
SubFlow: A Dynamic Induced-Subgraph Strategy
Toward Real-Time DNN Inference and Training

Seulki Lee and Shahriar Nirjon

Department of Computer Science

Univeristy of North Carolina at Chapel Hill

{seulki, nirjon}@cs.unc.edu

Abstract—We introduce SubFlow—a dynamic adaptation and
execution strategy for a deep neural network (DNN), which
enables real-time DNN inference and training. The goal of
SubFlow is to complete the execution of a DNN task within
a timing constraint that may dynamically change while ensur-
ing comparable performance to executing the full network by
executing a subset of the DNN at run-time. To this end, we
propose two online algorithms that enable SubFlow: 1) dynamic
construction of a sub-network which constructs the best sub-
network of the DNN in terms of size and configuration, and 2)
time-bound execution which executes the sub-network within a
given time budget either for inference or training. We implement
and open-source SubFlow by extending TensorFlow with full
compatibility by adding SubFlow operations for convolutional
and fully-connected layers of a DNN. We evaluate SubFlow with
three popular DNN models (LeNet-5, AlexNet, and KWS), which
shows that it provides flexible run-time execution and increases
the utility of a DNN under dynamic timing constraints, e.g.,
1x–6.7x range of dynamic execution speed with average -3% of
performance (inference accuracy) difference. We also implement
an autonomous robot as an example system that uses SubFlow
and demonstrate that its obstacle detection DNN is flexibly
executed to meet a range of deadlines that varies depending
on its running speed.

I. INTRODUCTION

Recently, DNNs (deep neural networks) [1]–[3] have been

increasingly used in many real-life applications due to their

superiority in solving complex machine learning problems [4]–

[6], e.g., autonomous cars [7]–[10], natural language process-

ing [11]–[13], and healthcare applications [14]–[16]. How-

ever, their long and unpredictable execution time resulting

from a significant amount of computation often limits their

deployment on real-time systems. Although high-performance

hardware such as multi-core CPUs or GPUs efficiently process

the massive workload of a DNN in parallel, the complexity

and proprietary architecture of these platforms make effec-

tive scheduling of deadline-aware DNN tasks challenging, as

shown in many previous works [17]–[27].

Moreover, the time constraints of many practical systems

dynamically change at run-time, making DNNs more chal-

lenging to be executed as a real-time task. Such dynamic

time constraints are found in many modern embedded systems

such as autonomous cars [28]–[30], drones [31]–[33], and

smartphones [34]–[36] where the system must deal with online

changes such as run-time application requirements, resource

availability, energy level, failures, and re-configurations. Such

Deep Neural Network
(full-sized graph)

Execution time: 10ms

1st execution
(Induced sub-graph 1)
Time constraint: 7ms

Execution time: 7.2ms

2nd execution
(Induced sub-graph 2)
Time constraint: 5ms

Execution time: 4.7ms

Activated neuron Deactivated neuron Weight

…

SubFlow: Dynamic real-time DNN execution

Fig. 1: SubFlow enables real-time inference and training of a DNN
by dynamically executing a sub-graph of the DNN according to the
timing constraint changing at run-time. For each inference or training
execution, an induced sub-graph of the DNN, whose execution is
completed in time, is constructed and executed by activating only
necessary neurons, enabling time-aware utilization of the DNN.

changes consequently cause variations in the time require-

ments of related-tasks [37]; e.g., data-dependent requirements

where the periods depend on the input sensor data; time-

dependent requirements where the actual deadline becomes

known only at run-time when setting the actuators. For ex-

ample, autonomous vehicles impose dynamic time constraints

on tasks in reaction to a variety of road situations—a lower

latency for obstacle detection is expected when traveling at

higher speeds or when a pedestrian makes a sudden ap-

pearance. Failure of a scheduler also introduces variability

in timing constraints, which reduces the amount of allowed

execution time. A task scheduler in a complex and dynamic

system may fail to start a task at its latest allowed start time

and miss the deadline.

