
Real-Time Communication over LoRa Networks

Sezana Fahmida
Wayne State University

Detroit, USA

Venkata Prashant Modekurthy
University of Nevada Las Vegas

Las Vegas, USA

Dali Ismail
Southern Illinois University

Edwardsville, USA

Aakriti Jain & Abusayeed Saifullah
Iowa State University

Ames, USA

Abstract—Today, industrial Internet of Things (IIoT) are
emerging in large-scale and wide-area applications (e.g., oil-
field management). Traditional wireless solutions for industrial
automation depend on short-range wireless technologies (Wire-
lessHART, ISA100.11a), posing a big challenge to support the
scale of today’s IIoT. To address this limitation, we propose to
adopt LoRa, a prominent low-power wide-area network tech-
nology, for industrial automation. Adopting LoRa for industrial
automation poses some unique challenges. The fundamental
building blocks of any industrial automation system are feedback
control loops that largely rely on real-time communication. LoRa
usually adopts a simple protocol based on ALOHA with no
collision avoidance to minimize energy consumption which is less
suitable for real-time communication. Existing real-time proto-
cols for short-range technologies cannot be applied to a LoRa
network due to its unique characteristics such as asymmetry
between downlink and the uplink spectrum, predefined modes
(class) of operation, and concurrent reception through orthogonal
spreading factors. In this paper, we address these challenges and
propose RTPL- a Real-Time communication Protocol for LoRa
networks. RTPL is a low-overhead and conflict-free communi-
cation protocol allowing autonomous real-time communication
of low-energy devices and exploits LoRa’s capability of parallel
communication. We implement our approach on LoRa devices
and evaluate through both physical experiments and large scale
simulations. All results show that RTPL achieves on average
75% improvement in real-time performance without sacrificing
throughput or energy compared to traditional LoRa.

Index Terms—LoRa, Low Power Wide Area Networks, Real-
Time, Industrial Internet-of-Things, Closed Loop, Internet-of-
Things, Cyber Physical Systems

I. INTRODUCTION

The evolution of Internet of Things (IoT) is transforming

the field of industrial automation including process control

and smart manufacturing into an important class of Industrial

IoT (IIoT). Industrial automation entails managing, monitor-

ing, and controlling the production or manufacturing process

through sensors and actuators connected over low-bandwidth

network for enhanced efficiency and sustainable production.

Today, industrial IoT and cyber-physical systems (CPS) are

emerging in large-scale and wide-area applications. For ex-

ample, the East Texas Oil-field extends over an area of 74×8
km2 requiring tens of thousands of sensors and actuators for

automated management [1]. Emerson is targeting to deploy

10,000 nodes (sensors and actuators) for managing an oil-

field in Texas [2], [3]. Today, wireless solutions for industrial

automation are based on WirelessHART [4] and ISA100.11a

This work was supported by NSF through grants CNS-2211510, CAREER-
2211523, CCF-2118202, and by ONR through grant N00014-22-1-2155.

[5] that depend on traditional short-range wireless technologies

based on IEEE 802.15.4. To cover a large area with numerous

devices, they form multi-hop mesh networks at the expense of

energy, cost, and complexity, posing a big challenge to support

the scale of today’s IIoT.

In this paper, we propose to adopt the Low-Power Wide-
Area Network (LPWAN) technologies for industrial automa-

tion. As an emerging IoT technology, LPWAN enables low-

power (milliwatts) wireless devices to transmit at low data

rates (kbps) over long distances (kms) using narrowband

(kHz), thereby obviating the need of multihop and allowing the

devices to directly communicate with the control node (gate-

way). Recently, multiple LPWAN technologies such as LoRa

(Long Range) [6], SigFox [7], RPMA [8], DASH7 [9], Telensa

[10], NB-IoT [11], LTE Cat M1 [12],and SNOW (Sensor

Network Over White spaces) [13]–[18] have appeared. Many

of them (e.g., LoRa, SigFox, SNOW) allow numerous devices

to concurrently communicate with the gateway, providing high

scalability. While the LPWANs have been mainly explored for

uplink communication, their potential for industrial automation

has not yet been explored.

IIoT realization through LPWAN can greatly benefit the

industrial automation solutions like pipeline management [19],

silo level, environmental and cold chain control. In such

applications, pipelines (that can be hundreds of miles long),

silos, tanks, and plants are positioned far from the central

operations center, at inconvenient or hazardous locations in

difficult terrain or offshore. Thanks to their multikilometer

range and deep penetration capability, LPWANs can be an

attractive solution for communications from massive, granular

data points of geographically dispersed and/or structurally

dense industrial campuses like oil fields, refineries and process

plants. Compared to industrial mesh solutions (e.g., Wire-

lessHART, ISA 100.11a), they can be implemented without

complex network configuration and at a fraction of both device

and operational costs. In a 2018 survey on 311 industries

conducted by ON World and the International Society of

Automation (ISA), as shown in Fig. 1, 57% of industrial IoT

professionals reported that they were researching or devel-

oping LPWAN solutions [20]. Thus, LPWANs will soon be

disrupting the IIoT landscape.

To avoid the cost of licensed band and infrastructure (usu-

ally unavailable in remote locations where process industries

are typically located), we consider non-cellular LPWANs in

the free ISM band. Specifically, we consider LoRa, which

is widely considered as an LPWAN leader [22] and is com-

14

2022 IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI)

978-1-6654-9641-4/22/$31.00 ©2022 IEEE
DOI 10.1109/IoTDI54339.2022.00019

14%

14%

18%

19%

35%

LPWAN

Hybrid/ISA

WirelessHART

None/NA

Other wireless

(a) Planned Approach

Researching

Not aware

Aware/Not Doing

Pilot testing

Deployment
2016
201812%

13%

15%
8%

21%
26%

23%
32%

29%
22%

(b) LPWAN Adoption Status

Fig. 1. LPWAN adoption trend in industrial automation [20], [21]

mercially available all around the globe with more than 600

known use cases and over 50 million devices deployed [6].

Industry analyst ABI research projects that more than 50% of

all LPWAN connections will be based on LoRa by 2026 as it

is flexible for both outdoor and indoor cases [23].

Adopting LoRa for industrial automation poses some evo-

lutionarily challenges as it was not originally targeted for

such applications. The fundamental building blocks of any

industrial automation system are feedback control loops that

largely rely on real-time communication between sensors and

actuators [24], [25]. For example, tanks in oil-fields need

real-time monitoring and control to avoid overflow. However,

LoRa was predominantly developed for independent uplink

and downlink communications. Enabling closed-loop commu-

nication under severe energy constraints of the nodes is quite

challenging. To minimize the energy consumption of devices,

LoRa usually adopts a simple MAC (media access control)

protocol based on ALOHA with no collision avoidance that is

naturally unsuited for real-time communication. While energy-

efficiency is a requirement and challenge in LPWANs, it

becomes more complicated when combined with real-time

requirement. Specifically, their communications have to be

minimal which makes real-time communication extremely

challenging. On the other hand, real-time communications can

benefit from massive concurrent communication of the devices

with the gateway. Existing real-time communication protocols

developed for short-range technologies cannot exploit the mas-

sive concurrent communication and hence cannot be adopted

for LoRa. The asymmetry between the downlink and uplink

spectrum in a LoRa network also makes it difficult to adopt

traditional real-time scheduling techniques.

In this paper, we address the above challenges and pro-

pose RTPL, a Real-Time communication Protocol for LoRa

networks which can ensure real-time guarantees of end-to-

end communication without affecting the concurrent reception

capability of LoRa. RTPL closes the control loops over the

asymmetric spectrum between uplink and downlink communi-

cation and also exploits LoRa’s capability of parallel commu-

nication. It is a low-overhead real-time MAC protocol allowing

autonomous communication of the low-energy devices. We

implement RTPL on LoRa devices and evaluate through both

physical experiments and large scale simulations. All results

show that RTPL achieves on average 75% improvement in

real-time performance without sacrificing throughput or energy

compared to traditional LoRa.

The rest of the paper is organized as follows. Section

II presents an overview of LoRa. Section III describes the

system model. Section IV reviews related work. Section V

motivates the need and identifies the challenges for a real-

time framework. Section VI presents RTPL. Section VII,

VIII and IX presents implementation, experiment results, and

simulation results, respectively. Section X concludes the paper.

II. LORA OVERVIEW

Fig. 2. The LoRa network architecture.

LoRa is a pioneering

LPWAN technology for

connecting sensors to the

Cloud. A typical LoRa

architecture (shown in Fig.

2) consists of three parts:

gateway, end-devices i.e.,

nodes, and a network server.

Nodes are sensors/actuators

that directly communicate

with the gateway via a

single-hop wireless link.

LoRa divides the available spectrum into multiple uplink and

downlink channels. Nodes send data to the gateway on the

uplink channels and the gateway responds on the downlink

channels. Multiple gateways communicate with the network

server via a local LAN/the Internet.

LoRa adopts a proprietary Chirp Spread Spectrum (CSS)

for communication [23]. Spreading the signal over a wide

bandwidth makes it less susceptible to noise and interference.

A LoRa transceiver has five runtime-adjustable transmission

parameters: transmission power, carrier frequency (channel),

spreading factor (SF), bandwidth (BW), and coding rate (CR).

