
Poster Abstract: Offloading Crypto Processing with RIOT

Lena Boeckmann
HAW Hamburg

lena.boeckmann@haw-hamburg.de

Peter Kietzmann
HAW Hamburg

peter.kietzmann@haw-hamburg.de

Thomas C. Schmidt
HAW Hamburg

t.schmidt@haw-hamburg.de

Matthias Wählisch
Freie Universität Berlin

m.waehlisch@fu-berlin.de

ABSTRACT

Secure elements allow for offloading complex crypto operations

from embedded devices to external, protected hardware. In this

poster, we present a concept for transparently accessing multiple

secure elements behind a unified API as a feature of an IoT OS.

1 INTRODUCTION

The Internet of Things (IoT) needs to be secured and many stan-

dard protocols require the perpetual use of crypto operations [5].

Features of IoT nodes vary widely, and modern devices include

hardware-based crypto assistance to improve the performance

and security of keys. Figure 1 presents a classification of crypto-

hardware features in the IoT: 1 devices without hardware assis-

tance (e.g., Microchip ATmega2560) which rely on crypto-software

libraries to enable security; 2 devices with a peripheral accelerator

for crypto operations (e.g., Nordic nRF52840); 3 devices with a

peripheral accelerator that operates on keys located in protected in-

ternal storage (e.g.,Nordic nRF9160); 4a and 4b external devices, so

called ‘secure elements’ (SEs) that connect through a peripheral bus

(e.g., Microchip ATECC608A, STM STSAFE-A100). SEs are promis-

ing for augmenting the constrained IoT. They provide entropy and

random numbers in hardware; key generation and storage in tam-

per proof key slots; SEs offload numerous cryptographic tasks from

the main processor and execute in an isolated environment, en-

abling security even on very constrained platforms. As an example,

the ATmega2560 microcontroller provides 256 kB ROM/8 kB RAM

which is barely enough to operate a network stack without secu-

rity. On this platform, crypto-software libraries consume too much

memory [4] to coexist with the regular firmware.

Vendors commonly provide driver code to access their hardware,

each of which exposes a vendor-specific API of special semantic.

For example, an SE requires an ID-based access to an internal key,

which never leaves the device. This is much unlike common crypto

APIs that require the key as direct input. This harms usability, since

(i) developers are confronted with numerous APIs for the same

operation. (ii) These APIs are often specific to the hardware and al-

gorithm, and (iii) not well established among developers (e.g., unlike

POSIX, PKCS, ...). Green et al. [3] emphasize that system security

depends on the usability of the API, which covers aspects such as

developer familiarity, high level access to crypto-primitives, secure

default values, available example code, etc. . The ARM Platform

Security Architecture (PSA) Framework [1] provides guidelines for

developing secure IoT systems and contains a developer-centric

design of the PSA Crypto API with tests and documentation.

IoT Applications & Tests

PSA Crypto API

Key Management & Location Dispatch

SE Driver Dispatch

Future WorkSE API SE API

Vendor API Vendor API

SE Driver SE Driver

4b 4a 23 1

Figure 1: Integration concept of the PSA Crypto API in RIOT.

Recent deployments on the IoT increasingly make use of an

operating system (OS) to benefit from hardware abstraction layers,

as well as pre-provisioned drivers, (crypto-)libraries, and protocols.

In this poster, we argue that the OS should provide transparent

access to the plethora of crypto-backends through a unified system

level API.We present our integration concept of the PSACrypto API

to RIOT [2], the operating system for low-end IoT devices. Thereby,

we focus on SE access, and leave other crypto-hardware backends

for future work. In Section 2, we introduce our device location-

and SE dispatch mechanism that enables accessing (i) multiple

SEs to increase the number of key slots, and (ii) different SEs, to

exploit different hardware features. In Section 3, we measure the

control overhead of our SE management on real-world hardware,

comparing the bare vendor driver and the user access API.

2 INTEGRATING A SECURE ELEMENT

Indirect Key Management. The user facing PSA Crypto API

bases on indirect key management. Keys are accessed through

identifiers and never exposed to the user. Fig. 2 presents an overview

of the internal PSA data structure storing a key in a PSA Key Slot.

It is specified that a key shall be described by its Key Attributes.

On generation, keys get assigned a unique Key ID under which

its location can be described. The Location field provides 24 Bit

to reference a key in local memory or some other location. Our

specific SE integration reserves a range of values to use for SEs and

requires a static assignment for each SE connected. We extend the

RIOT startup function auto_init to automatically initialize and
register each SE with the SE management module when booting the

523

2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)

978-1-6654-9624-7/22/$31.00 ©2022 IEEE
DOI 10.1109/IPSN54338.2022.00068

Key Attributes

Lock Count

Key Data

Key Bytes

PSA Key Slot

Key ID

Location Persistence

Key Type

Key Bits

Key Policy

Figure 2: Data structures with key material (left) and info.

OS. During registration, a device handle and the assigned location

values of all SEs are stored in a global driver list.

Device Driver Interface. Each type of SE implements the internal

OS interface for secure elements. We utilize the interface proposed

by ARM1. We provide the glue code that maps the vendor drivers to

the SE interface, as well as the mechanism to switch between mul-

tiple devices. A structure containing pointers to the driver methods

is stored in the driver list, together with the location value and

device handle.