Although DNN compression techniques such as [38]–[48]

reduce the execution time to some extent, they are not directly

applicable to DNNs having dynamic timing constraints since

1) they generate only one compressed network from the orig-

inal DNN, which does not dynamically adapt once deployed,

2) most of them primarily focus on reducing memory usage

as opposed to speedup, and 3) most compression methods are

time-consuming as they require multiple training iterations and

fine-tuning, and are limited to specific types of DNNs.

To enable the execution of DNNs with dynamic deadline

constraints, we introduce SubFlow—an online DNN sub-graph

12

2020 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)

2642-7346/20/$31.00 ©2020 IEEE
DOI 10.1109/RTAS48715.2020.00007

strategy that constructs and executes a sub-graph of a DNN

called the sub-network that completes the inference or training

tasks within timing constraints that may change at run-time.

The process is shown in Figure 1. For each execution of the

DNN inference/training task, a different sub-network of differ-

ent size and composition is constructed on-the-fly and executed

within the time budget. In this way, the system ensures time-

aware execution of a DNN with a flexible time budget–which

also improves the CPU utilization and schedulability.

SubFlow consists of two run-time algorithms: 1) dynamic
construction and 2) time-bound execution of a sub-network.

For construction, it composes the best sub-network based on

the importance of neurons in such a way that the execu-

tion time is expected to match the time budget while the

performance loss due to the reduced size of sub-network is

minimized. For execution, we propose time-bound inference
and training of convolutional and fully-connected layers of

a DNN, which are two main building blocks of a DNN. We

name them time-bound since their inference and training times

are bounded by the architecture and size of the sub-network.

We implement SubFlow by extending TensorFlow [49], one

of the most popular DNN frameworks, and we open-source

it1. We develop four custom operations and libraries for time-

bound feed-forward and back-propagation [50] of dynamic

sub-networks, i.e., sub-convolution, sub-multiplication, sub-
convolution-gradient, and sub-multiplication-gradient. They

support both CPUs and GPUs, and are implemented by using

Eigen [51] and CUDA [52] libraries, respectively. DNNs

designed with TensorFlow are easily adapted to SubFlow by

simply applying SubFlow operations to the model, without re-

quiring any architectural modifications, which makes SubFlow

universal and applicable to existing DNNs. Since a new sub-

network is constructed at run-time as opposed to constructing

and saving a set of sub-networks offline, no additional memory

is needed in SubFlow for this purpose.

We evaluate SubFlow for three standard DNN architec-

tures, i.e., LeNet-5 [53], AlexNet [6], and KWS (Key-Word

Spotting) [54] on three popular datasets, i.e., MNIST [53],

CIFAR-10 [55], and GSC (Google Speech Commands) [56],

respectively. Experiments are conducted on various hardware

platforms: CPU (x86 and ARM) and GPU (RTX 2080 Ti

and Jetson Nano [57]). The evaluation results show that both

inference and training time of DNNs change dynamically

according to the size and configuration of the sub-networks

while achieving comparable performance to the full-sized

network. For instance, the execution speed of AlexNet [6]

dynamically changes between 1x and 6.7x while only a 3%

inference accuracy drop is observed on average.

We also implement a mobile robot using an embedded

GPU platform (Jetson Nano [57]) as an example real system

that uses SubFlow where the latency requirement for obstacle

detection changes due to the traveling speed of the robot. In

this real-life experiment, the robot runs at various speeds and

1SubFlow Project: https://github.com/learning1234embed/SubFlow

the execution of the DNN [58] that detects obstacles is adapted

dynamically depending upon varying deadlines.

The main contributions of this paper are:

• We introduce SubFlow, a real-time DNN execution strat-

egy enabling flexible time-bound inference and training that is

completed within a dynamic time budget by constructing and

executing a sub-network of the DNN at run-time.

• We propose an online sub-network construction algorithm

to determine the best sub-graph of a DNN with a minimum

performance loss based on induced sub-graph [59] method

whose execution time is matched to a dynamic time budget.

