaborative Estimation with RBPF

Anaive approach for tracking relative position of nodes is to define a

completely independent particle filter for each AR node. As a result,

the computational load scales linearly with the number of devicesN .
However, since the particle filters are run independently, the model

does not leverage the synergistic information that could otherwise

be used in a collaborative formulation to mitigate the accumulated

error due to noise in the display device’s own VIO tracking.

Alternatively, it would be possible to jointly model the states

of all N moving devices. This way, every range could be used to

improve the state estimation of all nodes in the joint distribution.

However, sampling from 4N dimensional state-space would require

Figure 4: Cappella’s BLE neighbor discovery and UWB

ranging protocol allows energy-efficient peer-to-peer

measurements whileminimizing networking collision.

a number of samples exponential inN in order to adequately sample

the growing dimensionality, which would mean computation and

memory requirements that scale exponentially with the number of

users. A solution to this problem arises when some state variables

Y (i) are always conditionally independent given some other state
variable X . When this is the case, it is possible to factorize the

joint probability distribution and independently track each Y (i) |X .
This approach, called Rao-Blackwellization (RBPF), is common in

the SLAM literature [59] as a means of estimating a map whose

elements are conditionally independent given a user’s location. As

illustrated in Figure 3, our formulation of the relative positioning

problem fits this framework, since UWB provides measurements

of target device locations that are conditionally independent given

the location of the display device.

In the RBPF formulation, a particle filter is used to represent the

belief of the display device D, where each target device V
(i)
D

can

be represented by any probabilistic distribution. We chose to also

represent the target device estimates using particle filters. Thus, the

design of Cappella amounts to a "two-layer" particle filter. In the

first layer, the state space ofD is sampled to track the location of the

display device. Then, for each of those samples, a second-layer filter

is created to track each of the target devices given that sample. In

each of these second-layer filters, the state space ofV
(i)
D

is sampled.

In this way, the conditional relationship shown in Figure 3 is real-

ized. In Section 6.7, we demonstrate the benefit of the collaborative

nature of our joint RBPF formulation over the more common naive

independent particle filter approach.

5 SYSTEM IMPLEMENTATION

There are three main components to the implementation of our

system: a UWB ranging platform, an AR application with real-time

positioning of all AR devices, and a large-scale ground truth collec-

tion system. The UWB ranging platform allows collection of range

data between users in a dynamically sized ad hoc network. The

AR application overlays digital objects on the estimated relative

locations in the field of view of the display, allowing users to know

where their teammates are without having a direct visual. It also

collects ground-truth pose data by decoding AprilTags, which are

placed strategically around the building to determine error in our

system during data collection.
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Figure5: Systemcomponents, includingUWBrangingnodes,

ground-truthmarkers, andmobile tablet application

5.1 UWBRanging Prototype

Though not the focus of this paper, we realize that many localiza-

tion researchers have struggled to find a UWB solution that can

easily operate in peer-to-peer mode at scale. Unfortunately, most

of the freely available reference implementations are designed for

fixed infrastructure scenarios that may support mobile devices, as

opposed to fully peer-to-peer operation. We imagine that phones

with UWB hardware could eventually implement this functionality

on-board once APIs become available.

A fully peer-to-peer ranging platform requires ad hoc ranging

and neighborhood discovery. We developed an open-source and

easy-to-use UWB firmware that provides these functionalities for

the MDEK1001 modules from Decawave: (1) Neighborhood discov-

ery using BLE’s GAP discovery protocol, (2) coordinated double-

sided two-way ranging (DS-TWR) using UWB and (3) an inter-

face to external systems using either USB serial or a standard BLE

GATT server. We designed our protocol under the assumption that

we have a highly dynamic mesh of nodes with hidden terminals

and asymmetric links that change on the order of seconds. The

MDEK1001 is an all-in-one battery- or USB-powered module with

an enclosure that pairs a Nordic nRF52832 MCU with a DW1000

chip. The Nordic chip has a 64 MHz Arm Cortex-M4 processor

with integrated BLE radio that can be programmed to act like a

stand-alone node or pair with a mobile phone. Our firmware im-

age exposes a standard serial interface (the AT command set) with

the ability to store default parameters to flash memory, making it

easy to configure addresses, sleep modes, neighborhood discovery

polling rates, and UWB ranging options.

