
Adaptive Data Replication in Real-Time Reliable
Edge Computing for Internet of Things

Chao Wang
Department of Computer Science and Information Engineering

National Taiwan Normal University
Taipei City, Taiwan R.O.C.

cw@ntnu.edu.tw

Christopher Gill Chenyang Lu
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, USA

{cdgill, lu}@wustl.edu

Abstract—Many Internet-of-Things (IoT) applications rely on
timely and reliable processing of data collected from embedded
sensing devices. To achieve timely response, computing tasks
are executed on IoT gateways at the edge of clouds, and
for fault tolerance, the gateways perform data replication to
backup gateways. In this paper, we report our study of data
replication strategies and a real-time and fault-tolerant edge
computing architecture for IoT applications. We first analyze how
both embedded devices’ storage constraints and data replication
frequency may impose timing constraints on data replication
tasks, and we investigate correlations between execution of
data replication tasks and execution of edge computing tasks.
Accordingly, we propose adaptive data replication strategies and
introduce a framework for real-time reliable edge computing
to meet the needed levels of data loss tolerance and timeliness.
We have implemented our framework and empirically evaluated
the proposed strategies with baseline approaches. We set up
experiments using Industrial IoT traffic configurations that have
requirements on data loss and timeliness, and our experimental
results show that the proposed data replication strategies and
framework can ensure needed levels of data loss tolerance, save
network bandwidth consumption, while maintaining the latency
performance.

I. INTRODUCTION

In Internet-of-Things (IoT) systems, computing at the edge

of clouds is essential for latency-sensitive applications [1]. IoT

edge computing platforms may leverage a trained machine

learning model and perform local inference using data sent

from embedded sensing devices. For fault tolerance, the edge

computing host may replicate data to a secondary host to avoid

a single point of failure and data losses. But replicating data

at the rate of data arrivals is inefficient and will consume

nontrivial network bandwidth. In this work, we present an

adaptive data replication architecture for IoT edge computing

that can meet applications’ latency and data-loss requirements

with efficiency.
A motivating example is seen in structural health inference

applications under the Industrial Internet Reference Architec-

ture [2]. In these applications, a trained inference model may

be loaded at an IoT gateway for local event inference. Embed-

ded sensing devices take records of local environmental status

(e.g., structural vibration) and send out the data through an

IoT gateway. An edge computing task at the IoT gateway then

filters the data and/or infers events (e.g., structural damage).

The processed data is sent to other local/remote application

L o
ca

l/r
em

ot
e

ap
pl

ic
at

io
n

ho
st

sPrimary IoT gateway

Em
be

dd
ed

 s
en

si
ng

 d
ev

i c
es

Edge computing
tasks

...

Backup IoT gateway

Data replication

Data
proxy

Backup edge
computing tasks

...

Data
proxy

Fig. 1. Edge computing for Internet of Things.

hosts for further analytics or control. To ensure data delivery,

using the primary-backup approach [3] an IoT gateway may

replicate data to a backup IoT gateway. Should the primary IoT

gateway fail, the pending data may be processed by the backup

edge computing tasks, and the embedded sensing devices may

re-transmit data to the backup IoT gateway (Fig. 1).

To ensure real-time and reliable performance, research chal-

lenges arise from both platform and application aspects. From

the platform aspect, embedded sensing devices have limited

storage capacity to hold many data copies for re-transmissions,

plus both the devices and IoT gateways do not have abundant

network bandwidth for either data re-transmission or data

replication. From the application aspect, applications may not

tolerate more than a certain number of consecutive losses of

data, plus applications may have end-to-end timing require-

ments in time scales of seconds to tens of milliseconds. With

the platform constraints and application requirements, it is

challenging for an IoT edge computing system to meet the

requirements while being efficient. For example: If a sensing
device has less storage to save previous data, does the IoT
gateway need to replicate its data more aggressively, and to
what extent? If an application can tolerate losing every other
data item, does the gateway need to replicate the new data
item if it has successfully processed and delivered the last
data item? Any constraint for the gateway to replicate data
selectively?

128

2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI)

978-1-7281-6602-5/20/$31.00 ©2020 IEEE
DOI 10.1109/IoTDI49375.2020.00019

In this paper, we present three major contributions:

1) A holistic analysis for real-time reliable IoT edge com-
puting. We take into account the storage limitation

of embedded sensing devices and propose a sufficient

condition for the system to meet application-specific

requirements, and we analyze when to perform data

replication and its corresponding deadline. We point

out that data may not need to be replicated for every

arrival, and we show how changes in the frequency of

replication would change the deadline of replication.