• We propose time-bound feed-forward and back-

propagation of convolutional and fully-connected layers of a

DNN, where the total computation time is bounded by the size

and configuration of the sub-network.

• We implement and open-source SubFlow1 by developing

four custom operations of TensorFlow with full compatibility,

which allows the DNN designers to transform their DNNs into

real-time dynamic DNNs easily.

• We develop and demonstrate a mobile robot as an example

real system that uses SubFlow. The robot executes a depth

estimation DNN for obstacle detection with its time constraint

that dynamically changes based on the speed of the robot.

II. OVERVIEW

The goal of SubFlow is to enable execution of DNN

inference and training tasks in such a way that the task is

completed under dynamically varying time constraints while

retaining comparable performance to executing the original

full-size DNN. The flexible execution increases the utility of

a DNN by letting it meet a range of deadlines at run-time,

which conventional DNNs cannot. SubFlow also facilitates

flexible scheduling of multitask learning where new tasks can

be accommodated by dynamically updating the deadline of

existing ones. The schedulability of a system running multiple

DNNs can be improved by taking into account the flexible

execution time of DNNs in the scheduling decision at run-

time, which increases the total system utilization.

An unbounded trade off of inference accuracy for real-

time execution of a DNN is not desirable in most systems.

Hence, to limit the maximum loss of accuracy above a certain

level, SubFlow limits the execution of sub-networks whose

expected accuracy is lower than the desired level. SubFlow

enables this by imposing a limit on the minimum network

utilization parameter (defined in Section III) that essentially

defines the size of the sub-network. The minimum network

utilization parameter is empirically determined and is set by

the developer or the system admin.

A. SubFlow Operations

SubFlow has three major operations, which are shown in

Figure 2. A brief description of each operation follows.

1) Ranking Neurons. Given a trained DNN on which we want

to apply SubFlow, the utility/contribution of each neuron to

the performance (inference accuracy) of the DNN is computed.

13

Original
DNN

1) Ranking
neurons

3 41 2

1 24 3

3 42 1

Compile-time (offline)

2) Dynamic
construction of

sub-network

Feed-forward
time budget

(5ms)

Run-time (online)

3) Time-bound
execution of
sub-network

Time-bound feed-forward: 5ms

43

4 3

3 4

Feed-forward: 10ms

43

4 3

3 4

Time-bound back-propagation: 10msBack-propagation: 20ms

Back-
propagation
time budget

(10ms)

Fig. 2: SubFlow operations: SubFlow consists of three steps: ranking
neurons, dynamic construction, and time-bound execution of a sub-
network. Ranking of neurons is done at compile-time. At run-time,
inference or training jobs with different time budgets are executed
by forming and executing dynamic sub-networks.

This is calculated only once at compile-time. The details of

this step are described in Section IV.

2) Dynamic Construction of Sub-Network. At run-time, a

sub-network of the DNN is dynamically constructed for each

job of a DNN task according to the given time budget. For

example, an image classification task releases a job (say, every

500ms) where the job is to classify an image taken with

the camera. For every job, an induced sub-graph [59] with a

different subset of neurons (vertices) is constructed based on

their importance calculated at compile-time. The construction

of a sub-network is described in Section IV.

3) Time-Bound Execution of Sub-Network. Each sub-

network corresponding to a job is executed and completed

within the given time budget. The execution time of a job

is bounded by the size and configuration of sub-networks.

To enable the time-bound execution of the sub-network, we

propose time-bound feed-forward and back-propagation [50]

algorithms, which are described in Section V.

B. An Example Application

As an application of SubFlow, we describe an autonomous

mobile robot which is one of many application-specific sys-

tems where SubFlow is applicable. We identify two real-

time inference tasks of the robot (i.e., obstacle detection and

sensor-based control) that have dynamic timing constraints. In

section VIII, as a proof of concept system, we implement and

evaluate the obstacle detection task on an embedded GPU-

enabled autonomous mobile robot.