The neighborhood discovery protocol is BLE’s standard device

discovery protocol. We allow users to define a custom advertise-

ment period TBLE (default period of 200 ms) and a configurable

signal strength (RSSI) threshold for determining the most recent

and closest neighbors. To save power when nodes are idle, we duty-

cycle background scanning and disable the UWB radio. A node

in the system can announce that it wants to participate in active

ranging through its BLE advertisements. This in turn will wake-up

nearby nodes and activate their UWB radios. Figure 4 shows an

overview of the BLE and UWB transactions required to perform

neighborhood discovery and ranging. Note that the BLE discovery

modules uses three channels and not just a single channel. Once

activated, each node initiates a DS-TWR request (detailed in the

upper right of the figure and in this application note [17] ) over

UWB at a user-configurable timing interval TUW B , with a default

value of 100 ms. In each TUW B period, the node performs a new

DS-TWR request to the next node in its local neighbor list.

If DS-TWR messages are dropped, either due to collision or

packet corruption, the next polling interval is randomly offset to

avoid repeated collisions. We use an exponential random distribu-

tion across TUW B similar in nature to slotted ALOHA [42]. As one

would expect, as the number of neighbors increases, the polling

rate of each individual neighbor decreases. We provide users with

a lookup table for TUW B values needed to support particular max-

imum node densities within a single collision domain. As shown in

Figure 4, you can see that node B1 transmits every TUW B to node

B2, since it has no other neighbors. Node B2 cycles through 3 total
neighbors in its neighborhood list (the neighbor graph shown on

the left). After nodes stop transmitting active ranging advertise-

ments for a defined timeout, they return to their lower powered

duty-cycled listening state. As shown in the bottom line of Figure 4,

we also support simultaneously pairing an actively scanning node

with a mobile device using a standard BLE GATT server. It is also

possible to connect the MDEK1001 to a host device over USB serial

or through its built-in RPI header. The default parameters of our

firmware support 16-bit addressing (over 30K nodes) with cluster

densities of 10 nodes at approximately 1 Hz update rates for each

neighbor. Our low power sleep energy is on the order of 10 mW

(mostly consumed by background BLE scanning) with an average

active ranging energy of 800 mW. In practice, we see BLE neighbor

discovery on the order of a 1-2 s with a typical 10-20 s eviction

timeout. All source and documentation are available on GitHub

(https://github.com/WiseLabCMU/Beluga/).

5.2 Prototype ARApplication

We developed a prototype of Cappella as a mobile AR application

running on iOS. This application provides two main features: (1)

it shows the relative location and orientation of other users in the

scene in AR (shown in Figure 5-c), and (2) it coordinates ground-

truth data collection among mobile users (shown in Figure 5-b).

The mobile app collects VIO data using Apple’s ARKit and UWB

ranging data using a MDEK1001 module from Decawave over BLE.

All ranging and communication information is shared using MQTT

over WiFi, but this could conceptually be replaced by WiFi Direct

or some similar peer-to-peer protocol. ARKit captures VIO data at

60 Hz and we collect UWB ranges with a polling rate of 10 Hz. As

described earlier, the actual rate at which UWB data is received by

each mobile user can vary and depends on the distance and number

of neighbors around a particular node. Cappella is also resilient to

message drops and reasonable levels of jitters (tens of ms). With

message latency on the order of 100ms, it appears to perform well

and is within common bounds for most single-hop wireless commu-

nication systems. It should be noted that in the current experimental

platform, each node communicates using WiFi or LTE from the

mobile device, but this could be easily replaced with WiFi direct or

other peer-to-peer protocols in a production implementation.

5.3 Ground Truth Collection

One of the biggest challenges for assessing the performance of a

6DOF positioning system at scale is accurately collecting ground-

truth poses. We developed a data collection framework that peri-

odically guides users to converge on "check-in" locations where
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Figure 6: Snapshots of tested environments with different

lighting and multipath conditions, including one large

contiguousmulti-floor environment

AprilTags were used to accurately record 6DOF pose. We first in-

stalled over a dozen 8.5 by 11 in AprilTags [62] across the multiple

floors of our test buildings with retro-reflective markers on each

corner. We surveyed the corners of each AprilTag using a total

station with an advertised accuracy on the order of millimeters. In

smaller experiments, we placed a number of AprilTags in fixed rel-

ative locations. To coordinate synchronized ground-truth readings

between different users, we integrated an AprilTag decoder into

the AR application, in which the users are instructed to move to the

nearest AprilTag and wait until all users across the building had

a high-confidence ground-truth measurement. Given the known

tag location and the pose estimated by the AprilTag decoder [62],

the application computes the ground-truth location, which is then

published over MQTT to a central logging service.