2) ARREC: adaptive real-time reliable edge computing
architecture. We describe ARREC, an efficient edge

computing architecture that may adaptively replicate

data according to application’s requirements for data loss

and latency. Leveraging the facts that most IoT edge

computing tasks have small execution times, ARREC is

designed to postpones replication actions to the extent

possible. Eventually, many replication actions may be

safely skipped, because the primary IoT gateway may

have already completed processing data and delivered

the result to the subscriber.

3) An efficient implementation and empirical evaluation.
We describe our implementation of ARREC within the

mature TAO real-time event service [4] middleware, and

we present an empirical validation of ARREC’s perfor-

mance using typical Industrial IoT traffic configurations

that have requirements on data loss and timeliness. Our

empirical results show that ARREC can meet both data-

loss and latency requirements while saving network

bandwidth consumption.

The rest of this paper is organized as follows: In Section II

we present our system model and analysis for data replication.

In Section III, we introduce the ARREC architecture and

implementation, followed by our empirical evaluation in Sec-

tion IV. We survey related work in Section V, and summarize

this work and present conclusions in Section VI.

II. SYSTEM MODEL AND ANALYSIS

We focus on a service that performs edge computing in IoT

gateways (Fig. 1), and we assume a publish-subscribe model.

Each data publisher (embedded sensing devices) publishes data

in terms of topics to an IoT gateway, with a minimum inter-
publishing time Ti for data topic i. The IoT gateway receives

data from data publishers and the data will trigger an edge

computing task. At the completion of the edge computing task,

the gateway then delivers the processed results, also in terms of

topics, to its subscribers (local/remote application hosts). We

follow the primary-backup approach [3] and define two types

of IoT gateways, the Primary that processes and replicates

data, and the Backup that receives the replicated data. There

is one Backup per Primary IoT gateway, each running on

a different host. A network link connects both hosts, and

data replication between the hosts will consume network

bandwidth. The Primary is subject to processor crash failures

with fail-stop behavior, and the Backup will be promoted to

become a new Primary. The new Primary will resume the

TABLE I
EXAMPLE DATA TOPIC SPECIFICATION.

Category Li Ni Dp
i (ms) Ti (ms)

1 0 1 ∞ 50
2 0 1 100 100
3 0 1 500 500
4 3 0 50 50
5 3 0 100 100

service by re-processing/re-delivering the replicated data, and

all publishers will then send data to the new Primary.

We assume the following requirements. For data topic i,
each data publisher can keep Ni latest data elements that it

has sent to the Primary, and will send them to the new Primary

as part of fault recovery. Each subscriber has a loss-tolerance
requirement Li ≥ 0, saying that the subscriber cannot accept

more than Li consecutive losses for data topic i. Further, each

subscriber has a latency requirement Dp
i for each data topic i

it subscribes to. The requirement specifies a soft end-to-end

deadline, between the time a publisher sent the data and the

time the processed data arrived at its subscriber. Finally, we

define a relative replication deadline Dr
i for data topic i, or

simply a replication deadline, to be the maximum allowable

response time for the Primary to complete replicating the data.

Throughout the rest of this paper, we use example data

topics in Table I for demonstration purpose, based on the

following three observations from Industrial IoT systems:

1) Data publishers have limited data storage for re-
transmission. Often, data publishers are embedded sens-

ing devices. Some other data publishers such as wireless

base stations may have more capacity, but the capacity

is amortized to the number of data topics they aggregate.

For each topic category in our example, we chose

the minimum feasible value of Ni according to the

constraints proved in Section II-B.

2) Data topics may have moderate or no loss-tolerance
requirements. For event inference purpose, IoT data is

often generated frequently, where intermittent losses of

data may be compensated, for example, by estimation

from previous or subsequent data. This is demonstrated

by topic categories 4 and 5.

3) Some data topics may require zero loss but have no la-
tency requirement. An example is topics used for logging

purposes. This is demonstrated by topic category 1.

