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ABSTRACT

We present the concept of approximate intermittent computing and

concretely demonstrate its application. Intermittent computations

stem from the erratic energy patterns caused by energy harvesting:

computations unpredictably terminate whenever energy is insuffi-

cient and the application state is lost. Existing solutions maintain

equivalence to continuous executions by creating persistent state on

non-volatile memory, enabling stateful computations to cross power

failures. The performance penalty is massive: system throughput

reduces while energy consumption increases. In contrast, approxi-

mate intermittent computations trade the accuracy of the results for

sparing the entire overhead to maintain equivalence to a continuous

execution. This is possible as we use approximation to limit the

extent of stateful computations to the single power cycle, enabling

the system to completely shift the energy budget for managing

persistent state to useful computations towards an immediate ap-

proximate result. To this end, we effectively reverse the regular

formulation of approximate computing problems. First, we apply

approximate intermittent computing to human activity recognition.

We design an anytime variation of support vector machines able

to improve the accuracy of the classification as energy is available.

We build a hw/sw prototype using kinetic energy and show a 7𝑥
improvement in system throughput compared to state-of-the-art

system support for intermittent computing, while retaining 83%

accuracy in a setting where the best attainable accuracy is 88%.

Next, we apply approximate intermittent computing in a sharply

different scenario, that is, embedded image processing, using loop

perforation. Using a different hw/sw prototype we build and diverse

energy traces, we show a 5𝑥 improvement in system throughput
compared to state-of-the-art system support for intermittent com-

puting, while providing an equivalent output in 84% of the cases.

1 INTRODUCTION

Ambient energy harvesting enables battery-less embedded sens-

ing [1, 30, 35, 36, 38, 65, 69]. However, energy from the environment

is generally erratic, causing frequent and unanticipated power fail-

ures. For example, harvesting energy from RF transmissions to

compute a simple CRC may lead to 16 power failures over a 6 sec

period [13]. Executions thus become intermittent, as they consist of

intervals of active computation interleaved by possibly long periods

of recharging energy buffers [13].

Prior art. Due to resource constraints, power failures normally

cause a device to lose the application state. To ensure forward

progress across power failures, a variety of techniques exists that

make use of persistent state stored on non-volatile memory (NVM),

as we elaborate in Sec. 2. Persistent state is loaded back from NVM

when energy is back, so executions resume closer to the point of

power outage rather than performing a complete reboot.

Most existing solutions [3, 8, 9, 14, 19, 42, 44, 45, 51, 62, 68, 71]

aim to make intermittent executions equivalent to their continuous

counterparts, as we articulate in Sec. 2. Given the same inputs,

for example, certain sensor readings, the results of intermittent

executions must be exactly the same as those of a continuous one.

To achieve this, existing solutions employ persistent state to allow

stateful computations to cross power failures. The price for this is

enormous, in both energy consumption and latency until a result is

available, and thus system throughput. The energy overhead may

reach up to 350% the cost of the application processing, mainly

due to the use of energy-hungry NVM technology [68]. Depending

on energy patterns and the time for energy buffers to recharge, a

10 ms processing in a continuous execution may take minutes in

an intermittent one [36], reducing throughput.

Nonetheless, using persistent state to allow stateful computa-

tions to cross power failures has further implications. In mixed-

volatile platforms [39], slices of main memory are mapped to NVM,

for example, with FRAM technology. As a result, intermittence

anomalies [50, 61] appear due to re-execution of non-idempotent

code, requiring additional time and energy to be corrected.When us-

ing FRAM, wait cycles may be necessary to synchronize read/write

operations with the microcontroller, further increasing energy over-

head [39]. Finally, if the state of computations is to be retained

across power failures, the state of peripherals must also be ac-

counted for [6, 12, 16, 46]. This increases the size of the persistent

state, as it must include information related to peripheral states

that may not be reflected in the systems’ main memory, adding to

the energy overhead.

Approximate intermittent computing. Our work starts from

the observation that a number of embedded sensing applications,

as in smart health [66], ambient intelligence [22], and environment

monitoring [57], expose two specific characteristics:

1) Latency to obtain a result is key; a fitness tracker must process

input signals as rapidly as possible, because the outcome might

require immediate reactions. The longer it takes for a sample to

be processed, the lower is the value of the analysis.

2) Newer inputs are more important than older ones. A fitness

tracker should process the most recent samples first, as they are

representative of the current situation. Any further processing

may merely represent a “best-effort” task.

Most importantly, approximate results are often tolerated. This

stems from the nature of data processing in these applications,

including computer vision, machine learning, signal processing,

and pattern identification. These algorithms offer probabilistic guar-

antees in the first place and are robust to data errors, for example,

due to sensor inaccuracies [53].

These observations prompt us to establish a concept of approx-

imate intermittent computing. In regular intermittent computing,

shown in Fig. 1(a), every input is processed until the precise out-

come is eventually computed. Because processing of an input rarely

concludes before the first power failure, persistent state is employed
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Figure 1: Approximate intermittent computing trades the ac-

curacy of the final result for the time and energy required

to allow stateful computations to cross power failures. Such

a shift allows applications to completely employ the available energy

for useful application processing.

to make stateful computations cross power failures. This means

that the latency to return a result to the user, for example, by trans-

mitting a packet, extends over multiple power cycles and crucially

includes the potentially large periods to recharge energy buffers.

While the system goes back and forth between main memory and

NVM to dump and re-load application state for crossing power

failures, many newer inputs are missed.

In contrast, as shown in Fig. 1(b), approximate intermittent com-

puting dictates that whenever a precise result cannot be obtained

within a single power cycle, the system shall work towards an imme-

diate approximate outcome. Approximation is the knob the system

exploits to reduce the energy costs so that a result can be returned

to the user before the first power failure. As a result, approximation

allows us to shrink the extent of stateful computations to the single

power cycle. Based on available energy, the system dynamically

selects a level of approximation to process the current sample that

ensures precisely this. This means that, instead of seeking the most

efficient way to make stateful computations cross power failures,

as most existing solutions do, we effectively remove the problem

in the first place, as stateful computations are bound to conclude

before the first power failure.

Our approach is fundamentally different, however, than the reg-

ular application of approximate computing techniques. Indeed, ap-

plication requirements normally dictate rigid lower bounds on the

accuracy of results [32, 53]. Approximate algorithms aim at en-

suring this minimum accuracy by saving the greatest amount of

resources, for example, energy. In our case, the problem is effec-

tively reversed. Applications may not impose minimum accuracy

requirements and be satisfied with whatever is attainable, whereas

a strict upper bound on energy consumption exists due to the finite

energy buffers. Approximate algorithms must accordingly be de-

signed to attain the greatest accuracy within a finite energy budget.

The ability to shrink stateful computations to the single power

cycle entails that no persistent state needs to be carried over to the

next power cycle, and available energy is exclusively employed for

useful computations, rather than for NVM operations; therefore:

1) the system is ready to process new inputs as soon as it restarts after

a power failure, as previous iterations necessarily concluded;

2) intermittence anomalies are not an issue, because re-executions

that combine volatile and non-volatile data do not occur;

3) handling peripheral states across power failures is unnecessary, as

computations always resume from the same point in the code;

4) as there is no persistent state to maintain, devices need not be

equipped with NVM to run intermittent programs.

The key trade-off we explore is the reduction in accuracy against

the energy savings obtained by sparing the need of persistent state

and the improvements in the latency to return the result to the

user. Latency is here, nonetheless, inversely proportional to system

throughput. The very notion of accuracy, however, along with

the way it is measured and the definition of acceptable bounds, is

inherently application-specific. This is not only germane to our work,

but a general characteristic of approximate computing [53].