Obstacle Detection. In most autonomous cars and robots of

today, data captured by cameras and other on-board sensors

are processed by convolutional neural networks (CNNs) [60]–

[64] to detect obstacles and to take timely measures to avoid

collisions. For example, Tesla’s autopilot [65] constructs depth

maps using cameras to create 3D point maps of their surround-

ings, measuring objects’ distance [9], [58], [66]–[68]. The real-

time requirement of obstacle detection task in these systems

becomes tighter when the vehicle is moving at a relatively

higher speed – requiring the CNN to complete its processing

faster. In contrast, when the vehicle is moving at a lower speed,

the timing requirements are relaxed, allowing more time for

the CNN to complete execution.

Sensor-based Control. Real-time requirements for sensor-

based control systems of a mobile robot may change dynami-

cally at run-time [37]. For example, tactile sensors on a mobile

robot measure the force (and torque) exerted on its body [69],

[70], which helps collision avoidance [70]. Depending on

whether the robot is likely to be in contact with an object, it

can adapt its sampling frequency of the sensors and thus scale

its computation accordingly. Such dynamics not only changes

the timing requirements of the tactile sensing and collision

inference task but also affects the timing requirements of other

inference tasks that are concurrently running in the system.

C. Programmability

SubFlow provides a set of DNN operations fully compatible

with the existing TensorFlow operations, which allows a pro-

grammer to easily design and execute a DNN with SubFlow.

Listing 1 and 2 show an example code of TensorFlow and

SubFlow written for a convolutional layer, respectively. The

implementation of SubFlow can be found in our GitHub1.

Listing 1: TensorFlow programming example.

1 # DNN designing (a convolution layer)
2 output = tensorflow.nn.conv2d(input, filters, ...)
3 # DNN execution
4 sess.run(..., feed dict={...})

Listing 2: SubFlow programming example.

1 # DNN designing (a convolution layer)
2 output = subflow.conv2d(input, filters, ..., activation)
3 # DNN execution
4 activation vector = get activation(network utilization)
5 sess.run(..., feed dict={..., activation: activaiton vector})

III. BACKGROUND AND TERMINOLOGIES

SubFlow regards an inference or training task of a DNN as

a real-time task τ with period T , execution time C, release

time r, and relative and absolute deadline D and d, which is

scheduled along with other tasks in the system. A DNN task, τ
releases a sequence of jobs, J corresponding to the execution

of a single iteration of inference or training that needs to be

completed within the deadline, D as shown in Figure 3a.

Dynamic Execution Time Budget. We define execution time
budget for the i-th job Ji as Bi = di − si, where di is the

absolute deadline and si is the start time of Ji. Since Bi for

different Ji may be different, we call it a dynamic execution

time budget. It is equivalent to the maximum allowed execu-

tion time for Ji to meet the deadline. Obviously, Ji meets its

deadline if Bi ≥ Ci, where Ci is the execution time of Ji. On

the other hand, if Bi < Ci, Ji cannot meet the deadline. The

latter case, i.e., Bi = di−si < Ci happens in two situations: 1)

di has decreased due to the system or application induced run-

time variations in timing requirements, and 2) si has increased

due to a scheduling failure or unavailable resources, causing

Ji to be executed too late to complete within the deadline.

Figure 3b illustrates an example of these two cases.

Sub-Network and Execution Time. SubFlow enables a DNN

task, τ to complete Ji within Bi even if Bi < Ci by reducing

the execution time to the given time budget, i.e., Ci → Bi.

14

0 1 2 3 4 5 6 7 8

Job release ()

Job deadline () Job completion

Job start ()

Execution time-budget (=)
Execution time ()

(a) An example job execution of a task with T = 6 and C = 4.

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

1) Deadline miss (decrease, >) 2) Deadline miss (increase, >)

(b) Two cases of dynamic execution time budget, which causes deadline miss
unless execution time, Ci is adapted.