Location and Driver Dispatch. We contribute a dispatching unit

(see Fig. 1) to mediate the crypto operation request of a user to a

backend. API calls are dispatched in two steps, utilizing the Location

value of the key in use. First, our location dispatch distinguishes

between internal or external source, the latter of which exploits

the existing SE interface which allows us to operate multiple SEs

in parallel. Second, the SE driver dispatch selects the SE behind the

Location. This is obligatory since an operation must be executed

on the SE that holds the key.

Example Flow. To generate an elliptic curve key pair an applica-

tion passes Key Attributes with the Location of the destination SE

to the key generation function. Our location dispatcher checks the

location, fetches the associated SE from the global list and invokes

a key generation method implemented by that device. A key is

generated, stored in a free key slot on the SE and the slot number

is returned. Our key management module stores the Key Attributes

along with the slot number and assigns an ID, which is returned

to the application. To use that key, the application passes the ID

to the cryptographic function and our SE integration mediates the

call to the corresponding SE backend.

3 EVALUATION ON IOT PLATFORMS

Tab. 1 compares the execution time and memory sizes of our RIOT

implementation on two platforms that connect the ATECC608A

SE via I2C to perform crypto operations. (i) ATmega2560 (8-bit

AVR) provides 8 kB RAM/256 kB ROM and operates at 16MHz.

(ii) nRF52840 (32-bit ARM Cortex-M4) provides 256 kB RAM/1MB

ROM and operates at 64MHz. Our device choice reflects the lower

and upper end of common IoT platforms.

The single threaded measurement application utilizes the PSA

Crypto API to generate an elliptic curve key pair and performs

an ECDSA signature/verification on the SE. The execution time of

elliptic curve key generation takes ≈88ms when connected to the

nRF52840; calculating a signature takes ≈95ms, and verification

≈49ms. With the ATmega2560, each operation requires roughly

1ms longer due to slower device control. Note, this overhead is

independent of our SE management. Our SE management adds

14 𝜇s (key generation) and 9 𝜇s (signature and verification) on the

1https://armmbed.github.io/mbed-crypto/psa/se/

Table 1: Time & memory consumption of PSA Crypto. Over-

heads indicate additions to pure crypto-operations on an SE.

Processing Time [ms] Memory [B]

Platform Key Gen Sign Verify RAM ROM

nrf52840 + SE 88.140 95.327 49.435 108 6700

PSA Overhead ↑ 0.014 ↑ 0.009 ↑ 0.009 ↑ 389 ↑ 4862

ATmega2560 + SE 89.269 96.17 50.385 763 11734

PSA Overhead ↑ 0.133 ↑ 0.095 ↑ 0.095 ↑ 689 ↑ 10026

nRF52840. This includes retrieving the SE from the driver list. On

the ATmega2560, the overhead increases by a factor of ten, due to

the lower operation frequency. Still, in comparison to the execution

time of the cryptographic algorithms, the management overhead

remains negligible on both platforms. We further analyze the over-

head of multiple SEs connected to the nRF52840 which increases

by only 1 𝜇s. We excluded these results, which do not contribute
additional insights.

Memory analyses in Tab. 1 display the pure crypto overhead

and ignore the OS offset. On the nRF52840, PSA adds 389 Bytes

of RAM. Besides operational memory, this includes two PSA Key

Slots (108 Bytes each) to hold the references (compare Sec. 2) to

private and public keys on the SE. 32 Bytes of memory are needed

for each SE driver instance in the global driver list. ROM require-

ments (6.7 kB driver + 4.8 kB PSA) are more notable, however, the

platform provides enough flash so the overhead remains negligible.

Surprisingly the memory overhead on the ATmega2560 doubles.

We contribute this to more complex low level instructions on the

8-bit architecture and further investigate this in future work. It

is noteworthy, however, that all operations of the SE can be exe-

cuted (e.g., random number generation, symmetric ciphers, hashes)

without additional memory. As a counter-example, a comparable

firmware with software-crypto already requires≈3.3 kB RAM/22 kB

ROM on the ATmega2560. Hence, an overhead of 689 Bytes in RAM

reveals efficient SE utilization, alongside additional security of keys.

4 CONCLUSIONS AND OUTLOOK

Our PSA integration for SEs adds seamless hardware-crypto support

to the open source OS RIOT and fosters portability of applications

and tests. This enables security even on very constrained IoT nodes

that cannot operate crypto-software libraries. Our measurements

show that the management overhead is negligible in runtime and

small in memory, prospecting resource-independent operation of

multiple SEs. Following our research agenda, we will (i) integrate

internal crypto-accelerators to our concept, and (ii) enable trans-

parent access to operate in trusted execution environments such as

the ARM TrustZone or RISC-V PMP.

REFERENCES
[1] ARM. Platform Security Architecture. https://developer.arm.com/architectures/

architecture-security-features/platform-security, last accessed 09-28-2021.
[2] Baccelli, et al. 2018. RIOT: an Open Source Operating System for Low-end Embed-

ded Devices in the IoT. IEEE Internet of Things Journal 5, 6 (Dec. 2018), 4428–4440.
[3] Matthew Green and Matthew Smith. 2016. Developers are Not the Enemy!: The

Need for Usable Security APIs. IEEE Security and Privacy 14, 5 (2016), 40–46.
[4] Kietzmann, Boeckmann, Lanzieri, Schmidt, and Wählisch. 2021. A Performance

Study of Crypto-Hardware in the Low-end IoT. In EWSN ’21. 12.
[5] Lanzieri, Kietzmann, Schmidt, and Wählisch. 2022. Secure and Authorized Client-

to-Client Communication for LwM2M. In Proc. of ACM/IEEE IPSN ’22.

524