6 EVALUATION

In this section we discuss our experimental setup, evaluation met-

rics, and perform a sensitivity analysis of a number of factors,

including changes in lighting, background motion, user walking

patterns, and RF non-line-of-sight conditions.

6.1 Experimental Setup

Our primary evaluation of Cappella consisted of a deployment

across a 30,000 sq ft area spanning 3 floors of an office building,

with 3 to 5 users walking in an arbitrary fashion, and 9 static nodes

deployed for baseline comparison, as shown in Figure 6. We also

stress tested Cappella in a diverse set of environments, both indoor

and outdoor, different lighting conditions, as well as dynamic en-

vironments. The snapshots of these environments are shown in

Figure 6. In all of these experiments, each user carried an iPad or

iPhone with a built-in VIO tracking and a UWB node attached to the

back of the device (as shown in Figure 5-a), while the static nodes

consisted of just the UWB platform. As noted before, Cappella does

not require any pre-installed infrastructure or static beacons for

positioning, and here the static nodes are only used for our baseline

comparison. Unless otherwise specified, all of our presented results

only use ranges from mobile nodes.

The experiments consist of both LOS and heavy NLOS situations,

with many instances where users are spread across 3 different floors

with one or more dry/concrete walls between them. No instructions

are provided to users on how to walk or how to hold the tablets.

For 7 different experiments and 10-15 minute per run, the users

walk with different speeds and periodically stand stationary, result-

ing in a total of about 40 minutes worth of data per person. This

data is divided into an "evaluation" set, where users are walking

normally, and a "sensitivity analysis" set, where users are walking

in pre-defined patterns (evaluated in Section 7). As explained in

Section 5.3, the ground truth was obtained with a number of April-

Tags surveyed in a global coordinate frame using a total station. To

synchronize the ground-truth measurements between users, the

AR application guides users to scan a nearby AprilTag every 5-30

s over the course of each experiment.

6.2 EvaluationMetrics

It should be noted that the quality of AR performance is sensi-

tive to more than just geometric error. Camera lens parameters,

bearing, and distance combine to create the visual error seen by a

user. To better capture these effects, we introduce an AR-specific

metric, called display-proportional error (DPE), that combines dis-

tance, bearing, and the camera field-of-view as a single cohesive

benchmark. We demonstrate the importance of this metric in AR

applications in an example shown in Figure 7. 3 virtual cubes are

overlaid at a fixed distance from a set of (real) physical orange cones.

The cones are located at distances of 1, 5, and 10 m, respectively,

away from the camera. The green cube has no error, the yellow

cube is offset by 0.5 m and the red cube is offset by 1 m. Notice

that, due to perspective, the cubes that are further from the camera

appear closer to the cone, even though their relative error in meters

is the same. This simple example highlights why geometric error

alone does not do justice to AR positioning performance. Instead,

display-proportional error computes the AR error as the distance

between an object’s true location and its estimated location when

projected onto a 2D display, as a proportion of the display’s horizon-

tal size. In the example in Figure 7, the closest yellow box has a DPE

of 0.23This error corresponds to approximately 1/4 of the screen

width, while the farthest yellow box has a DPE of only .03, or about

1/33 of the screen width. In this sense, DPE captures the reprojected

error of the estimated 3D locations, and can easily be used to cal-

culate pixel error by simply multiplying by the display’s horizontal

resolution. Therefore, we formalize our error metric definitions as:
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Figure 7: Virtual objects overlaid

with identical geometric errors

yield dramatically different display-

proportional error (DPE). Figure 8: 3D Relative Location Error Figure 9: AR-specific Display Proportional

Error

3Dgeometric error:We calculate the average pair-wise Euclidean

distance in 3D between all pairs of mobile nodes in meters.