Concrete cases.We first consider the case of human activity recog-

nition [4] using on-body acceleration and angular velocity sensors.

This application shows the characteristics discussed earlier, In par-

ticular, an accurate report of activity state, received much later than

when the corresponding sensor data is originally gathered, is often

useless. Reducing the latency from the acquisition of sensor data

to producing the output is key. Further, human activity recognition

is an ideal candidate for energy harvesting [33, 63], as batteries are

detrimental to user experience and increase a device’s footprint.

Machine learning techniques, such as support vector machines [15],

are often employed to perform activity recognition [4].

We develop an anytime variation of support vector machines,

described in Sec. 3, where accuracy of the classification is improved

incrementally by processing one feature of the input samples at a

time. This is the knob that determines the level of approximation

versus the energy cost of processing; the more features are pro-

cessed, the more accurate is the classification, but also the higher is

the energy cost. Limiting the extent of stateful computations using

anytime support vector machines requires to tie the number of

processed features to the expected accuracy; we study this aspect

analytically depending on the statistical nature of input data and

the number of output classes.

Running classification tasks on resource-constrained embedded

devices also requires additional efforts to fit a complex processing

pipeline within a limited processing and memory budget [29, 40].

In Sec. 4, we report on the prototype we build, including the cus-

tomized hardware, the off-line data processing, and two alternative

software implementations. As we spare the need of persistent state,

our prototype is the first device we are aware of to run real-world

intermittent programs with no use of NVM. The two implementa-

tions showcase the spectrum of possibilities offered by approximate

intermittent computing. One implementation employs available

energy greedily, producing the most accurate result within the avail-

able energy budget. The other implementation allows developers

to set a lower bound in accuracy and postpones processing until

the current energy budget ensures the required accuracy.

Our evaluation of approximate intermittent computing applied

to human activity recognition, reported in Sec. 5, is based on a com-

bination of emulation and real-world experiments involving a total

of 15 volunteers across a total of 24 days, producing ≈842 hours

of experiment data. By comparing the performance in accuracy

and system throughput, we show that approximate intermittent
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computing provides a 7𝑥 improvement in system throughput com-
pared to state-of-the-art system support for regular intermittent

computing, while retaining an 83% accuracy in a setting where the

best attainable accuracy is 88%. Moreover, with approximate inter-

mittent computing, returning the result to the user always occur

within the same power cycle by design; with regular intermittent

computing instead, the time when the classification is returned is

entirely a function of energy patterns, extends across tens of power

cycles, and includes the times to recharge the energy buffer.

Following the same path as in the case of human activity recogni-

tion, Sec. 6 demonstrates the applicability of approximate intermit-

tent computing to a sharply different application, namely, embedded

image processing. We employ loop perforation techniques [53] as

the knob to trade a loss of accuracy for a reduction in energy cost,

allowing the system to return a result to the user before the first

power failure, and again sparing the need of persistent state. We

build another hardware/software prototype, which we feed with di-

verse energy traces to explore the impact of various energy patterns

on the accuracy of the output and energy consumption, compared

to the same state-of-the-art system support for regular intermittent

computing. In this setting, approximate intermittent computing

achieves a 5𝑥 improvement in system throughput, while providing
an equivalent output in 84% of the cases.

We release as open-source [11] the software artifacts and hard-

ware schematics concurring to the results we present next, enabling

others to continue exploring approximate intermittent computing.

2 RELATEDWORK

Our combines intermittent computations with a novel use of ap-

proximate computing techniques.

Intermittent computing.Most existing works [36] focus on how

to make programs maintain the same semantics as a continuous

execution, which requires stateful computations to cross power fail-

ures. Common to these works is the use of some form of persistent

state on NVM. Two flavors exist.

Some solutions employ a form checkpointing [3, 8, 9, 14, 45,

62, 68]. This consists in replicating the application state on NVM

at specific points in the code, where it is retrieved back once the

system resumes with sufficient energy. Systems such as Hiber-

nus [8, 9] operate based on interrupts fired from a hardware device

that prompts the application to take a checkpoint, for example,

whenever the energy level falls below a threshold. Differently, sys-

tems exist that place function calls in application code to proactively

checkpoint [14, 45, 62, 68]. The specific placement is a function of

program structure and energy provisioning patterns.

Other approaches offer abstractions that programmers use to

define and manage persistent state [19, 42, 44, 51, 71] and time

profiles [37]. These approaches particularly target mixed-volatile

platforms, while taking care of intermittence anomalies due to

repeated executions of non-idempotent code [50, 61]. For example,

Alpaca [44] defines tasks as individual execution units that run

with transactional semantics against power failures and subsequent

reboots, and channels to exchange data across tasks.

Approximate intermittent computing represents a different de-

sign standpoint. Rather than retaining equivalence to continuous

executions at the cost of making stateful computations cross power

failures, we trade accuracy in the final results for better energy

efficiency, making it possible to shrink the extent of stateful compu-

tations to the single power cycle. Unlike a few existing works that

explored similar directions [28, 43], we push this design to the point

of taking away the need of persistent state, thus allowing systems to

burn energy exclusively for useful application processing, while not

requiring custom hardware. Approximate intermittent computing

is applicable where inaccurate results are tolerable, but is unfit for

applications requiring precise computations, as discussed in Sec. 6.

Additional issues arising in the execution of intermittent pro-

grams require testing the executions [18, 20, 49] and profiling their

energy consumption [2, 27]. These techniques and tools are orthog-

onal to our work and may be applied to approximate intermittent

programs as well. We do rely on an existing energy estimation tool

for intermittent programs in our prototypes of Sec. 4 and Sec. 6.

Approximate computing. The need to reduce resource consump-

tion in data-intensive applications originally motivates the develop-

ment of approximate algorithms, namely, algorithms sacrificing the

accuracy in the final result to gain in key performance metrics, such

as processing times, memory occupation, or energy consumption.

A vast body of work exists on the subject [32, 53].

From an algorithmic standpoint, our work is not different than

most existing literature in approximate computing. As the very

notion of accuracy, the way it is measured, and the definition of

acceptable bounds are application-specific, the specific data pro-

cessing techniques we employ are also necessarily tied to a specific

class of applications. This is, in fact, one of the major limitations of

approximate computing in general [32]. Nonetheless, these tech-

niques are merely the specific instantiation of approximate inter-

mittent computing we study here for the applications we consider.

Other instantiations are also possible that target different classes

of applications, as we argue in Sec. 6.

What is fundamentally different, however, is the formulation of

the approximate computing problem, as we hinted earlier. Instead

of dealing with rigid lower bounds on the accuracy of results dic-

tated by application requirements [32, 53], we are to work with a

fixed energy envelope, determined by the size of energy buffers. In

our case, algorithms must improve the accuracy obtained within

the finite energy budget, whatever that may be, rather than im-

proving resource usage, such as energy, within the constraint of a

minimum accuracy bound. The traditional design of approximate

algorithms is therefore often inapplicable [32, 53], as the effort

spent in computing is upper bound unlike in mainstream scenarios.

Output degradation in intermittent computing. Closest to our

work are systems that adapt the application execution based on

available energy, possibly degrading the quality of the output tin

situations of energy scarcity. One example is CatNap [47], a pro-

gramming model and run-time system that allows programmers to

identify a subset of the code as time-critical. When available energy

is lower than expected, CatNap defers the execution of the non

time-critical code to ensure timely execution of the time-critical

one. If the schedule becomes unfeasible in situations of extreme

energy scarcity, CatNap further degrades the quality of the output

by either running different programmer-provided code for the same

functionality, or the same code but less frequently.

