
Poster Abstract: Approach for Remote, On-Demand Loading and
Execution of TensorFlow Lite ML Models on Arduino IoT Boards

Bharath Sudharsan
Data Science Institute,

NUI Galway, Ireland

b.sudharsan1@nuigalway.ie

Simone Salerno
Eloquent Arduino,

Bari, Italy

eloquentarduino@gmail.com

Piyush Yadav
Collins Aerospace ART,

Cork, Ireland

piyush.yadav@collins.com

John G. Breslin
Data Science Institute,

NUI Galway, Ireland

john.breslin@nuigalway.ie

ABSTRACT

Traditionally, original equipmentmanufacturers (OEMs) send device-

specific over-the-air (OTA) packages to ensure the latest firmware,

security patches, etc. With millions of IoT devices, even a tiny per-

centage of OTA failures will result in tens of thousands of globally

affected consumers. The state-of-the-art OTAmethods are suited for

high-end Android & embedded Linux devices and not for resource-

constrained devices (e.g. MCUs, small CPUs) with only a few MB

memory. Current OTA methods have been tested only on non-ML

use-cases such as remote bugs patching or security flaws, etc.

In this paper, we present OTA-TinyML approach that, via HTTPS,

loads the C source file of ML models from a webserver into IoT

boards. OTA-TinyML does not strain hardware (resource-friendly)

as its implementation spans only a few lines of code. It is compatible

with a range of ML models (e.g. text, speech, image domains) and

MCUs (e.g. Cortex M series, STM32, Xtensa). OTA-TinyML is tested

by performing remote fetching of 6 types of ML models, storing

them on 4 types of memory units, then loading and executing on 7

popular Arduino IoT boards.

KEYWORDS

IoT Devices, TinyML, OTA Updates, Device Repurposing.

1 INTRODUCTION

Edge-to-cloud OTA programming or updates offer the potential for

enhanced revenue streams, as the OEMs can offer add-on services

without having expensive service technicians or inexperienced

users perform the updates in person [1]. However, these benefits

must be balanced by the risks: a poorly executed OTA update can re-

sult in bricked devices and significant inconvenience to consumers,

as well as reputational damage to the OEM [2]. Also, the majority of

IoT devices are embedded systems with a low-cost MCU or a small

CPU as their brain (market estimates 50 billion tiny chipsets shipped

in 2020) [3, 4]. The hardware of such devices has processor chipsets

from various vendors (heterogeneity introduces complexity), lim-

ited/no physical access to re-programming (concealed peripherals,

ports, test points), and memory-constraint (few MB of SRAM, flash

sufficient only for device routine functionalities) [5]. Such chal-

lenges impact the OTA update/programming process, increasing

cases reporting that tiny devices get into an inconsistent state [6].

The state-of-the-art OTA methods with update version rollback,

integrity verification, update failure management features are not

suitable for MCU devices due to their memory and computation

demands. OTA ML for tiny IoT devices research challenges are

covered in [7]. We present OTA-TinyML, a novel approach that en-

ables even constrained, low-cost IoT devices to perform end-to-end

remote fetching, storing, and execution of ML models.

Figure 1: OTA-TinyML for model fetching from a webserver,

storing in external FS, and execution on IoT devices.

2 OTA-TINYML DESIGN

The operational flow of OTA-TinyML is shown in Figure 1, which

comprises of two parts. The first part circled 1 , contains a method,

that upon demand, fetches ML model files from the cloud server

on the edge devices. The second part circled 2 , contains a method

to enable storage of fetched files in internal memory or external

filesystems, then the loading and model execution. The next sub-

section discusses these parts in detail.