Display-Proportional Error: Let ϵxy be the xy component of the
3D geometric error, ϵz as the z component, dist as the true distance
between the display and the target object, fx as the camera’s focal

length (in pixels), and Hx as its horizontal resolution (in pixels):

ϵxy

|dist+ϵz |
∗
fx
Hx
, (9)

6.3 Baselines

We compare the performance of Cappella with two baselines:3

(1) VIO-Only: a typical infrastructure-free localization method

[10] that uses VIO for pose estimation relative to the start point.

This is a common localization method in robotics, but it requires ini-

tialization and apriori knowledge of users’ start points. Even though

this assumption is not feasible for most multi-user AR applications,

it allows us to more easily isolate the performance contributions

from VIO and UWB ranging in our system.

(2) UWB-VIO infrastructure-based oracle: an infrastructure-

based localization technique, which uses VIO to estimate 6DOF

motion and UWB ranging to fixed beacons. We assume each fixed

beacon (9 total) has a known global location in order to provide a

baseline [61]. We consider this technique as our oracle and show

that Cappella can achieve performance at nearly the same accuracy

without relying on any of these pre-installed beacons.

6.4 Positioning Accuracy

We evaluate the positioning accuracy of Cappella across our evalua-

tion dataset with 5 mobile users, on both single and multiple floors,

and with a mixture of LOS and NLOS situations. Figure 8 shows the

overall 3D relative localization error and compares it with our two

baseline approaches. Cappella achieves a median 3D error of 0.9 m,

compared to 2.5 m and 0.8 m in the VIO-Only baseline and UWB-

VIO oracle, respectively. We can see that Cappella outperforms the

VIO-Only baseline by leveraging the UWB ranging and collabora-

tive pose estimation which mitigates drift over time. In addition,

3It should be noted that both of these baselines are originally proposed for absolute
localization, so we obtain the relative localization for comparison with our system
using Equation 3.

Cappella achieves relatively similar accuracy to the UWB-VIO ora-

cle, which relies on pre-installed infrastructure and a priori knowl-

edge of beacons for trilateration that is unnecessary for Cappella.

As mentioned in Section 6.2, the 3D geometric error does not

necessarily quantify the positioning performance relevant to AR

applications. Figure 9 compares the AR performance of the three

methods using DPE instead, which is a better representation of the

pixel error the user will see in AR. In this context, a median DPE of

0.1 means that when the user is directly facing the physical target,

the virtual target will be drawn only 10% of the display width away

(128 pixels on a 1280x720 display, for example). By this metric, the

virtual target will be at least somewhere on the screen whenever

the DPE is less than 0.5.

6.5 Error vs. Separation Distance

Next, we evaluate Cappella’s performance as a function of distance.

The ground-truth relative distance between users varies from 0.2

m to 27 m, including many instances of complete NLOS. Figure

10-a demonstrates the 3D relative error of each sample test (any

pair of users at every 5 s interval) grouped by the ground-truth

pair-wise distances. As we can see, error in positioning tends to

increase slightly with distance, either due to UWB nodes going out

of range or inherent VIO drift. However, unlike geometric error,

DPE actually improves with distance. This suggests that a visual

display showing an overlay with faraway users’ locations would

still be effective at portraying those users’ locations.

6.6 Drift Over Time

In many positioning systems, including VIO tracking, error in-

creases with time. Dead reckoning systems have inherent drift

that is inevitable, and small errors in local motion estimation will

eventually accumulate. As seen in Figure 12, Cappella is able to

greatly mitigate drift and keep an almost constant error distribution

over time using UWB measurements between devices, while the

VIO-Only baseline exhibits a steady linear drift despite loop closure.

6.7 Impact of Collaborative Positioning

To evaluate the impact of our collaborative particle filter formula-

tion, we compare the 3D relative error of the naive independent PF

and collaborative RBPF, explained in Section 4. To isolate the im-

pact of other parameters, including user mobility, number of users,
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Figure 10: 3D geometric error in-

creases linearly over larger pair-wise

distances

Figure 11: AR-specific error decreases

over extended ranges due to lower

sensitivity of AR displays

Figure 12: VIO drift over time leads

to increasing errors, but Cappella

preserves a uniform accuracy by

leveraging UWB ranging

Figure 13: Cappella leverages a

collaborative approach, which

helps improve the accuracy as the

number of nodes increases.

