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ABSTRACT

Invariable of the agriculture type (precision, smart, or digital), the

monitoring process of factors that increase the crop yield and

growth is mostly non-ML, manually structured approaches with

practical pain points. In this scenario, to reduce monitoring costs

and maintenance efforts, there is a requirement for low-cost semi-

autonomous distributed systems that can remotely collect plant data

and perform standalone ML-based analytics without depending on

cloud servers or the internet.

In this work, we provide an embedded ML pipeline, which users

can use/follow for end-to-end solution design and implementation

for any of their use-cases. To demonstrate the pipeline, we use

it to collect image data, train a CNN-based regression algorithm,

perform hardware-specific tuning, generate optimized code, and

deploy binaries on Sony Spresense setup. The initial testing shows

that even the resource-constrained MCU-based Spresense, in real-

time (992 ms), high performance (96.2% accuracy, 1.86 cm2 RMSE),

could analyze a plant in a semi-autonomous environment to predict

the leaf area and plant growth.
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1 INTRODUCTION

Advancements in ML and IoT hardware [1] are improving the abil-

ity of scientists to profile plants for understanding their growth

under dynamic and unpredictable conditions. As a result, farmers

can make rapid progress in plant selection and trait analysis, thus

accelerating crop yield [2]. The commercial ML-based profiling and

analytics solutions have the least customizability, and the upfront

investment limits the farmers from using them during plants breed-

ing and growing stages. Also, when surveying the open-source

solutions and studies, most of the reliable ML algorithms require

intensive computation and expensive hardware for standalone exe-

cution. In agricultural research, Leaf Area Index (LAI) is a potential

index due to its direct connection with the crop’s health condition

and growth state. As summarized, since ML-based solutions are

not yet widely accessible, plant scientists and farmers follow the

manual, invasive method for accurate LAI calculation that relies

on plant deconstruction.

In this paper, we present our embeddedML pipeline, using which

we show the users how to design a cost-effective end-to-end (from

data collection till hardware deployment) approach for non-invasive

(leaving the crops intact) semi-autonomous accurate plant LAI esti-

mation and growth prediction. There is a myriad of applications of

this work - e.g., using our pipeline-designed solution to remotely

monitor, predict, and alert any decrease in LAI of plants over time.

As the designed solution is also optimized using the pipeline, it

can fit within the memory of low-cost IoT hardware thus can be

Figure 1: Components, design flow of embeddedML pipeline.

deployed in multiple points across the farm. This work also aims

to contribute to the scope of the United Nations (UNs) second sus-

tainable development goals to increase productivity and production

by implementing resilient agricultural practice.

2 EMBEDDED ML PIPELINE DESIGN

Figure 1 presents our embedded ML pipeline which researchers

and engineers can follow to design end-to-end ML-based solutions

for agriculture use-cases and execute it on resource-constrained

IoT hardware (MCUs, small CPUs, AIoT boards) for deployment in

labs, greenhouses, farms, gardens, etc. Each pipeline component is

briefly described in the upcoming subsections.

2.1 Data Collection

Numerous datasets exist to train ML algorithms for agriculture use-

cases. Still, data needs to be captured for uncommon plants whose

dataset is not available - researchers cannot have built datasets for

millions of existing plants. We present best practices for collecting

plant data: (i) Images can contain excess background pixels, which

needs cropping followed by uniform adjustment (we set to 96x96

pixel resolution); (ii) It is crucial to capture depth (from camera to

plant) along with RGB data to record the vertical growth - camera

need to be set in same height throughout (we set to 78 cm from

ground); (iii) Data augmentation can be used to enlarge the training
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Figure 2: Ground truth vs predictions for the trained CNNs.

dataset - we rotated images by 90◦, 180◦, 270◦, also flipped hori-

zontally and vertically; (iv) To adapt the ML algorithm to dynamic

illuminations, images need to be converted to the HSV color space,

then brightness of the images need to be adjusted by altering the V

channel - we adjusted the brightness to 0.8, 0.9, 1.1, 1.2 times that

of the original images to simulate the change in daylight; (v) Add

translational blur parameter (we added 0.01) to enable accurate pre-

dictions even under motion; (vi) Camera angles need to be placed

vertically perpendicular with respect to the ground plane for each

plant to ensure standardized images and deviation in LAI increase

and Leaf growth is in constant incrementation. In this work, we

collected data using a 5.11 MP Sony camera. Other camera-based

boards (such as ESP32-CAM, Sipeed MAIX Bit, M5 StickV AI Cam-

era, OpenMV Cam H7) can be used with image pre-processing to

match the input requirements of the ML algorithm.