Code: https://github.com/bharathsudharsan/OTA-TinyML

2.1 Part 1: Models Fetching via HTTPS

This part of OTA-TinyML enables IoT devices to download ML

models from the internet, whose implementation, via target server

address along with the directory/path of ML model, initially estab-

lishes a connection to the server. Then downloads the target from

HTTPS URL using http.get() method of HTTPClient object and
passes the file to OTA-TinyML part 2 for storage on the available

memory unit of the edge device. The models stored in the webserver

need to be of the .bin (model as a compressed binary file) or .h
format (model as a C array), both of which can be generated from

the trained model using Converter API [8].

509

2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)

978-1-6654-9624-7/22/$31.00 ©2022 IEEE
DOI 10.1109/IPSN54338.2022.00061

Table 1: Popular MCU boards (left) and optimized INT8 models (right) used for OTA-TinyML testing.

Name
Processor, Flash (MB),

SRAM, Clock (MHz)

B1: Teensy 4.0 Cortex-M7, 2, 1MB, 600

B2: STM32 Nucleo H7 Cortex-M7, 2, 1 MB, 480

B3: Arduino Portenta Cortex-M7+M4, 16, 8MB, 480

B4: Feather M4 Express Cortex-M4, 2, 192KB, 120

B5: Generic ESP32 Xtensa LX6, 4, 520KB, 240

B6: Arduino Nano 33 Cortex-M4, 1, 256KB, 64

B7: Raspberry Pi Pico Cortex-M0+, 16, 264KB, 133

Task: Model Name Score .tflite (KB) .h (KB)

Recognize Gestures: MagicWand 0.67 (Acc) 19 118

Visual Wake Words: MicroNet S-L 0.76-0.82 (Acc) 273-529 1689-3267

Speech Recognition: Wav2letter 0.0783 (LER) 22600 143421

Keyword Spotting: DNN S-L 0.82-0.86 (Acc) 82-491 508-3029

Keyword Spotting: CNN S-L 0.91-0.92 (Acc) 75-492 436-3029

Keyword Spotting: MicroSpeech 0.62 (Acc) 18 112

Image Classification: MobileNet v2 0.69 (Acc) 3927 24215

Anomaly Detection: MicroNet S-L 0.95-0.96 (AUC) 246-452 1523-2794

2.2 Part 2: Store, Execute ML from External FS

This part of OTA-TinyML enables storing of multiple ML models

(fetched from a webserver) on any memory unit of choice. It is

compatible with internal memory units like on-chip flash and SPI

Flash FS (SPIFFS); Also external File Systems (FS) like EEPROM FS

(EEFS), SD card FS (SDFS). This part also is responsible to load and

execute models demanded by the IoT application. In conventional

TinyML approaches, after the ML model training phase, the output

model is converted to an array and exported as a C header file. This

file is imported into the code of the IoT application (using #include
model_name.h), on which the TF Lite Micro interpreter is run to
obtain predictions via the EloquentTinyML Arduino Library [8].

Orthogonal to the conventional TinyML approaches, we show

that, on the MCU boards, it is possible to load an ML model from

a file instead of from a C array. During executing various TinyML

models on MCU boards, we found out and also report here that

interpreters works identical in both cases - whether the model is de-

clared as an array from the beginning or loaded as an array from

somewhere else. Using this finding/concept, OTA-TinyML initially

reads a file (ML model in model_name.bin format stored in any
memory unit) into a byte array. Then, it allocates memory for the

read model using the malloc() function and copies the model con-
tent byte-by-byte, from the .bin file to the MCU SRAM memory,

using which the interpreter produces predictions [9].

3 OTA-TINYML TESTING

The models and Arduino MCU boards used for OTA-TinyML test-

ing are given in Table 1 (right). For part 1 testing, to ensure ex-

tensiveness, the .h file size of various ML models (from 112 KB

MicroSpeech to 143421 KB Wav2Letter) are fetched from cloud

to edge MCUs. For part 2 testing, 4 types of memory units are

extensively used to test the onboard model storing and loading per-

formance of OTA-TinyML. So, SDFS is interfaced to B3, B7; EEFS to

B6, B4; Internal SPIFFS of B5; Internal flash memory of B1, B2. As

shown in Figure 1, we first upload the .bin files of 16 pre-trained
ML models (6 task types) into an HTTPS webserver. Then, the C++

implementation of the OTA-TinyML approach provided as a .ino
file (server details entered in this file) is flashed on 7 different MCU

boards B1 to B7 using Arduino IDE. At this stage, both the server

and edge devices are ready for OTA-TinyML testing.