Works also exist that use multi-resolution inference and multi-

exit strategies to handle a graceful degradation of the machine
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learning performance to meet temporal deadlines or depending

on available energy. For example, Sonic [29] provides specialized

support for intermittent executions, Zygarde [40] aims at taking

power failures into account to reduce the inference latency, whereas

ePerceptive [55] builds upon Sonic by adding a dynamic multi-exit

strategy. These works do represent initial steps in a similar direction

as approximate intermittent computing, yet they do not seek to

constrain the stateful processing steps within the same power cycle,

and therefore still require the use of persistent state.

3 CASE IN POINT

We make a first concrete case for approximate intermittent comput-

ing using human activity recognition as a target application. Our

choice is not casual. While human activity recognition is represen-

tative of the two characteristics discussed in the Introduction, it

is also a nice fit for energy harvesting. Kinetic energy abounds on

human bodies [33, 63], whereas batteries are detrimental to user

experience, as they increase a device’s footprint.

We specifically consider the study of Anguita et al. [4] in human

activity recognition. The application consists in classifying acceler-

ation and angular velocity readings as representative of six possible

human activities, including walking, walking upstairs, walking

downstairs, standing, sitting, and laying. Using a regular support

vector machine, Anguita et al. obtain an absolute accuracy of 93.9%.

Albeit the design of anytime support machines we describe next

is originally motivated by human activity recognition, their appli-

cability extends beyond that. The underlying reasoning and mathe-

matical properties are not, indeed, tied to the specific application.

3.1 Preliminaries

We provide necessary background to later understand our design.

Support vector machines. A geometrical analogy helps under-

stand support vector machines, shown in Fig. 2. Consider the case

of only two possible classes 𝐴 and 𝐵, for simplicity. Support vector
machines use training data to identify a hyperplane that provides

the best distinction between the two classes. The hyperplane is the

one that is maximally distant from the closest vector representing

the input sample. These vectors are called support vectors. The sep-

arating hyperplane is commonly identified by solving a quadratic

programming problem [54] using training data. The computational

complexity of training is 𝑂 (𝑛3), with 𝑛 being the cardinality of the
training set. The output of the training phase is a tuple of coeffi-

cients with the same dimensionality as the input samples.

Figure 2: Geometrical representation of separating hyper-

plane and support vectors in two dimensions.

Support vector machines rely on the assumption that the data

set is linearly separable, that is, at least one hyperplane𝑊 exists

such that all the input samples in 𝐴 are on one side of𝑊 , and all
input samples in 𝐵 are on the other. This is not necessarily the
case. If the data set is not linearly separable, the data is projected

in high-dimensionality spaces where it becomes so, using kernel

functions [54]. These retain the applicability of support vector

machines in cases where the original data is not linearly separable,

but incur in additional memory consumption and processing.

Support vector machines are usable also when the classification

task extends to multiple classes. Two methods are available. One-

versus-rest (OvR) methods classify input samples as belonging to

the class whose hyperplane is the farthest away. Instead, one-versus-

one (OvO) methods use one classifier for each pair of classes 𝐶𝑖 ,𝐶 𝑗 .

The class that matches most frequently among all possible pairs

is returned as output. As OvO methods require one hyperplane

for each pair of classes and a corresponding comparison when

classifying input samples, they incur in greater processing and

memory cost in both training and classification. OvR methods are

therefore usually favored on embedded devices.

Approximation for support vectormachines.Approximate vari-

ations of support vector machines exist. For example, Decoste et

al. [23] design interval-valued support vector machines. Whether

an input sample 𝒙 belongs to class 𝐶1 or 𝐶2 may be computed by
determining the sign of

∑
𝑝∈𝐶1

𝑑2𝑥𝑝 −
∑
𝑞∈𝐶2

𝑑2𝑥𝑞, (1)

where 𝑑2𝑥𝑝 is the squared distance between the input sample 𝒙 and
the support vector 𝒑. Instead of computing Eq. 1 directly, Decoste et
al. [23] present an algorithm to compute corresponding bounds that

are continuously narrowed until the sign of Eq. 1 is determined.

Wagstaff et al. [70] train two different models, one that is ex-

tremely accurate but incurs in high processing cost during classi-

fication, the other that is less precise but extremely simple to use.

Input samples are first classified using the simple model, and the

probability that the classification is correct is accordingly computed.

In cases this falls below a threshold, the accurate model is used for

re-running the classification.

Both approaches are, however, largely inapplicable for approxi-

mate intermittent computing. Interval-valued support vector ma-

chines incur, in the worst case, in greater processing cost than

regular support vector machines [23]. As this is proportional to

energy consumption on the devices we target, this characteristic

defeats the very purpose of using approximations. The approach

of Wagstaff et al. [70] offers little flexibility, as there are only two

possibilities for tuning the classification accuracy: one is either

happy with the simple model, or runs the accurate one as well.

3.2 Anytime Support Vector Machines

Like Anguita et al. [4], we use the OvRmethod. Say𝒘1,𝒘2 . . . 𝒘𝒄 are

the vectors representing the hyperplanes of the 𝑐 classes. An input
sample 𝒙 may be classified by identifying the class corresponding
to the hyperplane that yields the largest inner product with 𝒙 . Our
claim is that we can achieve an approximate classification by using
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fewer features than the 𝑛 available, that is

𝒘𝒊𝒙 =
𝑛∑
𝑗=1

𝑤𝑖 𝑗𝑥 𝑗 ≈

𝑝∑
𝑗=1

𝑤𝑖 𝑗𝑥 𝑗 , (2)

where 1 < 𝑖 < 𝑐 and 𝑝 < 𝑛. Intuitively, we use only a subset of the
available features to compute the classification. The closer is 𝑝 to 𝑛,
the more accurate is the classification, and viceversa.

The classification may then be computed incrementally, by ca-

ching approximate results and adding more features as energy is

available. This is particularly beneficial whenever the additional

features are not immediately available from sensor data, but re-

quire additional processing on the latter before they can be used

for classification. By limiting the classification step to a subset of

the features, we save the processing overhead of not just the classi-

fication step itself, but also of the computation required to compute

the additional features from raw sensor data.

To employ this form of approximation in intermittent computing,

the key question is how to tie the number of features we do process

to the expected accuracy in the final classification. This essentially

represents the trade-off between energy cost and accuracy. In the

general case, we are interested in computing the probability that

a classification using 𝑝 < 𝑛 features is coherent with the one ob-
tained using 𝑛 features, that is, it is the same as the most accurate
classification we can achieve. We want to study this probability as

a function of 𝑝 . We call class𝑚𝑖 the classification of the 𝑖-th sample
using𝑚 features. Therefore, we are to calculate, depending on 𝑝

𝑃 (class𝑝𝑖 = class𝑛𝑖 ) . (3)

How to compute this probability depends on whether i) the fea-

tures are independent or correlated, and ii) the classification is

binary or extends to multiple classes. Without loss of generality

and to ease the presentation, we illustrate next the case of inde-

pendent features with two or more classes; the analytical details

and derivations for the cases considering correlated features are

available elsewhere [10] (Chapter 5, Section 5.1-5.4).