A. Need for Data Replication

We say that the data in the Primary is covered if either

the publisher still has a copy of it, the Primary has replicated

it to the Backup, or both. Should the Primary crash, all data

elements that are not covered would be lost. For data elements

of topic i, let xi(t) be the largest number of consecutive

data elements that are not covered at time t. The system can

meet the loss-tolerance requirement if the Primary can ensure

xi(t) ≤ Li at all times.

For small Ni, the value of xi(t) is dominated by factors

including the inter-publishing time of data, the execution time

129

of each edge computing task, and the choice of scheduling

policy. For example, if the Primary can ensure that the pro-

cessed data is always successfully delivered to its subscribers

before the next data arrival of the same topic, then it means

xi(t) ≤ 1 at all times. In this case, if Li ≥ 1 then there is no

need for data replication.

In general, for each topic i, xi(t) changes over time as data

of that topic arrives at and departs from the Primary, and as

each data publisher may replace its previous data copy for a

new data creation. Data replication is used to reduce xi(t) and

is needed only if xi(t) will otherwise exceed Li. Further, data

replication must complete before xi(t) actually exceed Li.

An ideal, clairvoyant data replication strategy is to just

perform the needed replications at the right time and complete

each replication action in time, so as to make xi(t) ≤ Li at all

times. In practice, we may alternatively consider performing

data replications regularly for some predetermined conditions,

and in this way we may also specify a safe deadline for each

data replication action. In the following, we suppose that for

each data topic i, the Primary is set to perform data replication

once every Mi arrivals for some predetermined Mi ≥ 1.

B. Deadline for Data Replication

First, we prove a constraint between applications’ require-

ments and platform parameters:

Lemma 1. For data topic i, to prevent more than Li consec-
utive data losses, Li and Ni cannot be both zero.

Proof. We prove by contradiction. Assuming that both Li = 0
and Ni = 0. If a crash happened immediately after a data

arrival, it would be impossible to ensure no data loss: the data

did not have a copy kept at the publisher for re-transmission,

and the Primary was unable to replicate data in time. The

system would have at least one data loss.

In the following, we derive bounds on the replication

deadline in terms of applications’ requirements and platform

parameters. Let δPP be the latency from a publisher to the

Primary, δPrB be the latency from the Primary to the Backup,

and TFO be a publisher’s fail-over time, which is the interval

between when the Primary crashed and when the publisher is

able to send its data to the new Primary.

Lemma 2. For data topic i, set parameter Mi ≥ 1 and let
y = Li−Mi. To prevent more than Li consecutive data losses,
the replication deadline must satisfy the following bound:

Dr
i ≤ (Ni + y + 1)Ti − TFO − δPP − δPrB . (1)

Proof. We consider a sequence of arrivals of data topic i, as

shown in Fig. 2. Subtracting δPP from each data arrival time,

we have the data sending time at the publisher. Suppose that

the Primary crashed at a time within (tk−1, tk]. There are two

cases to prove:

Suppose that a crash happened within interval (tk−1, tk −
TFO). Without loss of generality, we suppose that the crash

happened immediately after the data arrival at time tk−1, and

TFO

...

tk-1 tk

: targets for replication

Ni

...

Li - y

Li + 1

...

Fig. 2. An illustration for the proof of Lemma 2.

thus data arriving at time tk−1 will be lost. Later data will

not be lost, because the publisher will be able to detect the

Primary failure before time tk and will send them to the

Backup instead. By definition, all the latest Ni data will be

recovered via publisher re-transmission.

There will be more than Li consecutive data losses if there

were at least Li+1 consecutive uncovered data elements when

a system crashes. To avoid this, and since the Primary triggers

replication only once every Li−y arrivals, in the worst case the

last attempt of replication that must succeed would be the one

made for the data that has arrived at time t(k−1)−(Ni−1)−(y+2)

(e.g., the rightmost box in Fig. 2), and the replication must

complete no later than time tk−1. Therefore, the replication

deadline must be smaller than or equal to ((k − 1) − ((k −
1)− (Ni− 1)− (y+2))Ti− δPP − δPrB = (Ni+ y+1)Ti−
δPP − δPrB .

Now suppose that a crash happened at a time instant within

[tk − TFO, tk]. In this case, the publisher cannot detect the

crash in time and would still send data that should have

arrived at the Primary at time tk, and that data will be lost.