2.2 Use-case ML Algorithm

Training and Tuning. Figure 1, presents architecture of the de-

signed CNN. Here, each convolution layer contains a 3x3 ker-

nel to extract features. The Max Pooling layers have 2x2 kernels,

stride of 2. This CNN was trained for two use-cases. For the first,

LAI (decimal numbers with cm2 unit) were provided as labels.

LAIperplant =
∑𝑛
1 2.65 ∗ 10

−2cm2 with 𝑛 as max pixel area under
Otsu’s Segmentation. For the second, the day-wise labels (unitless

integral values) corresponding to growth stages were provided.

Models were trained for both the use-cases with a dropout of rate

0.25, batch size 16, constant learning rate 0.002. The network was

trained till 225 epochs, beyond which loss function elevated.

Evaluation. The resultant models when fed with pre-processed

(see below), 3 Channel, 96x96 images of greenhouse lettuce, the

first can estimate the LAI, and the second can predict the day-wise

progression. The evaluation of both models is given in Figure 2 as

relational plots. The average RMSE for both models were low as

≈ 1.86 cm2, or in other words, the predicted data is on an average

≈ 0.23 cm2 less than Ground Truth. Based on the hardware target,

other network architectures, tuning, hyperparameter optimization

for the same tasks can be explored via AutoML using tools such as

Ray Tune, Optuna, EON Tuner, Hyperopt, Scikit-Optimize.

Image Processing. The captured plant sample for inference using

thus trained models need pre-processing before feature extraction.

We initially use Otsu’s adaptive thresholdingmechanism to segment

plants from the background. For small leaves, the Otsu threshold

segments the image leaving some noise at the periphery of the

Figure 3: Real-world testing: Inference on Sony Spresense.

confined region, impacting the prediction accuracy. Hence, for

such images with plant area less than the average area, a Floodfill

algorithm is used to binarize the noise or holes in the image.

2.3 Hardware Deployment & Real-world Testing

In the hardware-specific optimization step, significant resource con-

servation can be achieved while maintaining consistent accuracy

and loss scores. For our CNN, the RAM usage decreased ≈ 74 % (1.4

MB to 362.5 KB), Flash usage decreased ≈ 59% (80.1 KB to 32.2 KB),

and ≈ 4.7x inference speedup (7268 ms to 1544 ms). Our CNN was

optimized using tfmot [3]. In the next optimized source code and
binary deployment steps, the tuned model is built and flashed on the

setup shown in Figure 3. We report that the ARM Cortex-M4F MCU

on Spresense, consistent for 100s of collected samples, processed

the captured 5.11 M pixels plant images and provided close to real-

time inference results in less than 1 ms. For deployment on more

constrained MCUs [4] or on bare-metal, end-to-end optimization

can be performed using microTVM [5].

3 CONCLUSION & FUTUREWORK

We believe the transparent embedded ML pipeline design presented

in this work to open future avenues for a broad spectrum of semi-

autonomous precision agriculture solutions. With slight alterations,

this pipeline is also suitable for designing ML solutions using IoT

environment sensors that measure CO2, soil moisture & volumetric

water content, light intensity, atmosphere temperature & humidity,

etc. Future work plans to: (i) Present the design flow and each

pipeline component in detail, particularly the CNN AutoML tuning

and optimized source code generation; (ii) Evaluate the pipeline by

using it to design and deploy novel solutions that relieve practical

pain points in state-of-the-art crop monitoring approaches.
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