Let us consider two classes and independent features. When

using all 𝑛 available features, the classification of an input sample
𝒙 𝒊 is determined by the sign of

𝑆𝑖 = 𝒘𝒙 𝒊 =
𝑛∑
𝑗=1

𝑐 𝑗𝑥𝑖 𝑗 , (4)

where𝒘 = [𝑐1, 𝑐2, . . . , 𝑐𝑛] is the vector representing the hyperplane
used to classify the input samples, and 𝒙 𝒊 = [𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛] is the
𝑖-th input sample we process.
An approximate classification for the 𝑖-th input sample may be

obtained by computing the sign of

𝑆𝑖𝑝 = 𝒘𝒙 𝒊 =
𝑝∑
𝑗=1

𝑐 𝑗𝑥𝑖 𝑗 , 𝑝 < 𝑛. (5)

Note that the sign of Eq. 4 is coherent with that of Eq. 5 as long as

𝑆𝑖𝑝 ≥ −𝑅𝑖𝑝 = −
𝑛∑

𝑗=𝑝+1

𝑐 𝑗𝑥𝑖 𝑗 , (6)

where 𝑅𝑖𝑝 represents the contribution to 𝑆𝑖 of the features we are
not considering. Intuitively, Eq. 6 states that such contribution is

not sufficient to flip the sign of 𝑆𝑖𝑝 compared to 𝑆𝑖 , and hence the
two classifications are coherent.

Eq. 6 also suggests what are the features that should be pro-

cessed first. In fact, for the same input sample, 𝑅𝑖𝑝 is as small as
the features 𝑝 + 1, . . . , 𝑛 correspond to smaller coefficients 𝑐 𝑗 . This
entails that the most efficient order to process features should be

based on magnitude of the corresponding coefficients in the sepa-

rating hyperplane. Features with larger coefficients bear a stronger

contribution in determining the final classification, and are there-

fore those we should process first. We confirm this observation

experimentally in Sec. 5.

At run-time, the features corresponding to the larger coefficient

may change; for example, because the distribution of the underlying

data changes. One possibility to cater for this situation may be to

periodically collect run-time data and re-run the training phase.

This process may run on a back-end machine, hence not requiring

resources from the sensing devices. Should the updated hyperplane

information be sharply different than the original ones, we may

issue an update for the sensing devices. Many solutions exist to

perform this efficiently and securely [7].

In the case of independent and normally distributed coefficients

𝑐1, 𝑐2, . . . , 𝑐𝑛 , we eventually derive that

𝑃 (class𝑝𝑖 = class𝑛𝑖 ) = 2
∫ ∞

𝑘=0
𝑓𝑆𝑖𝑝 (𝑘) (1 − 𝐹𝑅𝑖𝑝 (𝑘))𝑑𝑘, (7)

where 𝑓𝑆𝑖𝑝 and 𝐹𝑅𝑖𝑝 may be determined numerically [10] (Chapter 9,
Appendix 1), making Eq. 7 cheap to compute.

The case of multiple classes follows as a natural extension. Say

𝐶1,𝐶2, . . . ,𝐶𝑐 are the possible classes, and 𝒘1, 𝒘2 . . . 𝒘𝒄 are the

vectors representing the corresponding hyperplanes. For a generic

class ℎ, Eq. 4 may be extended to the case of multiple classes as

𝑆ℎ𝑖 = 𝒘𝒉𝒙 𝒊 =
𝑛∑
𝑗=1

𝑐ℎ𝑗𝑥𝑖 𝑗 . (8)

The input sample 𝑖 is classified as belonging to class 𝐶ℎ when
using all 𝑛 available features such that

class𝑛𝑖 = argmaxℎ (𝑆ℎ𝑖 ), 1 ≤ ℎ ≤ 𝑐. (9)

It is possible to repeat the same reasoning of Eq. 6 for each in-

dividual class 𝐶ℎ compared to all others. Therefore, in the case of
independent and normally distributed coefficients, the probability

that the classification using 𝑝 < 𝑛 features is coherent with the
one obtained using 𝑛 features is given by Eq. 7 for a generic class
𝐶ℎ , multiplied by the probability that ℎ is precisely the one solving
Eq. 9. In this case as well, we eventually derive an expression that

may computed numerically [10] (Chapter 5, Section 5.4.3; Chapter

9, Section 9.2). It is also possible to derive similar expressions in

the case of correlated coefficients, by taking into account the corre-

sponding covariance matrix [10] (Chapter 5, Section 5.4.4; Chapter

5, Section 5.4.5; Chapter 9, Section 9.2.1). In this case too, the value

of the expressions may be computed numerically.

4 PROTOTYPE

We describe the hardware we build, the data processing for training

and classification, and how we implement two alternative classifi-

cation pipelines on resource-constrained devices.
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4.1 Hardware 28 mm

25 m
m

Figure 3: ReVibe modelQ

kinetic energy harvester.

We manufacture a custom board

hosting anMSP430-FR5659MCU

to performhuman activity recog-

nition using kinetic energy. The

MCU is equipped with 64Kb

of volatile RAM together with

512Kb of FRAM as NVM.We use

the FRAM exclusively when running regular intermittent comput-

ing techniques. Acceleration and angular velocity readings are

obtained through an Analog Devices ADXL362 accelerometer and

an STM Electronics L3GD20H gyroscope respectively, both con-

nected through SPI. The board features BLE connectivity with a

Nordic nRF51822 chip.

For energy harvesting, we use a ReVibe modelQ [25] kinetic

transducer, shown in Fig. 3, which we order with a customized reso-

nance frequency based on the spectral profile of raw accelerometer

data we gather in a short pre-deployment trial. We choose the mod-

elQ over alternatives, for example, the modelD [24] of the same

manufacturer, because of the smaller form factor and the higher

power output at the target frequencies.

Similar to existing deployments of intermittent computing [1,

30, 35], the harvester is attached to a BQ25505 combined booster

and buck converter that charges a 1470𝜇F capacitor we use as
energy buffer. We determine its size through a mixed analytical and

experimental approach [67], striking a balance between charging

times and available energy. A too large capacitor may take long

to charge to a sufficient level, yielding large periods of no system

operation. A too small capacitor may not suffice to supply enough

energy for worst-case processing scenarios. Whenever required,

the capacitor’s current charge is read through an Analog Devices

ultralow-power LTC1417 analog-to-digital converter.

We create 12 identical hardware prototypes. The device is admit-

tedly large, but still wearable with no major issues by the volun-

teers involved in the trial of Sec. 5. The computing board including

MCU, BLE transceiver, charging circuitry, and application sensors

measures 5cm x 6cm. This part of the device is easy to miniatur-

ize [48, 67]. The key for practical usage is thus the kinetic energy

harvester, shown in Fig. 3, which is roughly half the size of a AA

battery. It can therefore replace traditional energy sources by reduc-

ing the overall device footprint and yet providing zero-maintenance

operation [1]. Even smaller thermoelectric energy harvesters also

exist [48, 67] that offer comparable energy performance.

4.2 Data and Training

We use the original dataset of Anguita et al. [5] for training. They

sample acceleration and angular velocity readings at 50 Hz from a

group of 30 volunteers within an age interval of 19-48 years, each

following a predetermined protocol of activities while carrying a

smartphone. The experiments are video-recorded to facilitate the

data labeling. A 3rd order Butterworth filter with a cutoff frequency

of 20Hz is used to remove the noise, as 99% of the signal energy is

found below that [4]. A second low-pass filter accounts for gravity.

Learning is then accomplished in the regular way, using the SVM

Python library from the scipy package.