Figure 14: Cappella preserves high accuracy in different lighting, mobility, or NLOS

conditions as well as walking patterns.

etc, we perform controlled experiments with a single user and 9

static tags deployed for baseline comparisons. Then we estimate the

relative location of static tags with respect to the user for different

subsets of tags changing from 1 to 9 randomly selected tags. As

seen in Figure 13, collaborative RBPF has a clear advantage over

Independent PF. While with 1 static node, they are very similar in

3D relative error of around 0.9 m, the error of collaborative RBPF

decreases from 0.85 m to 0.22 m with the addition of static tags.

This was expected as collaborative RBPF takes advantage of

other system nodes’ estimates. Therefore, the drift of the mobile

node is able to be somewhat mitigated by the averaging of noise

across measurements to multiple other nodes. As more nodes are

able to perform these "averaging corrections" together, the posi-

tioning system is able to converge to a more precise estimate than

it could with nodes localizing individually. As a side conclusion, we

can leverage this feature to further improve the positioning perfor-

mance by deploying some static UWB tags with unknown locations.

For example, in a first response operation, the users can deploy

some static nodes at random locations as they move around the

building to enhance their relative localization performance. Even

though Cappella can operate completely infrastructure-free, it can

nicely integrate with the infrastructure if one is present.

7 SENSITIVITYANALYSIS

In this section, we elaborate on the computational overhead of

Cappella’s collaborative localization algorithms. We also describe

additional tests we performed in other campus environments and

evaluate the sensitivity of Cappella to varying user mobility pat-

terns and NLOS conditions in these environments.

7.1 Computational Overhead

Real-time computational cost is one of the critical factors of an

AR positioning system, especially in mobile applications. Com-

pared to independent particle filtering, our collaborative formula-

tion achieves higher accuracy at the cost of higher computational

overhead. Table 1, however, shows that Cappella can still operate

in real time on a reasonable CPU. It should be noted that our imple-

mentation is not heavily optimized, and our compute time includes

significant system overhead. The key takeaway is that the run-time

overhead increases almost linearly with the number of users.

Number of users 2 3 4 5

CPU Usage 2.3% 8.0% 16% 25%

Memory Usage (MB) 4 8 12 16

Table 1: Single threaded runtime performance on 2.4GHz i7

CPU
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7.2 Performance Across Diverse Environments

In addition to the multi-story building tests described in Section

6, we also performed a series of tests across several other envi-

ronments under different conditions, many of which are shown in

Figure 6. These environments include: (1) a "busy" office (with fur-

niture being moved and lights being turned on and off to simulate

ordinary office commotion), (2) a campus cafe with a large atrium

and spiral staircase, (3) a hallway intersection near some elevators

inside a brick building, (4) a dimly lit parking garage with height

variation and lots of concrete and metal blocking line of sight, (5)

and an outdoor area between campus buildings. The results of these

experiments are shown in Figure 14. We see that performance is

consistent across all of these environments, with the parking garage

performance suffering slightly due to the heavy NLOS conditions

and low light. Note that the performance in all of these environ-

ments is slightly better than the primary multi-story building test,

which was the most challenging due to its immense scale.

7.3 Impact ofMobility Pattern

Another factor affecting the performance of Cappella’s positioning

accuracy is the high dynamics of the environment and the mobility

of users. To this end, we compared the system performance in 3

different walking scenarios: (1) when users were walking in pairs,

which represents the near-best performance as the algorithm can

take advantage of clean ranging estimates between each pair of

users walking near each other, (2) normal walking when users ran-

domly move in the space with a comfortable walking speed, and

(3) when all of the users were performing fast movements, such

as running, jumping, crawling, etc., for the purpose of stress test-

ing the system. Figure 14 confirms the expected trend for different

walking scenarios, and demonstrates that Cappella is resilient to

fast motions and is therefore suitable for applications such as rescue

operations or gaming.

7.4 NLOS Performance

Next, we study Cappella’s positioning performance in NLOS sce-

narios. Previous analysis shows that UWB ranging degrades in com-

plete NLOS [52] due to noisy time-of-flight estimates that mainly

capture multipath reflections instead of the direct distance between

nodes. To evaluate this effect, we performed 3 different controlled

experiments with different levels of NLOS. The first experiment

includes 5 users that walk mostly in LOS of each other, all on the

same floor. We then repeated this experiment with users walking

in a larger space, including both LOS and NLOS conditions. Finally,

we performed the experiment while users were spread out across 3

floors with some heavy NLOS conditions, such as multiple concrete

walls between users, or being apart by more than 1 floor. As we can

see in Figure 14, the 3D relative localization drops slightly with the

increase of NLOS conditions, but we can still maintain a median

accuracy of 1 m even in NLOS and extended ranges over 10-20 m.