The publisher would send subsequent data to the Backup and

so they will not be lost. The worst case is that the crash

happens immediately after time tk−1+Ti−TFO, and therefore

the replication deadline must be smaller than or equal to

(Ti−TFO)+((k−(k−(Ni−2)−(y+2))−1)Ti−δPP−δPrB =
(Ni + y + 1)Ti − TFO − δPP − δPrB .

Lemma 2 implies that a shorter interval between replications

(a smaller Mi) can permit a longer replication deadline. For

example, suppose that TFO + δPP + δPrB = 15 ms. For topic

category 4 in Table I, setting Mi = 3 we have Dr
i = 35 ms,

and setting Mi = 1 we have Dr
i = 135 ms. We note that

setting Mi = 1 also gives the bound introduced in [5].

III. THE ARREC ARCHITECTURE

A strategy suitable for IoT edge computing follows our

analysis in the previous section, which we refer to as adaptive
data replication. Conventionally, with replication there is a

trade-off between keeping needed levels of data loss-tolerance

and saving network bandwidth, where less data loss means

more bandwidth consumption. Adaptive data replication can

mitigate the trade-off by safely skipping many replication

actions and batching the rest. This is made possible by

leveraging the proved deadlines for replication.

Adaptive data replication includes four steps: (Step 1): mark
data for replication for every Mi arrivals for data of topic i;
(Step 2): wait until a certain time point in the future;

130

...

arrivals of di erent
data topics batch

window

di : deadline to start replicating data arrived at ti

t2 d2

...
global earliest deadline
to start a replication

t1 d1t3 t4 d3 d4

Fig. 3. Illustration of adaptive data replication.

Data
subscriber

Data
publisher

The Primary

Data
publisher

Data
publishers

Data
subscriber

Data
subscribers

... ...

Edge computing
engine

The Backup

Recovery handler

Edge computing
engine

Replication handler

Fig. 4. ARREC System Architecture.

tim
e

fr
om

 p
ub

lis
he

r

Replication
handler

Processing
engine

to
 s

ub
sc

rib
er

to
 th

e
Ba

ck
up

A

B

C
D

Fig. 5. Interactions between ARREC components.

(Step 3): clear the mark for data with which the edge com-

puting task has completed and the result has been delivered to

subscribers by then; (Step 4): batch marked data into a single

data replication to the Backup.

Fig. 3 gives a timeline illustration. At Step 2, we set the time

point to be the global earliest deadline to start a replication,

where a deadline to start a replication is defined as the

replication deadline minus the execution time of the replication

action. The system does not perform data replication until

then, and this allows the system to progress and thereby

clear more marked data elements and save network bandwidth

consumption. The replication action executes with the highest

priority level and may preempt edge computing tasks.

We introduce a batch window for three purposes. Firstly,

only data elements whose deadline to start a replication falls

within the current batch window are included for replication

in the current round, and this controls the size of a data

batch. Secondly, the batch window bounds the frequency of

replication actions: since all marked data elements in a given

batch will be replicated in the current round, the global earliest

deadline to start the next replication is lower-bounded by the

window size. Thirdly, by using a batch window we allow

more time for the system to progress and clear data marks

consequently, and therefore the future batch windows may

contain even fewer marked data elements for replication.

ARREC is designed to achieve efficient data replication

while meeting applications’ requirements. This is carried out

via selectively grouping data for replication and replicate data

batches in an adaptive and timely manner. The ARREC archi-

tecture is illustrated in Fig. 4. The system is pre-configured

with the specifications from publishers and subscribers. In the

Primary, upon each data arrival the edge computing engine
creates an edge computing job. Before processing the data,

the engine selectively creates a replication job, driven by the

value Mi. The replication handler decides when to perform

data replication. In the Backup, all replicated data elements

are kept in a buffer, and upon fault recovery the recovery
handler component then feeds those data elements to the edge

computing engine. The engine schedules all jobs according to

absolute deadline, defined as the arrival time of data of topic i
plus Dp

i minus the elapsed time since the data sending time

at the publisher. In this paper we chose to use the earliest-

deadline-first (EDF) scheduling policy as an example.

The proposed adaptive data replication strategy is carried

out in the Primary via cooperation between the edge com-

puting engine and the replication handler, as illustrated in

Fig. 5. Upon each arrival of data topic i, the engine compares

the value of Mi with the number of data arrivals since the

last replication. Once the number becomes larger than or

equal to Mi, the engine will mark the arrival data, and the

replication handler will update its timer for the next replication

based on the marked data element’s corresponding replication

deadline (point A). In the meantime, the engine can perform

needed edge computing (point B). When the timer expires, the

replication handler will select all marked data elements for

which the replication start time falls within a batch window

(point C) and will replicate them in a batch (point D).