Out of the raw data, Anguita et al. [4] compute a total of 561

features for training and classification. Not all of these features are,

however, generating linearly separable samples, therefore demand-

ing the use of kernel functions. Because of the increased overhead

due to these, we limit ourselves to the 140 signal features that

generate linearly separable samples. Together with the specific

implementation techniques we employ, this also ensures that in a

continuous execution, all 140 features may be used for classification

before the new sensor readings are gathered. This represents the

most accurate classification we can possibly provide. The features

we compute range from simple window operators such as average

and standard deviation, to sophisticated ones such as fast Fourier

transforms and spectral density distributions.

Based on Sec. 3.2, we numerically compute the probability that

a classification using only 𝑝 < 140 features is coherent with the
classification obtained with all 140 available features. For each fea-

ture, we use energy estimation tools for intermittent computing [2]

to profile the energy necessary to add that specific feature to the

existing classification. Such an energy cost is fixed for a feature, but

varies across features mainly because of the processing to extract

the feature from the raw sensor readings.

The entire data processing and energy profiling run on a standard

desktop machine in less than an hour.

4.3 Software

We implement the classification pipeline using C/C++. The classifi-

cation process starts as soon as a new window of sensor samples is

gathered. We create two implementations:

Greedy. The Greedy implementation continues to add features

to the existing classification, progressively refining the ac-

curacy, until either just the right amount of energy is left to

send out a BLE packet with the 1-byte output, or all available

features are used. In the latter case, a BLE packet is generated

thereafter and the node switches to the lowest-power mode

available that allows the system to wake up again in one

minute for the next iteration of sensor sampling. No issue

arises if the system dies because of energy depletion at this

stage; the result is already returned to the user.

Smart. Based on the information provided by the offline phases,

the Smart implementation first determines whether the

available energy is sufficient to achieve a classification accu-

racy above a user-defined threshold 𝐴 and finds in a look-up
table the corresponding number 𝑝 ′ of features to be used. If
energy is insufficient, it skips this round of classification and

switches to the lowest-power mode, similar to Greedy, wait-

ing for the next sensor samples. Otherwise, it immediately

uses all 𝑝 ′ samples and then switches to Greedy mode.

Note that the operation of the Smart implementation ensures

that the user-defined threshold is met for all input samples that are

actually processed. It also ensures that any energy left or obtained

while running is employed to further refine the accuracy of the

classification before returning it to the user.

Both implementations employ fixed-point arithmetics due to the

lack of hardware support for floating-point operations on the MCU

we target and space-efficient data structures to store i) the models

output by the training phase described by hyperplane information,
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Figure 4: Emulation experiments: expected andmeasured ac-

curacy as a function of the number of features used for clas-

sification. The expected accuracy computed according to Sec. 3.2 is

constantly close to the measured accuracy. The analysis of Sec. 3.2 can,

indeed, be used to forecast the accuracy as a function of the number

of features used for classification. Using all available features, the

accuracy is around 88%, in line with the results of Anguita et al. [4].

ii) the mapping between the 𝑝 processed features to the expected
classification accuracy, and iii) information on the energy cost to

add the 𝑖-th feature to the existing classification. The information
for ii) is essentially the result of numerically computing the right-

hand side of Eq. 7 for a given 𝑝 ; the actual computation is performed
off-line and only the result is stored in the MCU memory. The infor-

mation for both ii) and iii) are compacted in a single lookup table

that ensures 𝑂 (1) access overhead given a minimum classification
accuracy𝐴 to achieve, as used in the Smart implementation, or the
next feature 𝑖 ′ to process, as used in Greedy. These information
occupy ≈18Kb of the 64Kb of available memory, leaving ample

room for additional functionality if necessary.

5 EVALUATION

We consider four key metrics. The accuracy of classification rep-

resents the matching between recognized human activities and

ground truth, whenever available. This metric tops at the accuracy

provided by an execution running without interruptions, which

always uses all available features. We call this baseline Uninter-

rupted. Whenever ground truth is not available, we measure the

coherence of the classification returned by approximate intermit-

tent computing against Uninterrupted or regular intermittent

computing, as discussed in Sec. 3. The system throughput measures

the number of returned classifications throughout an experiment

duration, whereas the latency indicates when those classifications

are emitted compared to when the sensor samples are acquired.

For approximate intermittent computing, we study the perfor-

mance of the Smart implementation, using a 80% or 60% lower

bound in accuracy, and of Greedy, as described in Sec. 4. In addition

to Uninterrupted, we use Chinchilla as a baseline [45]. Chinchilla

over-provisions code with checkpoints to ensure forward progress

with scarce energy, then dynamically disables checkpoints to adapt

to situations of energy abundance. Because of this, Chinchilla effi-

ciently matches the varying energy levels in our target scenarios.

We also clock the MCU at 8MHz to avoid wait states when writing

or reading checkpoints on FRAM. The performance we measure

for this baseline thus represents a best case.

We study the relevant trade-offs from multiple angles, using

different tools and settings:

(1) in Sec. 5.1, we use emulation experiments to compare the

expected andmeasured accuracy of classification as a function

of the number of features used for classification, providing

quantitative support to the analysis in Sec. 3.2;

(2) in Sec. 5.2, we use emulation experiments to compare the

latency, accuracy, and throughput of the implementations in

Sec. 4 against either Uninterrupted or Chinchilla;

(3) in Sec. 5.3, we involve six volunteers for about 56 hours each

to compare the latency, accuracy, and throughput of the im-

plementations in Sec. 4 against Uninterrupted, using two

identical devices on the same person’s wrist;

(4) in Sec. 5.4, we use the same setup as the previous case with

another six volunteers for about 58 hours each to run a com-

parison against an implementation using Chinchilla.

The volunteers we involve include senior members of our lab

and their spouses or parents. The diversity of activities they are in-

volved in, ranging from coding or studying to driving or exercising,

caters for a range of different settings. The experiments in Sec. 5.1

and Sec. 5.2 are enabled by labeled sensor data and energy traces

we collect with three of these volunteers using a battery-powered

version of the prototype of Sec. 4 for about 56 hours each. Note that

these data is different from the dataset used for training. The emula-

tion experiments use an extension of the MSPSim emulator [26, 27]

that provides support for using FRAM as NVM and accounts for

the corresponding energy consumption. Experiments using the real

prototype output the classification over BLE to a smartphone the

user carries. The Uninterrupted executions are obtained with

same battery-powered version of our prototype mentioned earlier.

5.1 Expected Accuracy

The analysis of Sec. 3.2 provides a conceptual and quantitative basis

for the application of approximate intermittent computing. Here

we check that this analysis can indeed be relied upon, using the

labeled data we collect, including ground truth.

Fig. 4 shows the results of our emulation experiments comparing

the expected and measured accuracy of classification, as a func-

tion of the number of processed features. The expected accuracy,

computed based on the analysis of Sec. 3.2, is constantly close to

the measured accuracy. The delta between the curves also appears

largely independent of the number of features processed, providing

evidence of the general applicability of our analysis.

Fig. 4 also offers a more general opportunity to gain a qualitative

insight into the behavior of approximate intermittent computing.

As expected, the blue curve starts at 16,6% because with no fea-

tures, determining the correct classification equates to a random

event with uniform distribution over the six possible classes. As the

number of features we process increases, both curves rapidly grow.

The first few features, which in our case come from processing

the FFT of the input signal, significantly contribute to improving

the accuracy of classification. The curves eventually flatten out as

the contribution of the latest features we process only marginally

improves the obtained accuracy. Both expected and measured accu-

racy top at around 88%. This is in line with the results of Anguita

et al. [4], who obtain a 93.9% accuracy using many more features

compared to our system and the same training data.