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

1) Deadline met (decrease, =) 2) Deadline met (increase, =)

(c) The job meets the deadline by adjusting Ci to Bi for both cases.

Fig. 3: An example of a dynamic execution time budget: Given a
dynamic execution time budget, SubFlow allows the job to meet the
deadline by adjusting its execution time according to the budget.

For each Ji, SubFlow constructs and executes a sub-network,

τ si that is a subset of the full-size network, τ , which is able to

complete its execution within Bi. Figure 3c shows an example

in which the job meets the deadline by adjusting Ci to Bi.

Network Utilization. We quantify the size of a sub-network

using network utilization, ui ∈ (0, 1] which is the relative size

ratio of a sub-network constructed for the job, Ji to the full-

size network as defined in Equation 1. Note that it is different

from the task utilization used in scheduling, i.e., Ui = Ci/Ti.

Properties of DNNs. The construction of sub-networks having

different execution times is enabled by three unique properties

of DNNs: 1) many different configurations and sizes of DNN

graphs often result in a similar performance [71], [72], 2) the

oversized architecture of modern DNNs, i.e., the massive num-

ber of neurons and parameters allows incorporating multiple

sub-networks into a single larger network [73], and 3) most

DNNs repeat the same computation for each layer, i.e., convo-

lution, matrix multiplication, etc., which makes the estimation

of computation time for a sub-network feasible [74].

Induced Sub-Graph. SubFlow constructs a sub-network

based on the induced sub-graph [59] of a DNN graph. Given

a graph G = (V,E) where S ⊂ V be any subset of vertices of

G, the induced sub-graph G[S] is defined as the graph whose

vertex set is S and whose edge set consists of all of the edges

in E that have both endpoints in S.

In SubFlow, the neurons at each layer are considered as

vertices, and connections between two neurons with a weight

parameter are considered as edges. By activating the right sub-

set of neurons and using only the edges connected to them as

an induced sub-graph, a sub-network with the desired size and

configuration is constructed. We use induced sub-graph since

it is based on the selection of vertices (neurons), not edges

(weight parameters). For most DNNs, the number of neurons

is several orders of magnitude smaller than weight parameters,

which enables efficient construction of sub-networks.

IV. DYNAMIC CONSTRUCTION OF SUB-NETWORK

The first two steps of SubFlow are the ranking of neurons

and the dynamic construction of a sub-network. This section

first describes the construction step starting from the definition

of sub-network and then discusses how neurons are ranked for

the construction of a sub-network.

A. Definition of Sub-Network

Basic DNN Operation. Before defining the sub-network, we

describe the basic operation of DNNs. Given a training or test

dataset for a DNN, τ having n instances, we denote the entire

dataset as {(xj ,yj)}nj=1. For the j-th instance, the input and

output neurons of layer l is denoted as ol−1
j ∈ R

ml−1

and

ol
j ∈ R

ml

, respectively. The output of layer l, ol
j is obtained

by performing ol
j = σ

(
yl
j

)
, where yl

j = ol−1�
j Wl + bl with

Wl ∈ R
ml−1×ml

being the weight parameter and bl ∈ R
ml

being the bias for layer l. For nonlinearity, an nonlinear

function σ (·) such as sigmoid function [75] is applied to yl
j .

Following the recent trend in state-of-the-art DNNs such as

[6], [76], [77], we use the rectified linear unit (ReLU) [78] as

our σ (·). Although this is a formulation for a fully-connected

layer, it also applies to convolution layers by converting a

kernel operation with input into a matrix product as in [79].