These parameters influence the transmission duration, energy

consumption, reliability, and range. In North America, LoRa

defines 64 uplink channels of 125 kHz bandwidth (902.3-

914.9 MHz) in 200 kHz increments and 8 downlink channels

of 500 kHz bandwidth (923.3 MHz-927.5 MHz) in 600 kHz

increments. There is no duty-cycle requirement on spectrum

usage for LoRa in the US. CR is the amount of Forward Error

Correction (FEC) applied to the message to protect it against

burst interference. It ranges between 1 and 4. SF determines

the number of bits encoded in a symbol and ranges from 6

to 12. A higher spreading factor increases the Signal to Noise

Ratio (SNR) and, therefore, receiver sensitivity and the signal

range. Higher the SF implies lower bitrate, and hence, the

longer the communication time. LoRa signal data rate is given

by SF ∗ 4/(4+CR)
2SF/BW

. Depending on the SF and bandwidth, LoRa

achieves data rates between 0.3 kbps and 27 kbps. The SFs

in LoRa are orthogonal [26]. Concurrent transmissions with

different SF on the same channel do not interfere with each

other and can be successfully decoded.

LoRaWAN (LoRa Wide Area Network) is the currently used

MAC of a LoRa network. In LoRaWAN, LoRa nodes are

categorized into three classes. Class A nodes are allowed for

bidirectional communication where each node’s uplink trans-

mission is followed by two short downlink receive windows. In

the Class A mode, nodes locally schedule transmissions based

15

on their own communication needs with a small variation

based on a random time basis (ALOHA-type protocol). This

Class A operation is lowest power-consuming and intended for

applications that only require downlink communication from

the gateway shortly after a node’s uplink transmission. Down-

link communications from the gateway at any other time must

wait until the next scheduled uplink. Class B nodes are also

allowed for bidirectional communication, where they allow for

more receive slots. In addition to the Class A receive windows,

Class B nodes open extra receive windows at pre-scheduled

times. To resolve clock drifts, nodes’ synchronizes their time

with the gateway through time synchronizing beacons. Class
C nodes have continuously open receive windows, only closed

when transmitting. Class C mode consumes higher power but

offers the lowest latency communication from the gateway.

III. SYSTEM MODEL

We consider an LPWAN based on LoRa. A LoRa node is

equipped with one half-duplex radio, enabling transmission

or reception of a packet at a time, but not both. In a LoRa

network, a channel and a SF together is called a communica-
tion path. Two communications paths with different channels

or different SFs are orthogonal to each other. Concurrent

transmissions on orthogonal communication paths do not in-

terfere one another. The number of orthogonal communication

paths is a system parameter that depends on vendor specific

circuit. The issues related to the coexistence of multiple LoRa

networks are out of the scope and will be studied in the future.

A LoRa gateway has (1 + m′) radios. One radio enables

concurrent reception on m uplink orthogonal communication

paths (UCPs), and all other radios enable concurrent trans-

missions on m′ downlink orthogonal communications paths

(DCPs). UCPs are denoted as ci, c2, · · · , cm and DCPs are

denoted as δ1, δ2, · · · δm′ . All UCPs use a BW of 125 khz, and

all DCPs use a BW of 500 kHz. The number of orthogonal SFs

available in the network is denoted by η. The spreading factor

and channel used for the jth UCP cj is given by Φ(cj) and

ζ(cj), respectively. Similarly, the spreading factor and channel

used for a DCP δj is given by Φ(δj) and ζ(δj), respectively.

For industrial automation, LPWAN node can be a sensor

or an actuator. Unlike the nodes, the gateway is Internet-

connected, line-powered, and is powerful in computation.

The nodes can be deployed within several kilometers of

the gateway and still communicate directly with it and vice

versa. We consider an LPWAN with n wireless control loops

�1, �2, · · · , �n, where �i is the control loop between a sensor

node si and actuator ai through a controller at the gateway.

In industrial automation applications, a sensor node samples a

plant (or a process) state and sends data to the controller (at

the gateway) along a UCP. The controller determines control

commands and sends them to the actuators along a DCP. The

sampling period of control loop �i is denoted by pi. The dead-

line di of control loop �i equals its period pi (i.e., pi = di).
This means that the end-to-end communication between sensor

si and actuator ai has to be completed within pi time units.

The actuator ai must receive the control command within pi

time units after the generation of a sample. The objective of

RTPL is to meet the deadlines of the control loops. A control

loop �i is schedulable if it meets its deadline di for all of its

packets. A set of control loops is called schedulable, if every

control loop of the set is schedulable.

IV. RELATED WORK

Real-time scheduling for wireless network for short range

technologies such as IEEE 802.15.4 standard was studied

widely [27]–[38]. However, these approaches cannot be ap-

plied to a LoRa network due to its unique characteristics such

as (a) asymmetric communication paths between uplink and

downlink, (b) nodes’ restriction to operate in one of the three

modes (A, B, or C) with severe energy constraints, and (c)

concurrent reception capability by exploiting orthogonal SFs.

Existing work on LoRa mostly focuses on improving per-

formance [39]–[41], energy consumption and coverage [42],

[43], scalability [22], [44], [45], and packet collision resolution

[46]–[51]. The potential of LoRa in real-time communication

and control has been explored recently [52]–[55]. Specifi-

cally, the work in [55] provides a time-slotted MAC layer

on top of LoRaWAN to improve reliability. The work in

[52], [56] discusses the feasibility of using LoRa in real-

time communications through some measurement studies. The

work in [53] proposes a centralized approach to enable both

real-time and non real-time traffic in a LoRa network and

evaluates through simulations without any implementation on

LoRa devices. It considers a simplified model of traffic where

all nodes in the network operate on the same transmission

interval. As already pointed out in [57], this approach is not

applicable to a real industrial IoT network as it does not

rely on any slot-scheduling mechanism to meet the real-time

requirements of nodes. Besides, this work does not consider

the scheduling of downlink actuator commands, and is not

applicable to control. Enabling real-time communication upon

closing the loop over a LoRa network is quite challenging

due to asymmetric spectrum between uplink and downlink and

severe energy constraints of the nodes.

Closed-loop communication in LoRa networks has been

studied in [54] to enable event-triggered control. However, this

work relaxes the energy constraints as the actuators as need to

always remain in continuous listen mode. It also does not take

exploit LoRa’s capability of concurrent reception on orthogo-

nal SFs. Most importantly, in its approach, the nodes contend
for data transmission slots before sending the data, which

can lead to collisions and unpredictable latency. In contrast,

our approach adopts a time-triggered model and conflict-free

communication, thereby enabling predictable latency and real-

time communication. Our approach exploits LoRa’s capability

of parallel reception and preserves energy as both sensors and

actuators only wake up to send/receive data.

V. FEASIBILITY OF CLOSED LOOP REAL-TIME

COMMUNICATION WITH LORAWAN

Long-range and single-hop communication of LoRa facili-

tates low-latency communication. However, LoRa’s MAC uses

16

an ALOHA-based protocol for uplink communication that

causes significant packet collisions, unpredictable latencies,

and deadline misses. Furthermore, it introduces challenges

in closing the loop. As described in Section IV, there is no

existing work on closed-loop conflict-free MAC protocol for

real-time communication that takes into account LoRa’s char-

acteristics. Hence, in this section, we experimentally inves-

tigate the following: (1) Is real-time communication feasible

betweeen sensors and gateway? (2) Is closed-loop real-time

communication feasible in LoRa? and (3) Can LoRa adopt

existing wireless sensor-actuator network (WSAN) protocols?

A. Can LoRaWAN Ensure Real-Time Guarantees for Uplink
Communication?

To answer this question, we ran an experiment with 4 Rasp-

berry Pi 3 with LoRa HAT from Dragino [58] as LoRa sensor

nodes and one Dragino LG308 LoRaWAN gateway with The

Things Stack network server [59]. The nodes transmitted 10-

byte packets with a period of 7 seconds (which is also the

packet’s deadline) to the gateway. All nodes used the same

channel to emulate a dense deployment. The nodes used a

5 second receive window delay as per the recommendations

from The Things Stack [60]. We measured the latency between

packet generation at the sensor and packet reception at the

gateway. We compared the measured latency with the deadline

to observe the number of packets that meet the deadline.

Fig. 3. Percentage of deadline misses.

Fig. 3 shows the number

of packets out of 30 that

were successfully received

before the deadline by the

gateway from each sen-

sor. This result shows that

100% of packets missed the

deadline for each sensor

while the network load was

quite low. The results thus show that LoRaWAN can be

naturally unsuited for real-time communication.

B. Is Closed-loop Real-Time Communication Feasible under
LoRaWAN?

Feedback control loops are the fundamental building blocks

in many IIoT and industrial CPS applications. In a feedback

loop, a sensor observes the state of the plant and transmits

the observed state to a controller residing at the gateway.

Upon receiving the observed state, the controller generates

a control command and transmits it to the actuator. The

current LoRaWAN MAC is not developed for handling such

dependencies between uplink and downlink communication.

As a first step, we try to see the feasibility of closing the

loop using Class B for downlink communication while the

uplink communications happen in Class A mode. Scheduling

downlink messages using Class B on predetermined time slots

would require us to estimate latency of uplink communication.