5.2 Comparing with Ground Truth

Using labeled data, we replay the execution of approximate inter-

mittent computing, as well as of Uninterrupted and Chinchilla,

using the same sensor data and energy traces.
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Figure 5: Emulation experiments: classification accuracy

and system throughput normalized to Uninterrupted. The

Greedy implementation captures energy fluctuations most efficiently,

improving system throughput at the expenses of slightly lower accu-

racy. The Smart implementations ensure a lower bound in accuracy

for every processed sample, at the cost of a slight reduction in through-

put. Using Chinchilla provides the best possible classification accuracy,

but must invest significant energy in handling persistent state, severely

impacting the throughput.
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(b) Confusion matrix for Greedy implementation.

Figure 6: Confusion matrixes of the classification results

comparing the output of the Chinchilla and Greedy im-

plementation with ground truth. Rows represent the actual

class and columns represent the predicted class.

Fig. 5 illustrates the results in accuracy and throughput. Fig. 5(a)

shows how Chinchilla provides, for the single input sample, the best

possible accuracy as it always uses all available features. Fig. 5(b)

illustrates, however, that doing so comes at a tremendous cost in

terms of throughput, because Chinchilla stretches the processing

of every single samples across multiple power cycles, missing the

opportunity to process new samples. Approximate intermittent

computing, in contrast, trades a limited loss of accuracy for much

greater throughput. One of the fundamental benefits is apparent

here: the energy budget is entirely spent for useful application

processing, rather than for managing persistent state on the energy-

hungry NVM. The loss of accuracy is around 11% worst-case, yet

the throughput improvements reach up to 7𝑥 that of Chinchilla.
Fig. 6 provides a closer look at how different accuracy results are

obtained as a function of actual and predicted activities. Fig. 6(a) is

obtained using Chinchilla and shows that two clusters of activities

exist as in the original dataset [5]. The act of walking, possibly up-

stairs or downstairs, is distinctly recognized compared to activities

that do not entail as much body movement, such as standing, sit-

ting, or laying. Using Chinchilla, indeed, we systematically employ

all available features as done by Anguita et al. [4], at the cost of

processing fewer samples because of the overhead for employing

persistent state and waiting for energy buffers to recharge.

Although the two clusters of activities still exist when consider-

ing the confusionmatrix for the Greedy implementation, illustrated

in Fig. 6(b), the per-class accuracy results are different. As we are

using kinetic energy harvesting, one may expect that activities that

entail significant movement also carry a higher energy content,

and are thus more accurately recognized because more features are

used for classification. On the other hand, it is also the case that the

activities with a lower energy content are the ones that are simpler

to recognize in the original dataset [5], hence fewer features are

usually sufficient to obtain an accurate classification. We argue that

these two aspects largely compensate each other.

Comparing either configuration of Smart with Greedy, Fig. 5(a)

shows a slightly higher accuracy for the former. This is due to those

samples that, in situations of energy scarcity, Smart discards as the

number of features the system can process is too limited to match

the required lower bound. Greedy proceeds anyways by computing

the classification with fewer features than usual, likely obtaining a

less accurate output. The effect of this is also apparent in Fig. 5(b).

The samples that Smart decides to drop do not produce an output,

causing a reduction of the throughput. The same observations apply

also between the two configurations of Smart, as a higher lower

bound for accuracy improves the latter at the expense of additional

dropped samples and therefore lower throughput.

Note how Fig. 5(b) also generally shows the impact of using

ambient energy, in that energy harvesting causes a device not to

run as often as a battery-powered one that can afford to execute

uninterrupted. This is essentially the price to pay for a battery-less

system. Still, using approximate intermittent computing, more than

half of the classifications that Uninterrupted would produce are

indeed returned by the user when using kinetic energy. Let apart

experiences using solar radiation as the energy source, these results

generally represent a significant improvement compared to existing

deployments of intermittent computing [1, 35, 67].

We also investigate the impact of sensor noise on the accuracy

results. The dataset used for training includes filtered data as de-

scribed in Sec. 4.2. In contrast, to limit processing overhead, we use

the raw sensor data at run-time. We verify that this is the most

efficient choice: re-running the emulation experiments with the

addition of the same filtering steps used to build the training dataset

yields a marginal accuracy improvement, in the range of a few per-

centage points. However, system throughput decreases by 22% on

average for all systems we consider, due to the energy consumed

for applying the filtering step to every sensor sample.
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Figure 7: Emulation experiments: distribution of the latency

to return the classification, measured in number of power

cycles between when sensor data is acquired until the clas-

sification is emitted. Approximate intermittent computing always

returns the result to the user within the same power cycle. Because

intermittent computing uses persistent state to cross periods of energy

unavailability until all available features are processed, the time when

the classification is returned is entirely a function of energy patterns.

The improvements in throughput stem from the reduced latency

to return the result to the user. Fig. 7 illustrates this metric, mea-

sured in the number of power cycles, that is, the number of times

the device wakes up with new energy since the sensor data is ac-

quired and until the classification is emitted. Chinchilla is at the

mercy of the energy source; computations stop and resume, using

persistent state, until sufficient energy is eventually available to

process all features. The latency therefore covers also the periods

for recharging the energy buffer. A non-negligible fraction of the

outputs are even returned tens of power cycles later than when the

sensor data is acquired. In contrast, using approximate intermittent

computing, the classification is returned within the same power

cycle by design: the number of features we process is tuned for

returning the output before the first power failure. Therefore, even

though we generally do not aim at purely real-time operation, ap-

proximate intermittent computing reduces the application latency

to the minimum time feasible on an energy-harvesting device.

5.3 Comparing with Uninterrupted Executions

We use two identical prototypes on the same person’s wrist. One of

them is running either of the approximate intermittent computing

implementations of Sec. 4, the other one is battery-powered and

executes uninterrupted. With six volunteers, we run two instances

of every approximate intermittent computing implementation and

six uninterrupted executions we compare with. We align the power

cycle information with the uninterrupted execution based on the

interval the BLE packets are received at the user smartphone. Should

this interval be lower than .2sec, which equals the duration of sensor

sampling, we consider the two classifications to be aligned.

Fig. 8(a) shows the results we obtain in coherence of the clas-

sification. This time we cannot reason on absolute accuracy as in

Sec. 5.2, because ground truth is not available. In at least 91.2% of

the cases, however, the classification of human activities returned

by approximate intermittent computing is the same as in an uninter-

rupted execution. However, approximate intermittent computing

runs in a completely self-sustained manner, using kinetic energy.

The coherence is higher for Smart because of the reasons explained

earlier: the lower bound on expected accuracy makes Smart discard

samples in situations where the (too) little available energy would

yield a less accurate classification.
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(a) Classification coherence compared to
continous execution [%].
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(b) System throughput normalized to con-
tinuous execution [%].

Figure 8: Real-world experiments: coherence of the classifi-

cation of approximate intermittent computing against Un-

interrupted and system throughput normalized to Unin-

terrupted. Approximate intermittent computing returns the same

classification of an uninterrupted execution in the majority of the

cases. More than half of the samples processed by an uninterrupted

execution are processed by approximate intermittent computing too.
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Figure 9: Real-world experiments: coherence of the clas-

sification of approximate intermittent computing against

Chinchilla, and system throughput normalized to that of

Greedy. The performance in coherence mirrors Fig. 8(a), as Chin-

chilla processes all available samples like Uninterrupted. The

throughput enabled by Chinchilla is lower than approximate inter-

mittent computing, as it can process fewer samples.