Starting from B1-B7, we instruct devices to initialize model fetch-

ing process. Boards B3, B7 with SDFS have highest storage capacity,

so they downloaded all 16 models (≈ 188 MB). Similarly, other

boards downloaded models according to their memory limits. Next,

the fetched model files get stored on the FS interfaced to the boards.

Then, based on their SRAM capacity (see Table 1 (left)), models

are loaded from FS and executed to produce inference results. For

example, B4 with the least SRAM of 192 KB used OTA-TinyML only

on MagicWand and MicroSpeech models. Whereas boards B1-B3,

with better SRAM of 1 MB, used the OTA-TinyML to load and ex-

ecute more model varieties. In summary, despite the diversity in

MCU hardware specification or manufacturer, OTA-TinyML part 1

implementation, without stalling the devices, successfully fetched

different size models from the cloud. The part 2 implementation suc-

cessfully could store, load, execute models from internal memory

(flash, SPIFFS) and also from external FS (SDFS, EEFS).

4 CONCLUSION

A resource-friendly OTA-TinyML approach was presented to enable

end-to-end fetching, storage, and execution of many ML models

on a single Arduino IoT board. OTA-TinyML provides developers

and engineers the freedom to remotely re-purpose (load and run

the model on demand) IoT devices on-the-fly without the need for

physical reflashing. For example, with OTA-TinyML, even the 3$

ESP32 chip with only 4 MB flash can dynamically fetch 𝑛 models
fromwebserver such as keyword spotting (3MB), anomaly detection

(2.7MB), visual wake words (3.2MB), etc., store in internal memory

or external filesystems, then execute any ML model upon demand.

ACKNOWLEDGEMENT
This publication has emanated from research supported in part by a research

grant from SFI under Grant Number SFI/16/RC/3918 (Confirm) and also by

a research grant from SFI under Grant Number SFI/12/RC/2289_P2 (Insight),

with both grants co-funded by the European Regional Development Fund.

REFERENCES
[1] M. M. Villegas et al. A study of over-the-air (ota) update systems for cps and iot

operating systems. In European Conference on Software Architecture, 2019.
[2] K. Zandberg, E. Baccelli, et al. Secure firmware updates for constrained iot

devices using open standards: a reality check. In IEEE Access, 2019.
[3] B. Sudharsan, P. Yadav, J. G. Breslin, and M. I. Ali. An sram optimized approach

for constant memory consumption and ultra-fast execution of ml classifiers on
tinyml hardware. In IEEE Services Computing (SCC), 2021.

[4] B. Sudharsan, S. Salerno, D.-D. Nguyen, M. Yahya, A. Wahid, P. Yadav, J. G.
Breslin, and M. I. Ali. Tinyml benchmark: executing fully connected neural
networks on commodity microcontrollers. In IEEE 7th WF-IoT, 2021.

[5] B. Sudharsan, P. Patel, J. G. Breslin, and M. I. Ali. Enabling machine learning on
the edge using sram conserving efficient neural networks execution approach.
In ECML PKDD, 2021.

[6] N. Lethaby. A more secure and reliable ota update architecture for iot devices.
In Texas Instruments, 2018.

[7] B. Sudharsan, R. Ranjan, et al. Ota-tinyml: over the air deployment of tinyml
models and execution on iot devices. In IEEE Internet Computing, 2022.

[8] Eloquenttinyml: https://github.com/eloquentarduino/eloquenttinyml, 2021.
[9] B. Sudharsan and P. Patel. Machine learning meets internet of things: from

theory to practice. In ECML PKDD, 2021.

510