Since there is no theoretical estimation of uplink latency

for LoRa, we perform experiments to observe the latency

distribution of packets in uplink communication.We used a

Fig. 4. Latency variation in LoRaWAN.

similar experimental setup

to that in the previous sec-

tion. Fig. 4 shows the cu-

mulative distribution func-

tion (CDF) of packet la-

tency for 30 packets us-

ing LoRaWAN. We ob-

served that the latency of

the packet sent from the

same node varies signifi-

cantly over a wide range. In 50% cases, the latency is < 7.4

seconds, while in 90% it is < 7.8 seconds. This variation in

delays is caused mainly for two reasons: packet collisions and

the variation in the spreading factor used for transmissions.

This result shows that estimating the latency of LoRa uplink

communication is highly challenging. Therefore, it is not quite

feasible to schedule the downlink transmissions using Class B

due to unpredictability of the preceding uplink communication

of the same control loop under deadline constraints on end-

to-end communication. Using Class C for downlink is also

not a practical option for energy constrained LoRa nodes

as Class C mode has extremely high energy overhead [61].

This result shows that closing feedback loops with real-time

communication in a LoRa network needs a new approach.

C. Can we Adopt Existing WSAN MAC Protocols for LoRa?

Real-time communication protocols have been proposed for

industrial WSAN based on short-range wireless technologies

like WirelessHART [4] and ISA100.11a [5]. These protocols

are mostly centralized and depend on table-driven scheduling

based on Time Division Multiple Access (TDMA). These

protocols make several assumptions like (1) gateways receive

from one node at a time, (2) gateways can either transmit a

packet or receive a packet at a time, but not both, and (3)

uplink and downlink communications happen on the same

spectrum. These assumptions are ineffectual under LoRa. A

LoRa gateway uses asymmetric uplink and downlink spec-

trum in terms of band, bandwidth, and spreading factors.

Furthermore, a LoRa gateway can receive multiple packets

simultaneously, and it uses multiple radios to transmit and

receive packets concurrently. Thus, existing real-time com-

munication protocols for industrial WSAN are not directly

applicable to LoRa. Enabling real-time communication over a

LoRa network for industrial automation needs a new approach.

VI. DESIGN OF RTPL

In this section, we design RTPL by developing an au-

tonomous real-time scheduling framework for a LoRa network.

It is designed by exploiting the concurrent communication

capabilities of LoRa. It also handles frequency hopping, duty-

cycling, link failures, network and workload dynamics.

A. Deciding the Scheduling Approach: Global or Partitioned?

The current LoRaWAN adopts ALOHA or Listen Before

Talk (LBT) and is naturally unsuited for industrial automa-

tion. We adopt a Time Slotted Channel Hopping (TSCH)

17

Fig. 5. Uplink and downlink time slot.
like approach which can provide predictable latency and is

preferred in industrial automation [4], [5]. While time slotted

communication needs time synchronization, in RTPL it can

be obtained through time-synchronized beacons in Class B

mode. In this mode, the gateway broadcasts time-synchronized

beacons periodically (typically 128s to preserve energy). The

nodes (sensors and actuators) demodulate the beacon and align

their internal clocks with the network server. Based on the

network timing reference, the device can receive downlink

messages from the network server at scheduled intervals.

In RTPL, all nodes (sensors and actuators) operate in time

slots. Since a transmission on the spreading factor 7 with

125 kHz bandwidth results in the smallest transmission time,

we calculate the length of a time slot based on 10 byte

(maximum packet-size supported by higher spreading factors)

packet transmission and its acknowledgment using spreading

factor 7 (or SF7) and bandwidth of 125 kHz. We represent

the transmission time of a 10 byte packet using spreading

factor 7 and 125 kHz bandwidth by Ttx(SF7, 125 kHz) and

transmission time of acknowledgments using spreading factor

7 and 125 kHz bandwidth by Tack(SF7, 125 kHz). In the

calculation of the time slot length, we also include channel

switching time, packet decoding time, and a short interval

(few ms) called guard interval to handle time synchronization

errors. Considering Tdc,sc,g represents the sum of packet

decoding time at the gateway, channel switching time, and

guard interval, the length of the time slot is given by (1).

Tk = Ttx(SF7, 125 kHz) + Tack(SF7, 125 kHz) + Tdc,sc,g (1)

The different components used in the computation of the

time slot are illustrated in Fig. 5. Since the packet transmission

time changes with spreading factor, the number of time slots

required to transmit and acknowledge a packet also varies with

UCP and DCP. For example, transmission and acknowledg-

ment of a 10 byte packet on a UCP with spreading factor 7

takes 1 time slot. However, transmission and acknowledgment

of a 10 byte packet on a UCP with spreading factor 8 takes 2

time slots and that on spreading factor 10 takes 8 time slots.

If there are m UCPs then m nodes can transmit together to

the gateway. The gateway can send control commands to all

m nodes through a single broadcast message. When n > m,

packets need to be prioritized. Unlike CPU task scheduling

[62], wireless nodes are distributed and unaware of other

nodes’ priorities without which they should not transmit as

the packets may collide. To handle this problem, a centralized

approach can be adopted where the gateway tells which node

will send next on each UCP. Such an approach will require

all nodes to remain awake most of the time to listen to the

gateway. This is not practical for LPWAN as it is highly energy

consuming. Hence, we shall adopt an autonomous approach
where the nodes can decide when to transmit. We enable this

by giving all nodes the periods of all nodes at the beginning

of network operation or if/when periods change. Since time is

synchronized, a node knows when the others will have packets.

Real-time scheduling has two broad approaches – global and

partitioned. In the context of LPWAN, in global scheduling,

a control loop is dynamically assigned UCPs and priorities

are global across network. In partitioned scheduling, the set of

control loops are partitioned into m non-overlapping subsets,

called partitions, each partition being assigned one UCP. The

control loops of a partition will always use that UCP.

A global scheduling approach can suffer from priority
violation problem due to link unreliability and concurrent

transmission in LPWAN. Specifically, when multiple nodes

transmit to the gateway, a higher priority transmission may

fail while the lower-priority ones succeed, raising a scenario

of retransmitting a higher-priority packet after transmitting a

lower priority one. To avoid such problems, we will resort to

the partitioned scheduling approach where the priorities are

only local to a partition (no global priority), and thus the

priority violation problem is avoided. The partitioning will

be done at the gateway. This greatly simplifies the real-time

communication protocol and reduces overhead. For example,

a node will need to know the periods of only the control

loops of its own partition. This information only needs to

be disseminated once before the start of network operation.

Time synchronization will need to be maintained only inside

a partition instead of network-wide global synchronization.

B. Control Loop Partitioning in RTPL

We adopt the concept of partitioned scheduling in LPWAN

as follows. The control loops are partitioned into disjoint

groups. Each group is assigned a unique UCP and DCP;

their uplink and downlink transmissions happen on that UCP

and DCP, respectively. The gateway knows the periods and

deadlines of all nodes. Assigning the control loops to the UCP

and DCP is called partitioning. Loops in one partition do not

interfere those in another. In TSCH, a transmission starts in

the beginning of a slot and ends that slot. Hence, we adopt a

preemptive scheduling approach, simplifying scheduling.

In each partition, priorities to access the UCP and DCP can

be based on fixed priority such as Deadline Monotonic (DM)
or dynamic priority such as Earliest Deadline First (EDF).
EDF schedules a task based on its absolute deadline. Upon

partitioning, the EDF policy on a UCP schedules a packet

having the earliest absolute deadline. We break ties based on

predetermined policy, such as first come first serve or lower

index first, distributed to nodes during network deployment.

Since EDF is optimal for preemptive scheduling on a single

processor [62], it can offer high schedulability. Thus, we

consider partitioned EDF scheduling for RTPL.

C. Challenges of Partitioning in RTPL

There are a number of key challenges in adopting partition-

ing techniques to LoRa as described below.

18

First, multiprocessor task partitioning assumes that a task’s

execution requirement remains same on all processors. How-

ever, in LoRa, the number of time slots required to transmit

a packet varies across UCP/DCP. Furthermore, to improve the

reliability of a packet transmission, the nodes (sensors and

actuators) can use additional time slots for retransmissions,

similar to existing WSAN technologies [4]. To ensure a high

reliability of communication, the sensor of control loop �i
allocates rupi (ck, δk) time slots to transmit a packet on UCP

ck and receive an acknowledgment on DCP δk. Similarly, the

actuator allocates rdown
i (ck, δk) time slots to receive a control

message of �i on DCP δk and transmit an acknowledgment on

UCP ck. Note that the values of rupi (ck, δk) and rdown
i (ck, δk)

are pre-computed by the network manager and disseminated

to all nodes during network deployment. Similar to task

worst-case execution time on processor, we define worst-
case entailed time (WCET) for a control loop �i as the total

number of time slots allocated for its uplink and downlink

transmissions. That is, the WCET of control loop �i, is given

as ri(ck, δk) = rupi (ck, δk) + rdown
i (ck, δk). The WCET of

a control loop represents its time of successful end-to-end

(sensor to actuator) communication in the poorest conditions

(requiring a retransmission in each allocated time slot).

Second, the utilization of a control loop, given by the ratio

of WCET and its period, is used in traditional partitioning

algorithms to determine the schedulability of a loop in a par-

tition. However, in processor scheduling the WCET (standing

for worst-case execution time) of a task is considered fixed

and known prior to the partitioning. In RTPL, the WCET of

a loop depends on its assignment to a UCP/DCP.