Unsurprisingly, Fig. 8(b) shows again that relying on ambient

energy severely impacts system throughput, These results are in

line with the emulation results of Fig. 5(b), giving us confidence

on the correctness of the setup. Compared to Fig. 8(a), the relative

trends between the different implementations are reversed; Greedy

shows higher throughput as it opportunistically consumes energy

whenever available, returning more results at the expense of lower

accuracy. We do not report on latency here, as all implementations

we test here return the classification within the same power cycle.

5.4 Comparing with Chinchilla

We use the same setup as in Sec. 5.3, but replace the uninterrupted

executions with an implementation that uses Chinchilla. Because

the two devices on a person’s wrist are exposed to the same move-

ments, we verify that their energy patterns are almost identical.

To align power cycle information with Chinchilla, we check what

checkpoints are taken since the sensors samples are acquired and

until the result is transmitted. This allows us to compute how many

power cycles in the past the samples originate from.

Fig. 9(a) shows the coherence of the classification obtained by the

implementations of approximate intermittent computing compared

to Chinchilla. The results here mirror those of Fig. 8(a). The imple-

mentation using Chinchilla exploits all available features anyways,

exactly like Uninterrupted. Therefore, the accuracy it achieves

is the same as Uninterrupted and thus the coherence with the

classification of approximate intermittent computing is also similar.

What is different, however, is the number of sensor samples that
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Chinchilla manages to process. As this implementation must cross

periods of energy unavailability using persistent state, processing

of a single sample extends across multiple power cycles, preventing

the the acquisition of newer samples.

One consequence of this is a reduction in system throughput, as

shown in Fig. 9(b). This time the data is normalized to the best per-

forming implementation among the ones we test, which is Greedy.

Chinchilla can only provide a fraction of the results that approxi-

mate intermittent computing can dispense. As we observed before,

improved throughput is enabled by reduced latency to return the

result to the user. By design, approximate intermittent computing

returns the classification before the first power failure. The time

it takes for Chinchilla to return the result is a function of energy

patterns, as seen in Fig. 7. This latency stretches across even tens

of power cycles and includes the periods for recharging energy

buffers. While Chinchilla writes and reads from NVM to cross these

periods, approximate intermittent computing can capture newer

samples, as it already concluded processing the previous ones.

6 GENERALITY

The applicability of approximate intermittent computing extends

beyond the case of human activity recognition or the use of specific

machine learning techniques. Here we summarize the design, imple-

mentation, and evaluation of a sharply different application. Further

details, including an extensive evaluation, are also available [17].

We conclude by discussing the limitations of our approach.

6.1 Application

Embedded image processing enables applications such as smart

parking, preventive maintenance, and pervasive surveillance [58].

To accomplish the application tasks, image processing techniques

such as corner detection are used to extract key features from

the picture. In a smart parking application, for example, corner

information may be used to determine whether a spot is occupied.

The results of processing pictures at run-time are compared to the

results obtained for a set of reference pictures, for example, showing

the empty parking spot, to determine the final result.

Applications relying on embedded image processing often ex-

hibit the two characteristics discussed in the Introduction. Occu-

pancy information must reach the end user rapidly; for example,

to update information on the available spots. The information is

as valid as it is most current, as stale information is essentially of

no use. Most importantly, corner detection only offers probabilistic

guarantees, as most image processing techniques do. The process-

ing is already robust to data errors, for example, due to distortions

in the pictures, and is therefore amenable to further approximation.

Embedded image processing using energy-harvesting devices

enables zero-maintenance deployments, yet is extremely challeng-

ing. The energy cost of image capture is significant and even the

simplest camera sensor easily generates 25Kb of data for a single

image capture [56]. Capturing pictures and processing this amount

of data for every frame may be prohibitive on energy-harvesting

devices, requiring either very large energy buffers that incur in

high leakage currents, require long times to recharge, and increase

footprints, or the frequent use of persistent state to stretch the

processing across multiple execution rounds [21, 56].

Anytime SVM Loop perforation

Approximation knob Number of features Loop iterations

Energy estimation Single feature Single loop iteration

Output parameter Activity classification Number/position of corners

Figure 10: Relation between key concepts of approximate in-

termittent computing in the applications we consider.

6.2 Data Processing

Similar to many image processing techniques, corner detection is

implemented by applying forms of iterative processing. We apply

loop perforation [32] to create the knob that approximate intermit-

tent computing requires to trade accuracy for energy consumption.

Loop perforation skips a certain fraction of the loop iterations to

save resources. Although application-specific policies to determine

what iterations to skip exist [32], the choice is most often random.

By properly tuning the fraction of loop iterations not executed as a

function of available energy, loop perforation allows us to conclude

processing before the first power failure, and hence to spare the

need of persistent state and energy-hungry operations on NVM.

The key concepts emerging from the application of approximate

intermittent computing to human activity recognition return here,

as summarized in Fig. 10. The parameter that determines the level

of approximation, and consequently the energy saving, is the num-

ber of loop iterations not executed, similar to the features that the

anytime support vector machines do not consider. The extent of

data processing as a function of available energy is obtained by

estimating, using the same tools as before [2], the energy consumed

by the single loop iteration; likewise, this information is the energy

to process the single feature in human activity recognition. The

output is represented by the number and position of detected cor-

ners, similar to the human activity classification obtained earlier.

Based on this information, we quantify the accuracy achieved; as

there is no “ground truth” here, accuracy is defined relative to an

execution that does not skip any loop iteration.

6.3 Evaluation

We describe first our prototype implementation, along with the

metrics and baselines we consider, and summarize the results next.

Prototype.We create a hardware/software prototype based on a

TI Launchpad equipped with the same MSP430-FR5659 MCU used

earlier. We use the on-board FRAM to store the test pictures we use

for evaluation and the output of image processing. We manually

retrieve the latter from FRAM at the end of every experiment. The

energy cost for these operations is factored out. Generally, a fed-

erated energy architecture [21] would allow one to use separate

capacitors for image capture and processing, shortening the times

for recharging. Although the energy cost for image capture is fixed,

approximate intermittent computing allows one to improve the

energy efficiency in image processing. To power the latter function-

ality, we use the same capacitor and charging circuit as in Sec. 4.

We supply energy using a Renesas digital power supply driven

by an RL78/I1A controller, based on five energy traces obtained

from diverse sources and in different settings. Fig. 11 shows an

excerpt, plotting the instantaneous voltage reading over time. The

RF trace is from Mementos [62], recorded using a WISP device [64].

The other four traces are from EPIC [2] and are recorded using a
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Figure 11: Energy traces used to power an embedded image

processing pipeline. SOM is most stable and has highest energy

content. RF is most variable and with least energy content.
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Figure 12: Representative examples of the output of corner

detection, depending on the fraction of loop iterations not

executed. For complex pictures, up to 42% of the loop iterations may

be skipped without severely impacting the quality of the result.

mono-crystalline solar panel attached to an Arduino Uno in set-

tings including outdoor mobile (SOM), indoor mobile (SIM), outdoor

static (SOR), and indoor static (SIR). Similar to Ekho [34], this setup

allows us to replicate the exact V-I curve the device would experi-

ence if attached to the actual energy harvester while considering

the equivalent resistance offered by the device, and yet retain re-

peatability across experimental settings.