Sub-Output Neuron. To construct a sub-network, τ si for the

job Ji from a DNN task, τ , we first compose sub-output
neuron, õl

j ∈ R
ml

for each layer l, which is a sparse vector of

the same length with the output neuron, ol
j ∈ R

ml

at the l-th
layer of τ . It consists of a subset of ol

j and zeros. Having õl
j for

all layers, we create a sub-network by connecting only the non-

zero elements of õl
j (activated vertices) based on the induced

sub-graph construction [59]. Depending on õl
j , only a subset of

weight parameter elements (edges) in Wl connected between

õl−1
j and õl

j is activated for the sub-network. The elements

of õl
j are obtained by multiplying ol

j with a binary vector,

ali ∈ R
ml

called activation vector that determines whether the

corresponding neuron element of ol
j is activated or not in õl

j

as a vertex of induced sub-graph. In summary, the sub-output

neuron of layer l, õl
j for the j-th input instance is given by:

ali ∈ {0, 1}ml

s.t.
∥∥ali∥∥1 =

⌊
ul
i ·ml

⌋
or ul

i =

∥∥ali∥∥1
ml

ỹl
j = õl−1�

j Wl + bl�

õl
j = ali ◦ σ

(
ỹl
j

)
= σ

(
ali ◦ ỹl

j

)
since σ (·) is ReLU

(1)

where ali is the activation vector, ml is the length of õl
j and

ol
j , ‖·‖1 is �1-norm, ul

i is the network utilization, Wl is the

weight parameter, bl is the bias, σ (·) is the nonlinear function

(ReLU), and ◦ is Hadamard (element-wise) product [80].

Definition of Sub-Network. We define sub-network, τsi for

the job Ji as an induced sub-graph of a DNN, τ with total

L layers, where its vertices are composed of the sub-output

neurons of all layers, {õl
j |1 ≤ l ≤ L} defined in Equation 1.

15

B. Construction of Sub-Network

Construction Objectives. Given a dynamic execution time

budget Bi for the job Ji, a sub-network having total layers L,

τ si is constructed to achieve two objectives: 1) finding the max-

imum network utilization for each layer, ui = [u1
i , u

2
i , ..., u

L
i]

in such a way that their total execution time is equivalent to

or less than Bi, and 2) finding the activation vector, ali for

each layer l to determine sub-output neuron, õl
j in which the

number of elements of value one in ali, i.e.,
∥∥ali∥∥1 is equivalent

to
⌊
ul
i ·ml

⌋
as defined in Equation 1 in such a way that the

error between õl
j and ol

j is minimized.

Finding Network Utilization. To find the network utilization

ui, we define execution time C(ui) of a sub-network, τ si as:

C(ui) ∝ κ

L∑
l=1

ul
if

l
(
ol
j

) ∝ κNi

L∑
l=1

f l
(
ol
j

)
if ul

i = Ni (2)

where κ is a constant, ul
i ∈ (0, 1] is the network utilization

of layer l, and f l
(
ol
j

)
is the execution time function of layer

l, i.e., the time required to compute ol
j . We apply the same

network utilization, Ni to all layers, i.e., ul
i = Ni since finding

a set of optimal ul
i is NP-hard, i.e., the search space for all

combinations of ul
i is exponential. Also, by activating the same

proportion of neurons at each layer, the resulting sub-network

is not to be cut or broken. Hence, ui can be obtained by finding

the maximum Ni satisfying C(Ni) ≤ Bi in Equation 2.

Layer-Wise Error. To obtain sub-output neuron, õl
j of layer

l that minimizes the error from ol
j , we define layer-wise error

between õl
j and ol

j for both the j-th training instance and the

total n of training instances, similar to [81]. They are denoted

as El
j(õ

l
j) and El, respectively, which are defined as:

ôl
j = õl

j − ali ◦ ol
j

El
j(õ

l
j) = ôl�

j ôl
j =

∥∥õl
j − ali ◦ ol

j

∥∥2
2

El =
1

n

n∑
j=1

El
j(õ

l
j) =

1

n

n∑
j=1

∥∥õl
j − ali ◦ ol

j

∥∥2
2

(3)

where ◦ is Hadamard (element-wise) product, ‖·‖2 is �2-norm,

and ôl
j = õl

j − al ◦ ol
j is the output error vector of layer l.