8 DISCUSSION

In this section, we discuss the mechanisms to relax assumptions

made in our current implementation of Cappella and the potential

future extensions.

Scalability: While our current evaluations reached a maximum of

5 mobile users, Cappella’s collaborative approach should continue

to improve in terms of localization accuracy (as shown in Figure 13)

with even more users. This is mainly due to drift mitigation by aver-

aging the noises across measurements to multiple nodes. However,

eventually one would reach a computation and/or communication

bottleneck. While our current implementation is not specifically

optimized for scenarios with a large number of neighbors (many

dozens), it would be possible to apply clustering heuristics based

on user proximity. With a high density of users, it should be fairly

easy to make sure that all clusters were at least partially connected.

For applications where every user needs to know the location of

every other user, each cluster would need to exchange their full

state information with other clusters. We leave designing a highly

scalable version of Cappella to future work.

User Interactions: In practice, Cappella works best when users oc-

casionally pass near each other, resulting in high-confidence ranges

and particle filter updates. So, the algorithm cannot benefit from

collaboration if users are at the limits of the UWB range (100m in

LOS and about 30m in severe NLOS). To avoid the performance

degradation, one can add (arbitrarily placed) nodes. Such "bread-

crumb dropping" techniques [33] have been widely proposed for

rescue operations and are also compatible with Cappella.

Darkness: A limitation that is common among vision-based lo-

calization methods is sensitivity to low visibility conditions, such

as smoke-filled rooms or extreme darkness. These conditions are

commonplace for many search-and-rescue operations, such as fire-

fighting. Our current experiments show that Cappella is resilient

to partial darkness and dynamic conditions by leveraging the UWB

ranging between users, but would still fail in total darkness.

Developing AR systems (even single-user) for these extreme

conditions is challenging and an ongoing parallel research effort.

Promising early results in 6DOF odometry systems that use infrared

or millimeter wave sensing [19], which are inherently resilient to

smoke, fog, and darkness, give us hope that an AR solution for emer-

gency responders is on the horizon. When such an odometry source

becomes available, we plan to integrate Cappella’s infrastructure-

free relative localization framework to provide a robust multi-user

AR solution.

Gravity Estimates: Cappella relies on VIO to provide orientation

estimates that directly align with the gravity direction and provides

no mechanism for automatically calibrating misaligned accelerome-

ters. While small errors in VIO’s internal gravity estimation can be

accounted for in the Gaussian noise model applied to VIO updates

described in Section 4.2.2, there are certain situations where large

errors may accumulate. For example, if users are riding in cars,

trains, or elevators, the smooth acceleration may be misinterpreted

as a change in gravity direction, which could cause integration

errors in VIO. We have yet to characterize these errors, but they

may become relevant in applications that involve navigation for

transportation systems or in military use cases.
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9 CONCLUSION

This paper proposes Cappella, a collaborative AR positioning sys-

tem that allows multiple users to estimate their relative 6DOF poses

in real-time. This system is free of infrastructure, is robust to envi-

ronment dynamics and NLOS conditions, and maintains relatively

low computational complexity to reduce power and update time.

Cappella uses a form of Rao-Blackwellized particle filter to perform

state estimation of the nodes jointly by using UWB ranging and

VIO tracking. Cappella then displays the tracked nodes in an AR dis-

play in the coordinate frame of the user. Using the AR application,

users can see where others are in the building despite walls, floors,

and other obstacles creating NLOS conditions. We also present an

AR metric that captures the quality of positioning with respect to

the user’s display specifications, and is well suited for augmented

reality applications.

As future work, we are interested in using the Cappella ap-

proach to bootstrap and correct mapped locations within fixed

infrastructure systems. There is the potential to create a hybrid

infrastructure-based and infrastructure-free AR positioning envi-

ronment that could provide the best of both worlds where rapidly

deployed relative content could persist in the environment once

fixed infrastructure is encountered.
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