Third, the position of the sensors and actuator may limit

the availability of some UCPs with lower SFs to the con-

trol loop. Typically, the longer the distance between a node

(sensor/actuator) and the gateway, the higher the required SF

for a successful transmission. Thus, control loops may be

constrained to operate on a specific set of UCPs based on

the SNR at the gateway. While the bin-packing algorithms

are traditionally adopted in task partitioning on multipro-

cessor platforms [62], directly applying those algorithms in

RTPL with multiple UCPs and DCPs may lead to un-

schedulability even under a very low network utilization.

Finally, the number of UCPs m is usually greater than

number of DCPs m′ due to regional regulations. For example,

in North America 64 uplink channels are available, while the

number of downlink channels is 8. Thus, the same control loop
is scheduled in parts as uplink and downlink communication
on different sets of UCPs and DCPs. This is challenging

because the partitioning in the uplink impacts the partitioning

in the downlink and vice versa. Such unique scenario has never

been explored in traditional real-time scheduling and requires

a new approach. In multiprocessor scheduling, a task upon

partitioning executes solely on its assigned processor.

Due to the above mentioned challenges, an optimal parti-

tioning for RTPL can be a significantly hard problem. We do

not formulate and identify the complexity class of the problem.

We leave the formulation and classification as an open problem

that we will study in the future. We develop a partitioning

heuristic for RTPL, described in the following section.

D. The Partitioning Algorithm

We develop the partitioning algorithm for RTPL by ad-

dressing the challenges described in the above section and

by incorporating the characteristics of a LoRa network into

the well-known bin-packing heuristics. We first describe the

algorithm assuming the same number of UCPs and DCPs.

Later, we extend it to handle cases where the total number

of DCPs is less than that of UCPs.

Assuming an equal number of UCPs and DCPs, we first

pair UCPs and DCPs with the same spreading factor. A

control loop �i that is allocated a UCP ck is also allocated

its corresponding DCP, δk. The sensor of control loop �i
uses UCP ck and DCP δk to transmit a message and receive

an acknowledgment, respectively. Similarly, the actuator of

�i uses DCP δk to receive a control message and UCP ck
to acknowledge the reception. In such a situation, if the

acknowledgment transmission by the gateway is not synchro-

nized with the acknowledgment transmission by the actuator,

it can cause packet collisions. To avoid such collision, we

enforce the acknowledgments to start at the same time by

(1) employing the same number of time slots (αi(ck, δk))
for sensors and actuators of �i to transmit sensor messages

and receive control messages, respectively, and (2) forcing the

gateway and actuator to start acknowledgments for �i at the

same time within αi(ck, δk) time slots. Typically, a sensor

uses 125 kHz bandwidth to transmit a sensor message, while

the gateway uses 500 kHz bandwidth to transmit a control

message. Thus, the number of time slots required to transmit

an uplink packet from the sensor is greater than that required

to receive a downlink packet at the actuator of the same

control loop. When the number of UCPs is the same as the

number of DCPs, we can compute αi(ck, δk) as the number

of time slots allocated to the sensor of control loop �i, i.e.,

αi(ck, δk) = rupi (ck, δk). Using αi(ck, δk), the WCET of

control loop �i can be computed as ri(ck, δk) = 2αi(ck, δk).
In RTPL, the performance of bin-packing heuristics heavily

depends on the ordering of the control loops to be assigned.

One popular approach is to order the control loops based

on their utilization. However, in this case, the utilization of

a control loop varies with the assignment. Specifically, the

utilization of a control loop �i with period pi that is assigned

to a UCP/DCP pair ck,δk is given by ui,k = ri(ck,δk)
pi

where

the WCET ri(ck, δk) of �i depends on the UCP/DCP pair

(ck, δk). Hence, the actual utilization of the control loop can

only be determined after an assignment. Furthermore, some

control loops may be restricted to fewer usable spreading

factors due to low SNR, and longer distance between node

(sensor/actuator) and the gateway.

To address the above limitation, we propose a partitioning

heuristic called worst-fit-UCP-increasing for RTPL. Algo-

rithm 1 shows the pseudocode for our partitioning heuristic.

Since some SFs are not usable by a control loop due to low

SNR values, the heuristic starts by computing the smallest

19

acceptable SF for each control loop. The smallest acceptable

SF for a control loop is the smallest SF that enables reliable

transmission both from sensor to gateway and from gateway to

actuator. Note that the smallest acceptable SF can be computed

during network deployment through physical experiments or

well-known radio propagation loss models [63]. The heuristic

then generates the list of acceptable UCP, DCP pairs by

selecting the pairs that have a spreading factor greater than or

equal to the smallest acceptable spreading factor. We denote

the set of acceptable UCP, DCP pairs of a control loop �i by

Ωi ⊆ Ω, where Ω is the set of all UCP, DCP pairs.

As control loops with the lowest number of acceptable UCP,

DCP pairs are more likely to cause a control loop set to

be unschedulable, we order the nodes in increasing order of

number of acceptable UCP, DCP pairs. The algorithm iterates

over the ordered list of control loops. For a control loop �i, it

first computes the remaining capacity. Considering π(ck, δk)
as the set of control loops currently allocated to UCP, DCP

pair (ck,δk), we define the remaining capacity of (ck,δk) pair

as the difference between 1 and sum of the utilization of �i on

UCP, DCP pair (ck,δk) and the total utilization of the (ck,δk),
i.e., 1−u(i, k)−∑

�j∈π(ck,δk)
u(j, k). Note that the remaining

capacity of ck includes the utilization of �i, and a remaining

capacity of 0 indicates that the allocating �i maxes out the

utilization of the UCP/DCP pair (ck,δk). Similarly, a negative

remaining capacity indicates that allocating the control loop

�i to (ck,δk) causes packet failures.

Upon computing the remaining capacity, the algorithm

orders the UCP/DCP pairs in the decreasing order of their

remaining capacity. It iteratively selects one UCP/DCP pair

and verifies if �i is schedulable on the selected pair. To

test the schedulability of the control loop, we use the EDF

uniprocessor schedulability test given by:
∑

�j∈π(ck,δk)

u(j, k) ≤ 1 (2)

Note that the EDF uniprocessor schedulability test is an exact

test for a single communication path. Since a control loop

schedulable on a single communication path is also said to

be schedulable on two communication paths (i.e.,UCP/DCP

pair), the EDF uniprocessor schedulability is only a sufficient

schedulability condition for a single partition in RTPL. If �i
is schedulable, the algorithm continues with the next control

loop. If a control loop is not schedulable on any acceptable

UCP, DCP pairs, then it stops with a notification that the

control loop set cannot be partitioned. Upon the completion

of the heuristic, if the partitioning is successful, i.e., all control
loops are assigned a UCP/DCP pair, it is a guarantee that
they are schedulable (that is, each control loop shall meet

its deadline). This comes from the fact that each partition is

schedulable (as it passed the schedulability test). Note that

a successful partitioning is only a sufficient condition for

schedulability. Therefore, in case of unsuccessful partitioning,

nothing can be concluded about the schedulability of the

loops. In the worst-fit-UCP-increasing partitioning, the choice

of assigning UCP, DCP pairs based on increasing remaining

utilization stems from the fact that it balances the number

of control loops assigned across all available UCPs. Thus, it

minimizes the average energy consumption of all nodes in the

network.

Algorithm 1 Worst-fit-UCP-increasing

Input: Set of all control loops L, Set of all UCP, DCP

pair,Ω
Output: Set of Partitions {π(ck, δk) k = 1, 2, · · · ,m}
for li ∈ L do
Ωi ← ComputeAvailableCP(li)

end for
L′ ← sort L in increasing order of |Ωi|
for li ∈ L′ do

assigned ← FALSE

for (ck, δk) in Ωi do
ρ(ck, δk) ← 1 − u(i, k) − ∑

�j∈π(ck,δk)
u(j, k)

{Compute Remaining capacity of UCP, DCP pair}
end for
P ′ ← sort Ωi in decreasing order of ρ
for (ck, δk) in P ′ do

if
∑

�j∈π(ck,δk)
u(j, k) ≤ 1 then

π(ck, δk)← li
assigned ← TRUE

end if
end for
if assigned �= TRUE then

return FAILURE

end if
end for

Upon partitioning, every node is informed of its UCP/DCP

pair and the periods of other control loops on its partition.

Nodes (sensors, gateway and actuators) can locally generate

a schedule of all transmission based on the EDF policy. This

schedule can be used to sleep, transmit/receive packets, and

transmit/receive acknowledgments. Note that our proposed

partitioning approach can be generalized to any number of

UCP, DCP pairs. Furthermore, our approach can be extended

to SigFox which is similar to LoRa.

E. Handling Workload and Network Dynamics

To meet application requirement, the period of a control

loop may change over the network operation time. In case of

such workload dynamics, the utilization of a control loop may

increase. Note that the partitioning heuristic for RTPL will

typically balance the remaining capacity across all UCP, DCP

pairs. As such, small variations of workload may be handled

without re-executing the partitioning heuristic if the current

partition is still schedulable under the new utilization of the

loop. Thus, the network server can notify the other loops in

the partition regarding the workload change and the loops can

update the schedule accordingly. However, in the worst-case,

if the workload changes significantly, the partitioning heuristic

is executed again. Similarly, if some channel becomes overly

noisy, i.e, signal-to-noise (SNR) ratio becomes very low, the

20

gateway can blacklist it and re-run the partitioning algorithm

excluding that channel.