Error Bound. From Equation 1 and ‖σ(x)− σ(y)‖2 ≤ ‖x−
y‖2, the property of the ReLU, El

j(õ
l
j) is bounded by:

El
j(õ

l
j) =

∥∥õl
j − al ◦ ol

j

∥∥2
2

=
∥∥σ (al ◦ ỹl

j

)− σ
(
al ◦ yl

j

)∥∥2
2

≤ ∥∥al ◦ ỹl
j − al ◦ yl

j

∥∥2
2

=
∥∥∥al ◦ ((õl−1

j − al−1 ◦ ol−1
j

+ al−1 ◦ ol−1
j − ol−1

j

)�
Wl
)∥∥∥2

2

≤
∥∥∥al ◦ (ôl−1�

j Wl
)∥∥∥2

2

+
∥∥∥al ◦ (((1− al−1

) ◦ ol−1
j

)�
Wl
)∥∥∥2

2

(4)

where ‖·‖2 is �2-norm, and 1 is a vector whose all elements

are equal to 1. As shown in the last inequality, the upper bound

of El
j(õ

l
j) is determined by two results of the previous layer

l−1, i.e., 1) the error vector, ôl−1
j in the first term, and 2) the

not activated elements of the output neuron,
(
1− al−1

)◦ol−1
j

in the second term. Hence, the bound of El
j(õ

l
j) of layer l can

be obtained by recursively computing them for the previous

layers, i.e., from the first to the (l − 1)-th layer.

Minimizing Error. Since sub-output neuron of the last layer

L, õL
j determines the performance of a sub-network, we

minimize EL. From Equation 1, 2 and 3, minimizing EL given

time budget, Bi is reduced to finding the activation vector, aLi .

argmin
aL
i ∈{0,1}mL

EL s.t. C(Ni) ≤ Bi and
∥∥aLi ∥∥1 =

⌊
Ni ·mL

⌋
(5)

Since EL is obtained from the errors of previous layers

as shown in Equation 4, it is also minimized by finding

{ali|1 ≤ l ≤ L} that minimizes the error of each layer l, i.e.,

El
j(õ

l
j), which is achieved by minimizing their summation,

i.e.,
∑L

l=1 E
l
j(õ

l
j). Hence, from Equation 1 and 3, the problem

of constructing a sub-network given Bi is reformulated as:

argmin
al
i∈{0,1}ml

1

n

n∑
j=1

L∑
l=1

El
j(õ

l
j)

= argmin
al
i∈{0,1}ml

1

n

n∑
j=1

L∑
l=1

∥∥ali ◦ σ (ỹl
j

)− ali ◦ σ
(
yl
j

)∥∥2
2

s.t. C(Ni) ≤ Bi and
∥∥ali∥∥1 =

⌊
Ni ·ml

⌋
(6)

Hence, a sub-network for the job Ji which is completed

within Bi with minimum error is dynamically constructed by

finding Ni and {ali|1 ≤ l ≤ L} in Equation 6.

C. Neuron Ranking for Sub-Network Construction

Importance-based Ranking. While the network utilization,

Ni is easily obtained by finding the maximum Ni satisfying

C(Ni) ≤ Bi in Equation 2, the activation vector, ali that

selects the elements of sub-output neuron, õl
j from ol

j is

required to minimize the error El
j(õ

l
j) in Equation 3. We

determine ali based on the importance of each neuron of ol
j ,

which represents the increased error when it is removed. Then,

El
j(õ

l
j) is minimized by composing the binary elements of ali

such that õl
j consists of

⌊
Ni ·ml

⌋
number of neurons in ol

j

having largest importance and zero for all the other elements.

To measure the importance, we compute the second-order

derivatives of the error El
j(o

l
j) w.r.t. the output neuron, ol

j for

each layer using Optimal Brain Surgeon algorithm [82]. We

use it since the heuristic methods such as magnitude-based

method [46], [83], [84] may eliminate wrong neurons [44],

[82], resulting in large error and poor performance [85].