We implemented ARREC within the TAO real-time event

service [4], where data elements are carried as events’ pay-

loads and publishers and subscribers are implemented as

event suppliers and consumers. The edge computing engine,

replication handler, and recovery handler are also implemented

within the event channel. We implemented the processing

engine using one thread serving as an input proxy on a

dedicated CPU core, and a pool of generic threads serving

as processing workers on a set of dedicated CPU cores, with

the total number of threads equal to ten times the number

of CPU cores for processing. We implemented the replication

handler as a highest-priority thread, to prevent it from being

delayed by data processing, and allocated it to the CPU cores

for processing, and we used C++11’s standard chrono time

library to timestamp data.

IV. EMPIRICAL EVALUATION

We evaluated two configurations of ARREC against two

baseline configurations. The choice of Mi for each data

topic i determines the deadline to start a replication, which

in turn would affect both the global earliest deadline to start

a replication and the number of data elements in each batch

window. Since Mi = 0 means no replication, and Mi > Li has

no guarantee to meet the loss-tolerance requirement of no more

131

Subscriber host

The Primary hostPublisher host 1

Publisher host 2 The Backup host

Fig. 6. Experimental topology.

than Li consecutive data losses, we evaluate configuration

Mi = 1, denoted by ARREC_all, and configuration Mi =
Li, denoted by ARREC_Li, to cover the two extreme cases.

The first baseline is Retransmission-only, in which the

Primary performs no data replication at all and solely relies

on re-transmissions from data publishers to the Backup for

data-loss tolerance. Comparison against this baseline shows

the overhead of data replication. The second baseline is

Periodic, in which case the Primary periodically replicates

all data elements that has arrived since the most recent

replication. Periodic-50ms is with replication period set to

50 ms, the shortest period of the topic specification in Table I.

Periodic-25ms is with replication period set to 25 ms.

We used the topic specifications shown in Table I. For

each topic we set the execution time of its processing load

to be 0.1 ms. We loaded our system by feeding 50 topics

for categories 1 and 4 each, and 100 topics for categories 2

and 3, and we gradually increase the number of topics in

category 5, from 900 to 1300, to evaluate the performance

of our system under a range of workloads. The total number

of topics processed by the system is thus from 1200 to 1600.

The CPU utilization was between 145% to 200% of a single

core’s capacity, for all processing load in two CPU cores. We

used one publisher to generate all data in topic category 5. For

the rest of the topic categories, we created publishers with ten

topics per publisher.

Our test-bed consists of five hosts, as shown in Fig 6:

One publisher host has an Intel Pentium Dual-Core 3.2 GHz

processor, running Ubuntu Linux with kernel v.3.19.0, and

another has an Intel Core i7-8700 4.6 GHz processor, running

Ubuntu Linux with kernel v.4.13.0; both Broker hosts have

Intel i5-4590 3.3 GHz processors, running Ubuntu Linux

kernel v.4.15.0; one subscriber host has an Intel Pentium Dual-

Core 3.2 GHz processor, running Ubuntu Linux with kernel

v.3.13.0. We connected all hosts via a Gigabit switch in a

closed LAN. In both the Primary host and the Backup host,

two CPU cores were dedicated for both processing threads

in a processing engine and the replication thread, and one

CPU core was dedicated for the input proxy thread. We

assigned both the replication thread and the input proxy thread

the highest priority level 99 and worker threads the next

highest priority level 98, all with real-time scheduling policy

SCHED_FIFO. We synchronized our local hosts via PTPd 1,

an open source implementation of the PTP protocol [6]. The

clocks of the publisher hosts, the subscriber host, and the

Backup host were synchronized to the clock of the Primary

host, with synchronization error within 0.05 milliseconds. We

1https://github.com/ptpd/ptpd

Fig. 7. Success rate for loss-tolerance requirement (%).

Fig. 8. Network bandwidth consumption for data replication.

injected a crash failure by sending signal SIGKILL to the Pri-

mary broker at the 40th second, and studied the performance

of failover to the Backup. We used the iftop tool to measure

the average rate of network bandwidth consumption over the

latest 40 seconds.