F. Handling Different Numbers of UCPs and DCPs

Typically, regional regulations limit the number of DCPs

to be less than the number of UCPs. For example, in the

US the number of downlink channels is 8, while the number

of uplink channels is 64. Since DCPs are enabled through

separate radios, a high number of DCPs become expensive.

One approach to address this limitation can be to use only

m′ UCPs in the uplink partition, which can lead to under-

utilizatiion of the network.

In RTPL, we group control messages of several control

loops together into a single downlink communication message.

The grouping of multiple packets modifies the mapping be-

tween UCPs and DCPs to many-to-one, where multiple UCPs

with the same SF are mapped to a single DCP. Specifically,

we generate a partition π(ci, cj , · · · ck, δp) where Φ(ci) =
Φ(cj) = · · · = Φ(ck) = Φ(δp). For example, c1, c2, c3
and c4 can be mapped to δ1. In such a mapping, if the

gateway receives a packet from control loops �1, �2, �3 and

�4 on UCPs c1, c2, c3 and c4, respectively, then the gateways

acknowledges all transmission with a single grouped message

on δ1. Similarly, the gateway also groups the control messages

of �1, �2, �3 and �4 and transmits the grouped message on δ1.

Although packet grouping is known to increase the number

of time slots required by the gateway, we have observed

that such overhead is minimal for LoRa. The low time alot

overheads is due to the non-uniform bandwidths allocated

for uplink and downlink communications. Typically, Lora

uses a 125 kHz bandwidth for uplink communication and a

500 kHz bandwidth for downlink communication. The higher

bandwidth for downlink communication reduces the airtime

by 74%. For example, transmission of a 10 byte packet on

spreading factor 10 with a 125 kHz bandwidth takes 320.7

ms while it takes only 92.7 ms on 500 kHz bandwidth [64].

Thus, LoRa enables the grouping of 4 downlink packets

with minimal overhead. Note that depending on the grouping

selected, the number of time slots allocated to the sensor may

be different from that allocated to the actuator of the same

control loop. When the number of UCPs is greater than the

number of DCPs, we compute the WCET of a control loop

�i based on the maximum of number of time slots allocated

to a sensor of �i and number of time slots allocated to an

actuator of �i. Specifically, WCET of control loop �i can be

computed as ri(ci, cj , · · · ck, δp) = 2αi(ci, cj , · · · ck, δp) =
2max

(
rupi (ci, cj , · · · ck, δp), rdown

i (ci, cj , · · · ck, δp)
)
. Using

the new grouping and WCET calculation, the worst-fit-UCP-

increasing heuristic can be used to generate the partitions.

G. Handling Channel Hopping and Duty-Cycling

In the US, there is a maximum dwell time regulation of

400ms on any channel. Additionally, if a node utilizes at

least 50 uplink channels, the nodes are required to implement

pseudo-random channel hopping before every transmission.

Note that the LoRa nodes are exempt from the channel

hopping regulation if the output power is limited to 21dBm

and only 8 uplink channels are utilized [65]. To comply

with the maximum dwell time regulation, we refrain from

using SF>10. We can easily extend our framework to handle

the channel hopping regulation by having a predetermined

sequence of frequency hopping for each UCP. The gateway

shares the sequence with the nodes in the partition. After each

time slot, the node hops to another channel as per the prede-

termined sequence. Through hopping, the physical channel of

a UCP changes but the partitioning remains unchanged as all

nodes within a partition switch to the same channel.

Many regions (e.g., North America) do not have any duty-

cycle requirement. In such regions, a LoRa network can host

relatively more workload and applications with real-time re-

quirements. However, there are duty-cycle regulations in some

regions (e.g, in Europe, duty cycle is set to 1%) to ensure fair

usage of the spectrum. RTPL can be easily extended to handle

duty-cycling for such regions. Specifically, the partitioning

approach in RTPL has to be changed to handle the duty-cycle

regulation by stalling the UCP/DCP pair with dummy control

loops. Namely, for every UCP/DCP pair with duty-cycle d,

we assign a dummy control loop with utilization (1 − d).
This ensures that our partitioning approach complies with the

duty-cycle regulation. It is understandable that with duty-cycle

requirement the network may support lesser workload.

VII. IMPLEMENTATION

We have implemented RTPL using Raspberry Pi LoRa HAT

(LoRaHAT) and Dragino LG308 LoRaWAN gateway (GW)

as LoRa nodes and gateway, respectively [58]. LoRaHAT is

a commercial-of-the-shelf (COTS) module that offers low-

cost, ultra low-power LoRaWAN implementation. Its design

is based on the SEMTECH SX1276 LoRa transceiver [23].

The GW implements SEMTECH packet forwarder and is

compatible with the existing LoRaWAN protocol. It includes

one SX1301 chip, which contains a LoRa IP concentrator,

and two SX1257 chips allowing for ten parallel demodulation

paths [66]. We use the Things Stack network server from

The Things Industries [59]. It is an open source and widely

used LoRaWAN network server. Due to the lack of a working

implementation of LoRa class B mode at the time of experi-

ment, we emulate class B operation with the help of Internet-

based time synchronization. Namely, all Raspberry pi’s were

connected to the Internet through WiFi, thus even without a

dedicated time-synchronization protocol they all had almost

similar timestamps. We use a guard band of 100 ms to reduce

any packet collisions due to time synchronization errors. In our

experiments, we store the EDF schedule locally at each node.

We assigned a time slot of 7 seconds based on (1). Note that

this includes a 5 second receive window delay recommended

by the The Things Stack for sending an acknowledgment.

VIII. EXPERIMENTS

In this section, we evaluate the performance of RTPL in dif-

ferent environments (indoor and outdoor) in a large metropoli-

tan city in the US. As discussed in Section IV, there are some

21

(a) Harmonic periods (b) Non-harmonic periods

Fig. 6. Schedulability of RTPL

existing works that explore the potential of LoRa in enabling

real-time control [53], [54]. However, the work in [53] does

not provide a slot-scheduling algorithm to meet real-time

requirements. While, [54] considers an event-triggered model

through a contention-based communication which is not di-

rectly applicable to time-triggered systems requiring deadline

guaranties. Hence, we evaluate the performance of RTPL by

comparing it with LoRaWAN through physical experiments

with up to four control loops. We plan to setup a larger testbed

and perform large scale physical experiments in the future.

A. Default Parameters

We use the following default parameters setting for all

experiments unless stated otherwise.

• Period: 7, 14, 56, 112 (seconds)

• SF: 7, 8, 9, 10

• Deadline = period

• Frequencies: 903.9-904.7 MHz

• Packet size: 10 bytes

• Bandwidth: Uplink: 125 kHz, Downlink: 500 kHz

• TX power: 15 dBm

• Distance: Indoor: 2 m - 6 m, Outdoor: 200 m - 500 m

Note that the performance of our algorithm only increases

with shorter packet size. Thus, in our experiments, we used

the maximum allowable packet size for SF10 (10 bytes) in the

US as the size of our packet which shows a lower bound of our

performance. We used up to 4 control loops and 4 SFs (7-10)

in our experiment. As the worst-fit UCP increasing algorithm

tries to balance the control loops across different assignments,

each node was assigned to a different SF. For LoRaWAN, the

SFs were assigned based on the ADR algorithm.

B. Indoor Deployment

1) Setup: The indoor experiments are carried inside a

building at our location. We use the same deployment (keeping

the positions of the nodes and the GW unchanged) for exper-

iments with LoRaWAN and RTPL. In all the experiments, we

run the partitioning algorithm for RTPL. We use the default

parameters for the experiments in this Section.

2) Real-Time Performance: To observe the performance of

RTPL in terms of schedulability, we conduct three different

experiments. We observe the schedulability of RTPL in two

cases: using harmonic period and non-harmonic period. For the

harmonic and non-harmonic period experiments, we use four

control loops and observe the number of schedulable control

loops. Fig. 6 shows the results of our schedulability exper-

iments. In Fig. 6(a), all control loops are schedulable under

(a) Avg latency per loop (b) Maximum latency per loop
Fig. 7. Latency vs. # of control loops

Fig. 8. Avg energy consumption Fig. 9. Throughput (indoor)

RTPL, while one control loop is schedulable under LoRaWAN.

This is due to LoRaWAN adaptive data rate (ADR) mechanism

that controls several parameters (e.g., SF). Fig. 6(b) shows that

100% of the control loops are schedulable with RTPL using a

non-harmonic period. This is due to RTPL partitioning, which

guarantees each packet meets its deadline. For LoRaWAN,

100% of the control loops are unschedulable.

3) Energy and Latency: In this Section, we measure the

end-to-end energy consumption and latency of the control loop

of RTPL and LoRaWAN under default setting. We calculate

the average and maximum latency per control loop for the

duration of the hyper-period. Note that we calculate latency

for packets which were received by the gateway and the

corresponding downlink message was received by the actuator.

In our calculation, we include the beacon time on air (approx-

imately 160 ms) and RX delay (5 seconds). Fig. 7 shows the

results of our experiments. In Fig. 7(a), the average end-to-end

latency for RTPL for all control loops is around 6 seconds.

For LoRaWAN, the average latency for one control loop is

around 7.1 seconds and it increases linearly with the number

of control loops, as shown in Fig. 7(b). For four control

loops, LoRaWAN average latency is 23 seconds. This is due to

collisions and the acknowledgment mechanism in LoRaWAN,

(the GW acknowledges uplink transmissions sequentially).