Whenever the device wakes up with new energy, it randomly

loads one of the test pictures and performs corner detection. If

energy is left at the end of the processing, the MCU switches to the

lowest power mode that allows a 30sec timer to eventually trigger

another round of image processing. The approximate intermittent

computing implementation works the same as Greedy, skipping a

number of loop iterations that allows the system to output the result

just before energy is exhausted. The energy traces are the basis for

comparing the approximate intermittent computing implementa-

tion with Chinchilla, as in Sec. 5. In addition, we also consider an

implementation that incurs no power failures, hence disregarding

the energy traces. Both the Chinchilla implementation and the one

Rectangle

Pen

Car

 0  20  40  60  80  100

Equivalent corner information [%]

Figure 13: Quantifying the accuracy of approximate inter-

mittent computing, compared to an execution that skips no

loop iterations. Based on the number and position of detected cor-

ners, approximate intermittent computing returns an equivalent out-

put in at least 84% of the cases.

experiencing no power failures skip no loop iterations; in particular,

the latter processes one picture every 30sec with no interruptions,

returning the result of the complete corner detection functionality

at the end of processing.

The metrics we consider next are the same as in Sec. 5, but mea-

sured according to the specific features of the application at hand.

Results. Fig. 12 graphically shows representative examples of the

outputs we obtain, as a function of the loop iterations skipped.

Note that the latter quantity here is precisely proportional to the

share of saved energy. The picture in Fig. 12(a) is a simple test.

Approximate intermittent computing may skip up to more than

half of the loop iterations, and yet return corner information that

are equal in number, and very similar in positioning, compared to

an execution that skips no iteration. With more complex pictures, as

in Fig. 12(b) and Fig. 12(c), this observation applies up to situations

wheremore than 42% of the loop iterations are not executed. Beyond

that, the overall number of detected corners reduces and spurious

detections also appear, as indicated by the red circle in Fig. 12(c).

Fig. 13 quantifies the average accuracy of approximate intermit-

tent computing across all energy traces by showing the fraction of

pictures whose corner information are equivalent to those obtained

by skipping no loop iterations. We define equivalence as the same

number of corners appearing in the output, and each corner’s posi-

tion in the approximate intermittent execution to be closer to the

position of the same corner when skipping no loop iteration, than

to any other corner. The latter condition ensures that a corner may

not be confused with a different one. Based on this, for example, the

leftmost three pictures in Fig. 12(b) represent an equivalent output.

Depending on the picture, approximate intermittent computing

returns an equivalent output as an execution that skips no loop

iterations in at least 84% of the cases.

As seen in Sec. 5, approximate intermittent computing trades a

loss in accuracy for the ability to produce the result in the same

power cycle. This reduces latency, enabling higher throughput.

Fig. 14 shows the performance in the latter, normalized to that of

an execution that experiences no power failures. The approximate

intermittent computing implementation constantly outperforms

the one using Chinchilla. Generally, traces that are richer in energy

correspond to larger improvements for approximate intermittent

computing. This is because it uses energy more efficiently than

Chinchilla, where a significant fraction of that is spent handling

persistent state and thus subtracted from application processing.

Interestingly, the better use of energy in approximate intermit-

tent computing is visible in the time dynamics as well. This aspect

is apparent as one observes that the performance of approximate
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Figure 14: System throughput of corner detection normal-

ized to that of an execution with no power failures. Because

of the higher energy efficiency, traces with higher energy content

amplify the gains of approximate intermittent computing.

intermittent computing in Fig. 14 is very similar for the RF and SIR

traces: these two are very different in time, yet provide roughly the

same total amount of energy to the system. We make better use

of the energy available, no matter when it becomes available, by

tuning the target accuracy, based on current conditions. In contrast,

Chinchilla suffers from the rapid dynamics in the RF trace.

The trends in latency to produce the output of corner detec-

tion are similar to the ones discussed in Sec. 5.2 and Sec. 5.4. Ap-

proximate intermittent computing systematically produces a result

within the same power cycle, regardless of the energy trace, whereas

Chinchilla stretches the processing over many power cycles, as a

function of the energy patterns.

6.4 Boundaries and Limitations

Applications where the data pipelines are amenable to approxi-

mation are, in principle, candidates for approximate intermittent

computing. The aforementioned examples of smart health [66], am-

bient intelligence [22], and environment monitoring [57] extend

the range of applications we concretely demonstrate here.

Existing literature offers a multitude of techniques that may

be employed in approximate intermittent computing [53]. One

example is neural networks. Zhang et al. [72] develop techniques

to characterize the impact of neurons on the obtained accuracy.

Based on this information, they determine how to approximate the

computation and memory accesses of certain less critical neurons

to improve energy efficiency. Although their work on memory

accesses is not immediately applicable to our target platforms due

to discrepancies in the memory layout, their work on the computing

part does enjoy immediate applicability. The energy consumed to

process the single neuron is measurable in ways similar to how we

measure the energy for single features in Sec. 4.

It is also possible to foresee different implementations of the

same functionality co-exist on the same device, featuring varying

trade-offs between accuracy and energy consumption. At run-time,

depending on available energy and expected consumption of the

different implementations, one is chosen for execution. Such a

technique, usually called “multi-accuracy programs” [53], may be

used in approximate intermittent computing as long as sufficient

program memory is available and is applicable in domains such as

classification [60], signal processing [31], and image filtering [52].

The efficiency of the resulting system, however, is a function

of how we can accurately estimate the energy consumption as

a function of the level of approximation. This is required to de-

termine how far can the system go applying approximation. En-

ergy estimation tools for low-power embedded computing exist

aplenty [41], along with versions that are specific to intermittent

computing [2, 18, 20, 27]. These tools are necessary companions to

approximate intermittent computing. Most of them work off-line,

as the run-time overhead of energy estimation may be prohibitive.

Whenever these tools cannot provide precise estimates, for example,

because executions are highly dependent on run-time information,

approximate intermittent computing may be difficult to apply.

By its own nature, approximate intermittent computing only of-

fers probabilistic guarantees on correctness. Many of the inaccurate

results returned in our application prototypes, nonetheless, may

be corrected through some form of post-processing, as they are

often represented by single outliers in long sequences of accurate

outputs. This would further improve the accuracy of the system as a

whole. Despite this possibility, whenever applications require exact

results or depend on the absolute precision of data, approximate

intermittent computing is simply not applicable. This is the case, for

example, when sensor devices are used to drive closed-loop control

systems, where accuracy is key to achieve stable behaviors [59].

7 CONCLUSION

We presented the concept of approximate intermittent computing

and demonstrated its application in two diverse application cases.

Regular intermittent computing retains the equivalence to continu-

ous executions by using persistent state on NVM to cross periods

of energy unavailability. In contrast, we showed how a moderate

loss in the accuracy of the output provides huge gains in terms of

energy consumption in that, if properly tuned, the system can finish

processing prior to the first power failures. This makes it possible

for the system to spare the need to maintain persistent state on

the energy-hungry NVM, and thus allows the energy budget to be

spent entirely for useful application processing. As a result, outputs

are returned to the end user within the same power cycle compared

to when the input sensor data is gathered. System throughput in-

creases consequently, as the system is ready to process new inputs

as soon as it restarts after a power failure. We showed, for example,

that in human activity recognition approximate intermittent com-

puting provides a 7𝑥 improvement in system throughput compared
to regular intermittent computing. It also retains an average 83%

accuracy compared to ground truth, in a setting where the best

attainable accuracy is 88%. Using imagine processing techniques for

corner detection, we achieve a 5𝑥 improvement in system through-
put compared to regular intermittent computing, while retaining

equivalence in the number and position of detected corners in at

least 84% of the cases, compared to a continuous execution.
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