A. Data Loss-Tolerance Enforcement

Fig. 7 shows the success rate for meeting the loss-tolerance

requirements, for topic category 1. For each configuration, we

ran each workload twenty times and calculated the average

percentage of meeting the loss-tolerance requirement for each

category, along with the 95% confidence interval.

Configurations ARREC_all, ARREC_Li, and

Periodic-25ms met the requirements under each degree

of workload, while both configurations Periodic-50ms
and Retransmission-only occasionally failed to

meet the loss-tolerance requirement. Topic category 1 is a

challenging case, because the processing for data with no

latency requirement may be delayed by some other more

urgent data processing, as a result of the use of an EDF

scheduling policy. For a certain topic in category 1, there

could be multiple data waiting to be processed, and they

would be lost upon a system crash. We observed a 100%

success rate for all the other categories, as also due to the

use of an EDF scheduling policy, all deadlines may be met

as long as the system has not yet been saturated.

B. Network Bandwidth Consumption

Now we show that while meeting loss-tolerance require-

ments, ARREC may save network bandwidth consumption.

132

Fig. 9. 99th percentile latency.

The results are shown in Fig. 8. With a payload size of 512

bytes per data element, configuration ARREC_all may save

33–49 Mbps in replication traffic, which is about an 88%

reduction, compared with configuration Periodic-25ms.

Periodic replication consumed much network bandwidth be-

cause the traffic is close to a replica of normal data traffic

passing through the primary IoT gateway, especially when

the period of replication is short. In addition, we observed

that configuration ARREC_all saved more bandwidth than

configuration ARREC_Li, although the latter only selects

data for replication once every Li arrivals. The reason is

that the longer replication deadline permitted by configuration

ARREC_all (see Lemma 2) would allow more pending repli-

cations to be skipped. Configuration ARREC_Li outperformed

the periodic replication baselines, because the use of a batch

window (40 ms in this case) allows data with a longer

replication deadline to be exempted from the current round

of replication. Finally, our results also show that configuration

Periodic-25ms took more network bandwidth than con-

figuration Periodic-50ms, because with a shorter period

the system had less chance to skip replication.

C. Latency Performance

We evaluated the latency performance before a fault occurs.

Here we show the result for category 4, which has the shortest

deadline (50 ms). Fig. 9 shows the 99th percentile latency,

which represents a tail latency performance. Configuration

Retransmission-only gave the baseline performance,

and therefore we may see that the proposed adaptive data

replication (ARREC all and ARREC Li) has no serious la-

tency overhead. Overall, the 99th percentile latency all stayed

within the 50 ms deadline.

Finally, we measured replication overhead in terms of CPU

utilization of each configuration under increasing workload.

Configuration Retransmission-only gives the baseline

CPU utilization, i.e., with the processing threads only, as the

replication thread is not active in this configuration. Compar-

ing that against all the other configurations, we observed that

the replication thread took at most 5% CPU utilization, and

the addition did not grow in proportion to the increase in

workload. We also measured the overhead of maintaining a

group of pending replications, which accounted for less than

2.5% CPU utilization.

V. RELATED WORK

A recent related work on Industrial IoT messaging architec-

ture [5] shows that a system may meet applications’ real-time

and fault-tolerance requirements by proper scheduling of both

message dispatch and message replication. We generalized

that approach to include edge computing tasks, in which

case messaging is considered as a task with trivial workload.

Increase in workload per data item implies a higher likelihood

of data losses when a fault occurs because, following Little’s

Law [7] and given the same arrival rate, there will be more

data pending to be processed. Other related work includes a

timely and reliable transport service in the Internet domain [8],

and work on fault-tolerant task allocation to meet different

recovery time requirements [9].

In IoT processing services, appropriate scheduling of both

data processing and data replication activities is critical and

challenging: a system should complete data replication in time

to ensure needed levels of data loss-tolerance, while also

making progresses in data processing to meet soft latency

requirements. In essence, for both types of activity, a system

must ensure timely completion of one while allowing enough

progress of the other. In this viewpoint, studies on scheduling

mixed criticality systems [10] offer related ideas. In this paper,

we observe that in the IoT edge computing domain, data

replication activities in some cases can be delayed and after

sometime may be safely skipped. For lazy replication, a related

idea appears in the earliest deadline zero laxity scheduling

algorithm (EDZL) [11], [12], [13].