For the energy consumption experiment, we use the same

setup as the latency experiments. To estimate the energy, we

use SEMTECH SX1278 chip energy model (3.3 v voltage,

TX 87 mA, RX 12 mA). We measure the average energy con-

sumption per control loop for both RTPL and LoRaWAN. The

results in Fig. 8 shows that the average energy consumption

for RTPL is around 69.9 mJ and 73.1 mJ for one and four

control loops, respectively. The average energy consumption

for LoRaWAN is 116 mJ and 157 mJ for one and four control

loops, respectively. This result show that RTPL offers energy-

efficiency while guaranteeing schedulability.

4) Throughput: To compare the throughput of RTPL and

LoRaWAN, we need measure the throughput of the control

loop without considering its schedulability. For example, if

a packet missed its deadline and is successfully received by

22

Fig. 10. Outdoor GW and nodes locations

(a) Harmonic periods (b) Non-harmonic periods

Fig. 11. Schedulability of RTPL (outdoor)

both the GW and the actuator, we consider it as part of

our throughput calculation. We define the throughput as the

bits received by the GW (uplink) and the bits received by

the actuator (downlink) for three hyperperiods (5.6 minutes).

Fig. 9 shows the throughput for both LoRaWAN and RTPL.

For LoRaWAN, the throughput is 4272 bps compared to

4176 bps for RTPL. The throughput for RTPL is comparable

to LoRaWAN as in our setup, we consider non-schedulable

control loops. This result shows that while RTPL guarantees

schedulability, it does not compromise the throughput.

C. Outdoor Deployment

1) Setup: For the outdoor deployment, we observe the

performance of RTPL at varying distances and channel condi-

tions. Fig. 10 shows the locations and distances of the nodes

and GW in a large metropolitan city in the US. The GW is

placed inside a building while the nodes are placed in the

locations shown on the map. In this section, all the experiments

use the default setting unless mentioned otherwise.

2) Schedulability Performance: To observe the impact of

distance on the schedulability performance of RTPL, we repeat

the schedulability experiments for the harmonic period and

non-harmonic period outdoors. The GW is placed inside a

building at our location and the nodes are placed outdoor at

various locations as shown in Fig. 10. Fig. 11 shows the results

of our schedulability experiments. In Fig. 11(a), 100% of the

control loops are schedulable under RTPL. Under LoRaWAN,

all control loops are non-schedulable. This is possible due

to the variation of channel conditions and LoRaWAN ADR

mechanism resulting in increasing packet collision. Fig. 11(b)

shows that 100% of the control loops are schedulable with

RTPL using a non-harmonic period. For LoRaWAN, 100%

of the control loops are non-schedulable.

(a) Avg latency per loop (b) Maximum latency per loop

Fig. 12. Latency vs. # of control loops

Fig. 13. Avg energy consumption Fig. 14. Throughput (outdoor)

3) Energy and Latency: We estimate the end-to-end energy

consumption and latency of the control loop in outdoor deploy-

ment. We also calculate the average and maximum latency

per control loop for the duration of the hyper-period. Fig. 12

shows the results of the latency experiments. In Fig. 12(a),

the average latency of RTPL is around 6.2 seconds for all the

control loops. While the average latency for one control loop

is around 7.3 seconds for LoRaWAN. With four control loops,

the average latency for LoRaWAN is around 24 seconds. In

Fig. 12(b), the maximum latency for RTPL for all control

loops is around 6.3 seconds. On the other hand, the maximum

latency of LoRaWAN is 7.9 seconds and 28 seconds for one

and four control loops, respectively.

We also measure the average energy consumption per con-

trol loop for the outdoor scenario. The result in Fig. 13 shows

that the average energy consumption for RTPL is around 69.9

mJ for all the control loops. The average energy consumption

for LoRaWAN is 217 mJ. This result shows that distance

has an insignificant impact on the energy consumption of the

control loop. Also, RTPL provides schedulability guarantees

while remaining energy-efficient.

4) Throughput: Next, we compare the throughput of

RTPL and LoRaWAN for 5.6 minutes. For RTPL and Lo-

RaWAN, the throughput is 4160 bps and 3512 bps, as shown

in Fig. 14, respectively. This result shows that RTPL achieves

better throughput in outdoor deployments than LoRaWAN.

IX. SIMULATION

Here, we evaluate RTPL with large-scale simulations in NS3

with a single gateway and up to 1000 control loops.

A. Setup

We use the LoRaWAN NS3 module proposed in [67] for our

simulation with up to 52 UCPs and 18 DCPs. Each control

loop was assigned a random period chosen from the range

[212, 225] ms and the maximum number of retransmission was

set as 2 time slots. We used a timeslot length of 115 ms.

Sensors and actuators of the loops were positioned randomly

across a disc centered at the gateway with radius up to 6

23

km. We define schedulability ratio as the ratio of number of

schedulable control loop sets to total control loop sets. We

report the schedulability ratio and total transmission energy

consumption for the schedulable cases. Each result is averaged

over 25 simulation runs of 1 hour. We compare our approach

with regular LoRaWAN and the following variations of RTPL:

BFD: variation of RTPL following the best-fit decreasing

heuristic, where the nodes are ordered in decreasing order of

utilization and the UCP with the least remaining capacity is

chosen first for assigning a loop.

WFD: variation of RTPL following the worst-fit decreasing

heuristic. Loops are ordered in decreasing order of utilization.

FFD: variation of RTPL following the firs-fit decreasing

heuristic, where the loop is assigned to the first UCP with

enough capacity to schedule it. Loops are ordered in decreas-

ing order of utilization.

BFUI: variation of RTPL based on best-fit heuristic, where

the nodes are ordered by available UCPs.

FFUI: variation of RTPL based on first-fit heuristic, where the

nodes are ordered by available UCPs.

B. Results under Varying Number of Control Loops

In this simulation, we fix the number of UCPs to 40 and

the network radius to 4 km and vary the number of control

loops from 200 to 1000. Fig. 15 shows the schedulability ratio

and transmission energy consumption under varying number

of nodes for RTPL and the baseline approaches. In Fig. 15(a),

100% of the control loop sets are schedulable under RTPL,

while in traditional LoRaWAN, none of the control loop sets

are schedulable. This is due to high number of collisions in

regular LoRa. Furthermore, we see that the schedulability of

the RTPL variant using traditional BFD becomes close to 0

at only 600 nodes. We noticed that a best-fit strategy assigns

a loop to the UCP where the WCET of that loop becomes

highest, as it results in the lowest remaining capacity on that

UCP. This, along with the fact that traditional BFD does not

consider the number of available UCP/DCP pair for a loop

while assigning it to a partition, results in poor schedulability

performance of best fit. On the contrary, RTPL, which uses

Worst-Fit UCP-Increasing, is highly scalable.

In Fig. 15(b), we show the total transmission energy con-

sumption for the schedulable control loop sets under the same

setup. Note that since traditional LoRaWAN and BFD are

not schedulable for all cases, we do not show the energy

consumption for these approaches. In this figure, the energy

consumption for all approaches steadily increase as the number

of control loops increase. However, RTPL has the lowest

energy consumption in the compared approaches. In fact, it has

on average 45% less energy consumption than BFUI, showing

the energy-efficiency of our partitioning heuristic.

C. Results under Varying Network Radius

In this simulation, we set the number of control loops to

600, the number of UCPs to 40 and vary the network radius

from 1000 m to 6000 m and show the result in Fig. 16.

In Fig. 16(a), we see a sharp decline in schedulability for

200 400 600 800 1000
Number of loops

0

0.5

1

Sc
he

du
la

bi
lit

y

RTPL
LoRaWAN
WFD
FFD
BFD
BFUI
FFUI

(a) Schedulability

200 400 600 800 1000
Number of loops

2

4

6

8

T
ot

al
 T

x
E

ne
rg

y
(k

J) RTPL
WFD
FFD
BFUI
FFUI

(b) Transmission energy

Fig. 15. Results under varying number of nodes.

1000 2000 3000 4000 5000 6000
Network Radius (m)

0

1

Sc
he

du
la

bi
lit

y RTPL
LoRaWAN
WFD
FFD
BFD
BFUI
FFUI

(a) Schedulability

1000 2000 3000 4000 5000
Network Radius (m)

2

4

6

8

T
ot

al
 T

x
E

ne
rg

y
(k

J) RTPL
WFD
FFD
BFUI
FFUI

(b) Transmission Energy

Fig. 16. Results under varying network radius.

all partitioning approaches as the network radius increases

to 6000 m. At such a large network radius, the control

loops are required use the higher SFs to ensure a successful

packet reception at the gateway, leading to limited number of

available UCP/DCP pairs. This leads to unschedulable cases

at higher network radius. However, we observe that RTPL has

the highest schedulability ratio among all approaches up to the

network radius of 5000 m.

In Fig. 16(b), we notice that the total transmission en-

ergy consumption for almost all schedulable partitioning ap-

proaches remain similar until the network radius of 4000m.

However at radius 5000 m, we see a sharp increase in energy

consumption for all approaches. This is due to the nodes using

higher SFs at increased network radius. Furthermore, as BFUI

tries to assign loops to UCPs with the highest available SF by

default, it’s energy consumption remains similar at different

network radius. However, we note that RTPL consistently has

the lowest energy consumption.

D. Results under Varying Number of UCPs

In Fig. 17, we fix the network radius to 4000 m, the number

of nodes to 600 and vary the number of UCPs from 36 to

52. In Fig. 17(a), we notice that at lower number of UCPs,

traditional BFD heuristic fails to schedule all control loops.

However, the balanced partitioning stategy used in RTPL is

able to achieve 100% schedulability ratio even with just 36

UCPs. On the other hand, LoRaWAN is unschedulable even

with 52 UCPs due to high number of collisions.

We report the total transmission energy for the same setup

in Fig. 17(b). In this figure, we see that as the number of

UCPs increase, the total energy consumption of RTPL does not

change much, as the partitioning heuristic attempts to equally

balance the remaining capacity accross all UCPs. However,

in the case of the best-fit variation of RTPL (BFUI), the total

24

36 40 44 48 52
Number of UCPs

0

1

Sc
he

du
la

bi
lit

y RTPL
LoRaWAN
WFD
FFD
BFD
BFUI
FFUI

(a) Schedulability

36 40 44 48 52
Number of UCPs

2

3

4

5

T
ot

al
 T

x
E

ne
rg

y
(k

J)

RTPL
WFD
FFD
BFUI
FFUI

(b) Transmission Energy

Fig. 17. Results under varying number of UCPs.

0.02 0.04 0.06 0.08 0.1
Duty Cycle

0

0.5

1

Sc
he

du
la

bi
lit

y RTPL
LoRaWAN
WFD
FFD
BFD
BFUI
FFUI

(a) Schedulability

0.02 0.04 0.06 0.08 0.1
Duty Cycle

0

1

2

3

T
ot

al
 T

x
E

ne
rg

y
(k

J) RTPL
WFD
FFD
BFUI
FFUI

(b) Transmission Energy

Fig. 18. Results under varying duty-cycle.

energy consumption increases with the number of UCPs. With

higher number of UCPs, loops are assigned to UCPs where

the WCET of loops are highest, leading to a high energy

consumption for BFUI. This shows the limitation of best-fit

based approaches in terms of energy consumption.

E. Results under Varying Duty-cycle

In this simulation, we evaluate our approach under duty-

cycle constraints. We fix the number of loops to 200, the

network radius was set to 4000 m and the number of UCPs was

set to 36. The control loops used a random sampling period

chosen from the range [215, 225] ms. Under this setup we vary

the duty-cycle of each UCP from 0.02 to 0.1 and show the

results in Fig. 18.

In Fig. 18(a), we notice that traditional bin-packing heuris-

tics such as BFD,WFD and FFD are not able to schedule all

control loops at low duty cycles. However, RTPL is able to

achieve close to 100% schedulability ratio in all cases. In

Fig. 18(b), we see that RTPL has the lowest transmission

energy consumption among all approaches. We also notice

that as the duty-cycle increases from 0.02 to 0.1, transmission

energy consumption for BFUI increases. This is due to each

loop being assigned to the UCP where the WCET of loops are

highest. Overall, this result shows that RTPL is able to provide

high schedulability and low energy consumption overhead

under duty-cycle constraints.

F. Comparison of RTPL against an Upper Bound

We compare the performance of RTPL with respect to an

upper bound. We use a brute force algorithm to generate an

upper bound since an optimal solution is unknown for the

partitioning problem for control loops in LoRa. The brute

force algorithm explores every possible partition. It returns

schedulable if the partition meets the schedulability constraint

given in (2) within each UCP/DCP pair and reliability con-

straint of every control loop (i.e., transmission on the assigned

spreading factor results in an acceptable SNIR for decoding).

Otherwise, it returns unschedulable. Note that we define the

upper bound with respect to the schedulability condition

described in the paper since relying on actual simulations to

generate a schedulability takes an extremely long time, even

for a small network.

Since we use a brute force algorithm, we limit the control

loops to 20 with nodes placed randomly in a radius of 1.5 km.

We also limit the maximum number of UCP/DCP pairs to 4,

limiting the total possible partitions to 160,000 for one control

loop set. To observe the impact of changing traffic patterns,

we generate control loop sets with varying total minimum-

utilization. We define a minimum-utilization of a control loop

as the ratio of the smallest WCET of all UCP/DCP pairs and

the period. We define total minimum-utilization as the sum of

minimum-utilization of all control loops. To generate a control

loop set, a total minimum-utilization is first selected for a

control loop. Then, each control loop is assigned a random

minimum-utilization whose sum equals the total minimum-

utilization. From the minimum-utilization, the period of each

control loop is computed.

1 1.2 1.4 1.6 1.8 2 2.2
Total Minimum-utilization

0

0.5

1

Sc
he

du
la

bi
lit

y

RTPL
LoRaWAN
Optimal

Fig. 19. Results under varying total
minimum-utilization.

Fig. 19 reports the

schedulability of 100 control

loop sets per total minimum-

utilization. Fig. 19 shows

that RTPL performs similar

to the upper bound on

partitioning until a total-

minimum utilization of 1.8.

For a total utilization of

2.0, which is close to the

infeasible scenario, the schedulability ratio of RTPL drops

to 0.6 while optimal partitioning remains at 1. We observed

that ordering the control loops in the increasing number of

UCPs was responsible for the drop in the schedulability ratio.

However, this drop in performance is observed when the total

minimum-utilization approaches the infeasible region (2.2 in

this simulation). This simulation shows that RTPL schedules

most control loops, except for those with utilization close to

the infeasible boundary.

X. CONCLUSION

Traditional wireless solutions for industrial automation de-

pend on short-range wireless technologies (WirelessHART,

ISA100.11a), posing a big challenge to support the scale of

today’s IIoT. To address this limitation, we propose to adopt

LoRa, a prominent low-power wide-area network technology,

for industrial automation. Adopting LoRa for industrial au-

tomation poses some unique challenges. This paper develops

RTPL, a real-time scheduling framework for LoRa to enable

industrial automation. RTPL overcomes challenges arising

from the asymmetric uplink and downlink communication

and balancing real-time guarantees and energy constraints. All

results show that RTPL achieves on average 75% improvement

in real-time performance without sacrificing throughput or

energy compared to traditional LoRa.

25

REFERENCES

[1] E. T. O. Field, https://en.wikipedia.org/wiki/East Texas Oil Field.
[2] “WirelessHART system engineering guide,”

https://www.emerson.com/documents/automation/
emerson-wirelesshart-system-engineering-guide-en-41252.pdf.

[3] http://www.automationworld.com/networking-amp-connectivity/
wireless-shines-emerson-global-user-exchange.

[4] “WirelessHART,” 2007, https://www.fieldcommgroup.org/technologies/
hart.

[5] “ISA100: Wireless systems for automation,” http://www.isa.org/
MSTemplate.cfm?MicrositeID=1134&CommitteeID=6891.

[6] “LoRaWAN,” https://www.lora-alliance.org.
[7] “SIGFOX,” http://sigfox.com.
[8] https://www.ingenu.com/technology/rpma.
[9] http://www.dash7-alliance.org.

[10] “Telensa,” https://www.telensa.com.
[11] https://www.u-blox.com/en/narrowband-iot-nb-iot.
[12] https://www.u-blox.com/en/lte-cat-m1.
[13] A. Saifullah, M. Rahman, D. Ismail, C. Lu, J. Liu, and R. Chandra,

“Low-power wide-area networks over white spaces,” ACM/IEEE Trans-
actions on Networking, vol. 26, no. 4, pp. 1893–1906, 2018.

[14] A. Saifullah, M. Rahman, D. Ismail, C. Lu, R. Chandra, and J. Liu,
“Snow: Sensor network over white spaces,” in Proceedings of the 14th
ACM Conference on Embedded Network Sensor Systems CD-ROM,
2016, pp. 272–285.

[15] A. Saifullah, M. Rahman, D. Ismail, C. Lu, J. Liu, and R. Chandra,
“Enabling reliable, asynchronous, and bidirectional communication in
sensor networks over white spaces,” in Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems, 2017, pp. 1–14.

[16] M. Rahman, D. Ismail, V. P. Modekurthy, and A. Saifullah, “Imple-
mentation of lpwan over white spaces for practical deployment,” in
Proceedings of the International Conference on Internet of Things
Design and Implementation, 2019, pp. 178–189.

[17] ——, “Lpwan in the tv white spaces: A practical implementation and
deployment experiences,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 20, no. 4, pp. 1–26, 2021.

[18] V. P. Modekurthy, D. Ismail, M. Rahman, and A. Saifullah, “Low-latency
in-band integration of multiple low-power wide-area networks,” in 2021
IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2021, pp. 333–346.

[19] J. Parello, B. Claise, and a. J. Q. Schoening, B., “Energy management
framework,” 2014, rFC 7326, DOI 10.17487/RFC7326, https://www.
rfc-editor.org/info/rfc7326.

[20] M. Hatler, D. Gurganious, and J. Kreegar, Industrial LPWAN – A
Market Dynamics Report. ON World, Inc., November 2018, https:
//www.onworld.com/iLPWAN/index.html.

[21] “Industrial iot trends: Wsn, lpwan & cloud platforms,”
2017, https://www.automation.com/pdf articles/ON world/
InTechMagazineInsert ONWorldFinal.pdf.

[22] P. J. Marcelis, V. S. Rao, and R. V. Prasad, “Dare: Data recovery
through application layer coding for lorawan. in 2017 ieee/acm second
international conference on internet-of-things design and implementation
(iotdi’17),” 2017.