While in this paper we focus on IoT edge computing on

resource-constraint platforms and at time scales of tens of

milliseconds, we note that stream processing models [14], [15]

perform well for cloud computing platforms. In particular,

the micro-batch model (e.g., Apache Spark [14]) induces less

latency penalty for fault recovery, at the cost of more complex

and time-consuming coordination during fault-free operation;

the continuous operator model (e.g., Apache Flink [15]) incurs

less latency overhead when fault-free, but may take longer

to recover from a failure. The Drizzle project [16] offers an

empirical comparison of two models and introduced a choice

of grouping micro-batches to bound the coordination overhead

under fault-free operation.

VI. CONCLUDING REMARKS

We presented adaptive data replication for IoT edge com-

puting with platform constraints and application requirements.

The empirical evaluation suggests that the ARREC archi-

tecture can efficiently meet the requirements for real-time

reliable IoT edge computing. Using the proposed adaptive

data replication, it is favorable to assign parameter Mi with a

smaller value, because it permits a longer replication deadline

and many more data elements can be safely skipped from

replication.

133

ACKNOWLEDGMENTS

This work was supported in part by MOST grant 109-

2222-E-003-001-MY3, NSF grant 1514254, and ONR grant

N000141612108.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[2] Industrial Internet Consortium, “Industrious Internet Ref-
erence Architecture,” Jan 2017. [Online]. Available:
https://www.iiconsortium.org/IIRA.htm

[3] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “The primary-
backup approach,” Distributed systems, vol. 2, pp. 199–216, 1993.

[4] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Event Service,” ACM SIGPLAN
Notices, vol. 32, no. 10, pp. 184–200, 1997.

[5] C. Wang, C. Gill, and C. Lu, “Frame: Fault tolerant and real-time
messaging for edge computing,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2019,
pp. 976–985.

[6] IEEE, “Ieee standard for a precision clock synchronization protocol for
networked measurement and control systems - redline,” IEEE Std 1588-
2008 (Revision of IEEE Std 1588-2002) - Redline, pp. 1–300, July 2008.

[7] J. D. C. Little, “Proof for the queuing formula: L= λw,” Operations
research, vol. 9, no. 3, pp. 383–387, 1961.

[8] A. Babay, E. Wagner, M. Dinitz, and Y. Amir, “Timely, reliable, and
cost-effective internet transport service using dissemination graphs,” in
Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on. IEEE, 2017, pp. 1–12.

[9] A. Bhat, S. Samii, and R. R. Rajkumar, “Recovery Time Considerations
in Real-Time Systems Employing Software Fault Tolerance,” in 30th
Euromicro Conference on Real-Time Systems (ECRTS 2018), ser.
Leibniz International Proceedings in Informatics (LIPIcs), S. Altmeyer,
Ed., vol. 106. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018, pp. 23:1–23:22. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2018/8980

[10] A. Burns and R. Davis, “Mixed criticality systems-a review (the eleventh
edition),” Department of Computer Science, University of York, Tech.
Rep, pp. 1–77, 2018.

[11] S. K. Lee, “On-line multiprocessor scheduling algorithms for real-time
tasks,” in TENCON’94. IEEE Region 10’s Ninth Annual International
Conference. Theme: Frontiers of Computer Technology. Proceedings of
1994. IEEE, 1994, pp. 607–611.

[12] T. P. Baker, M. Cirinei, and M. Bertogna, “Edzl scheduling analysis,”
Real-Time Systems, vol. 40, no. 3, pp. 264–289, Dec 2008. [Online].
Available: https://doi.org/10.1007/s11241-008-9061-6

[13] J. Lee and I. Shin, “Edzl schedulability analysis in real-time multicore
scheduling,” IEEE Transactions on Software Engineering, vol. 39, no. 7,
pp. 910–916, 2013.

[14] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM, 2013, pp. 423–438.

[15] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas, “Lightweight
asynchronous snapshots for distributed dataflows,” arXiv preprint
arXiv:1506.08603, 2015.

[16] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,
M. J. Franklin, B. Recht, and I. Stoica, “Drizzle: Fast and adaptable
stream processing at scale,” in Proceedings of the 26th Symposium on
Operating Systems Principles. ACM, 2017, pp. 374–389.

134