[23] “LoRa modem design guide,” https://www.semtech.com/uploads/
documents/LoraDesignGuide STD.pdf.

[24] J. Stankovic, T. Abdelzaher, C. Lu, L. Sha, and J. Hou, “Real-time
communication and coordination in embedded sensor networks,” Pro-
ceedings of the IEEE, vol. 91, no. 7, pp. 1002–1022, 2003.

[25] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-time wireless sensor-actuator networks for
industrial cyber-physical systems,” Proceedings of the IEEE, vol. 104,
no. 5, pp. 1013–1024, 2016.

[26] “Lorawan technical report,” https://lora-developers.semtech.com/
documentation/tech-papers-and-guides/lora-and-lorawan/.

[27] X. Jin, N. Guan, C. Xia, J. Wang, and P. Zeng, “Packet aggregation
real-time scheduling for large-scale wia-pa industrial wireless sensor
networks,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 17, no. 5, p. 88, 2018.

[28] T. Zhang, T. Gong, C. Gu, H. Ji, S. Han, Q. Deng, and X. S. Hu,
“Distributed dynamic packet scheduling for handling disturbances in
real-time wireless networks,” in 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2017, pp. 261–
272.

[29] T. Zhang, T. Gong, Z. Yun, S. Han, Q. Deng, and X. S. Hu, “Fd-pas: A
fully distributed packet scheduling framework for handling disturbances
in real-time wireless networks,” in 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2018, pp. 1–
12.

[30] T. Zhang, T. Gong, S. Han, Q. Deng, and X. S. Hu, “Distributed dynamic
packet scheduling framework for handling disturbances in real-time
wireless networks,” IEEE Transactions on Mobile Computing, 2018.

[31] J. Shi, M. Sha, and Z. Yang, “Digs: Distributed graph routing and
scheduling for industrial wireless sensor-actuator networks,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2018, pp. 354–364.

[32] ——, “Distributed graph routing and scheduling for industrial wire-
less sensor-actuator networks,” IEEE/ACM Transactions on Networking,
vol. 27, no. 4, 2019.

[33] V. P. Modekurthy, A. Saifullah, and S. Madria, “Distributedhart: A
distributed real-time scheduling system for wirelesshart networks,” in
2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2019, pp. 216–227.

[34] ——, “Distributed graph routing for wirelesshart networks,” in Proceed-
ings of the 19th International Conference on Distributed Computing and
Networking, 2018, pp. 1–10.

[35] A. Saifullah, D. Gunatilaka, P. Tiwari, M. Sha, C. Lu, B. Li, C. Wu, and
Y. Chen, “Schedulability analysis under graph routing in WirelessHART
networks,” in Proceedings of the IEEE Real-Time Systems Symposium
(RTSS), December 2015, pp. 165–174.

[36] V. P. Modekurthy, A. Saifullah, and S. Madria, “A distributed real-time
scheduling system for industrial wireless networks,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 20, no. 5, pp. 1–28,
2021.

[37] V. P. Modekurthy, D. Ismail, M. Rahman, and A. Saifullah, “A
utilization-based approach for schedulability analysis in wireless control
systems,” in 2018 IEEE International Conference on Industrial Internet
(ICII). IEEE, 2018, pp. 49–58.

[38] V. P. Modekurthy and A. Saifullah, “Online period selection for wireless
control systems,” in 2019 IEEE International Conference on Industrial
Internet (ICII). IEEE, 2019, pp. 170–179.

[39] R. Eletreby, D. Zhang, S. Kumar, and O. Yağan, “Empowering low-
power wide area networks in urban settings,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’17, 2017, pp. 309–321.

[40] R. Oliveira, L. Guardalben, and S. Sargento, “Long range communica-
tions in urban and rural environments,” in 2017 IEEE Symposium on
Computers and Communications (ISCC). IEEE, 2017, pp. 810–817.

[41] T. Voigt, M. Bor, U. Roedig, and J. Alonso, “Mitigating inter-network
interference in lora networks,” in Proceedings of the 2017 International
Conference on Embedded Wireless Systems and Networks, ser. EWSN
’17, 2017, pp. 323–328.

[42] A. Dongare, R. Narayanan, A. Gadre, A. Luong, A. Balanuta, S. Kumar,
B. Iannucci, and A. Rowe, “Charm: Exploiting geographical diver-
sity through coherent combining in low-power wide-area networks,”
in Proceedings of the 17th ACM/IEEE International Conference on
Information Processing in Sensor Networks, ser. IPSN ’18, 2018, pp.
60–71.

[43] S. Fahmida, V. P. Modekurthy, M. Rahman, A. Saifullah, and M. Bro-
canelli, “Long-lived lora: Prolonging the lifetime of a lora network,” in
2020 IEEE 28th International Conference on Network Protocols (ICNP).
IEEE, 2020, pp. 1–12.

[44] A. Mahmood, E. G. Sisinni, L. Guntupalli, R. Rondon, S. A. Hassan,
and M. Gidlund, “Scalability analysis of a lora network under imperfect
orthogonality,” IEEE Transactions on Industrial Informatics, 2018.

[45] B. Reynders, Q. Wang, P. Tuset-Peiro, X. Vilajosana, and S. Pollin,
“Improving reliability and scalability of lorawans through lightweight
scheduling,” IEEE Internet of Things Journal, 2018.

[46] Z. Xu, P. Xie, and J. Wang, “Pyramid: Real-time lora collision decoding
with peak tracking,” in IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, 2021, pp. 1–9.

[47] X. Xia, Y. Zheng, and T. Gu, “Ftrack: Parallel decoding for lora
transmissions,” IEEE/ACM Transactions on Networking, vol. 28, no. 6,
pp. 2573–2586, 2020.

[48] M. O. Shahid, M. Philipose, K. Chintalapudi, S. Banerjee, and B. Krish-
naswamy, “Concurrent interference cancellation: Decoding multi-packet
collisions in lora,” ser. SIGCOMM ’21, New York, NY, USA, 2021, p.
503–515.

26

[49] X. Wang, L. Kong, L. He, and G. Chen, “mlora: A multi-packet reception
protocol in lora networks,” in 2019 IEEE 27th International Conference
on Network Protocols (ICNP), 2019, pp. 1–11.

[50] S. Tong, Z. Xu, and J. Wang, “Colora: Enabling multi-packet reception
in lora,” in IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, 2020, p. 2303–2311.

[51] Z. Xu, S. Tong, P. Xie, and J. Wang, “Fliplora: Resolving collisions with
up-down quasi-orthogonality,” in 2020 17th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON).
IEEE, 2020, pp. 1–9.

[52] M. Rizzi, P. Ferrari, A. Flammini, and E. Sisinni, “Evaluation of the
iot lorawan solution for distributed measurement applications,” IEEE
Transactions on Instrumentation and Measurement, vol. 66, no. 12, pp.
3340–3349, 2017.

[53] L. Leonardi, F. Battaglia, and L. L. Bello, “Rt-lora: A medium access
strategy to support real-time flows over lora-based networks for indus-
trial iot applications,” IEEE Internet of Things Journal, vol. 6, no. 6,
pp. 10 812–10 823, 2019.

[54] L. Bhatia, I. Tomić, A. Fu, M. Breza, and J. A. McCann, “Control
communication co-design for wide area cyber-physical systems,” ACM
Transactions on Cyber-Physical Systems, vol. 5, no. 2, pp. 1–27, 2021.

[55] D. Zorbas, K. Abdelfadeel, P. Kotzanikolaou, and D. Pesch, “Ts-lora:
Time-slotted lorawan for the industrial internet of things,” Computer
Communications, vol. 153, pp. 1–10, 2020.

[56] S. Liu, C. Xia, and Z. Zhao, “A low-power real-time air quality monitor-
ing system using lpwan based on lora,” in 2016 13th IEEE International
Conference on Solid-State and Integrated Circuit Technology (ICSICT),
2016, pp. 379–381.

[57] Q. L. Hoang, W.-S. Jung, T. Yoon, D. Yoo, and H. Oh, “A real-time lora
protocol for industrial monitoring and control systems,” IEEE Access,
vol. 8, pp. 44 727–44 738, 2020.

[58] http://www.dragino.com/products/lora/item/106-lora-gps-hat.html.
[59] “The things stack,” https://www.thethingsindustries.com/stack/.
[60] “Major changes in the things stack,” https://www.thethingsindustries.

com/docs/getting-started/migrating/major-changes/.
[61] https://lora-developers.semtech.com/library/tech-papers-and-guides/

lorawan-class-b-devices/.
[62] G. C. Buttazzo, Hard Real-Time Computing Systems. Springer, 2005,

2nd edition.
[63] G. Sati and S. Singh, “A review on outdoor propagation models in

radio communication,” International Journal of Computer Engineering
& Science, vol. 4, no. 2, pp. 64–68, 2014.

[64] https://www.thethingsnetwork.org/airtime-calculator.
[65] “Lorawan regional parameters,” https://lora-alliance.org/wp-content/

uploads/2020/11/rp 2-1.0.1.pdf/.
[66] “Lorawan regional parameters,” https://www.dragino.com/products/

lora-lorawan-gateway/item/140-lg308.html.
[67] D. Magrin, M. Centenaro, and L. Vangelista, “Performance evaluation

of lora networks in a smart city scenario,” in 2017 IEEE International
Conference on communications (ICC). ieee, 2017, pp. 1–7.

27