Error Approximation. For a DNN trained to a local mini-

mum, the error, El
j(õ

l
j) can be approximated with Taylor series

16

as in [82] and [86] w.r.t. the output neuron, ol
j as follows:

δEl
j = El

j(õ
l
j)− El

j(o
l
j)

=

(
∂El

j

∂ol
j

)�
δol

j +
1

2
δol�

j Hlδol
j +O(

∥∥δol
j

∥∥3)
≈ 1

2
δol�

j Hlδol
j

(7)

where δ is a perturbation of corresponding variable, Hl ≡
∂2El

j/∂(o
l
j)

2 is the Hessian matrix [87], and O(‖δol
j‖3) is

the third and all higher-order terms. With the error function

defined in Equation 3, the first (linear) and third terms are

ignored [81]. To minimize the increase in error, δEl
j , we set

the q-th element of ol
j , denoted as oljq , to zero, expressed as:

δoljq + oljq = 0 or more generally el
�
q δol

j + oljq = 0 (8)

where elq is the unit vector whose q-th element is 1 and

others are all 0. With oljq being removed from ol
j as shown in

Equation 8, we minimize Equation 7 as follows:

min
q

1

2
δol�

j Hlδol
j s.t. el

�
q δol

j + oljq = 0 (9)

Computing Importance. To compute the importance of the

q-th element of ol
j at layer l, oljq , we solve Equation 9 with a

Lagrangian function, Ll, which is given by:

Ll =
1

2
δol�

j Hlδol
j + λ(el

�
δol

j + oljq) (10)

where λ is a Lagrange multiplier. By taking derivatives,

employing Equation 8, and using matrix inversion, the optimal

increase in error and output change of oljq are obtained by:

slq =
1

2

(oljq)
2

[H−1]lqq
and δol

j = − oljq
[H−1]lqq

[H−1]lelq (11)

We call slq as the importance of the q-th neuron element

of layer l, oljq– the amount of increase in error when it is

removed from a DNN. Based on slq , the activation vector, ali is

determined to activate
⌊
Ni ·ml

⌋
number of neuron elements in

ol
j having the largest importance by setting the corresponding

elements of ali to 1 and others to 0, which provides the

sub-output neuron, õl
j for construction of a sub-network with

minimum error. slq is computed only once at compile-time.

V. TIME-BOUND EXECUTION OF SUB-NETWORK

The last step of SubFlow is to execute a newly-constructed

sub-network within the execution time budget. This section

describes the two run-time execution operations of SubFlow,

i.e., time-bound feed-forward and back-propagation, which

enables the time-bound completion of a sub-network.

A. Time-bound Feed-Forward

Time-Bound Feed-Forward. The inference of a DNN is

achieved by executing the DNN layer by layer, which is

called the feed-forward. Given a sub-network, an inference

job, Ji completes the feed-forward within the time budget,

Bi by performing computation in Equation 1 only for the

non-zero elements of a sub-output neuron, õl
j . The amount

of computation, as well as the execution time, are expected

to be proportional to the number of non-zero elements of õl
j ,

which is determined by the activation vector, ali. Computation

related to zero neuron elements is skipped since multiplication

by zero results in a zero. We name it as time-bound feed-
forward since the feed-forwarding time is bounded by the size

and configuration of a sub-network depending on a set of ali.

Existing Feed-Forward. Unfortunately, the current feed-

forward algorithms, such as the lowering method [88] do

not support the sparse-neuron-aware feed-forwarding. They

always perform the same amount of computation based on

the fixed sequence of calculation regardless of the number

of non-zero neuron elements. To enable time-bound feed-

forward, we propose sub-convolution and sub-multiplication
for a convolutional and fully-connected layer, respectively in

a similar way to the direct sparse convolution [89].

Sub-Convolution. For a convolutional layer l, layer output,

Ol ∈ R
n×c′×h′×w′ is computed by taking input, Ol−1 ∈

R
n×c×h×w from the previous layer l− 1, where n is the size

of the input batch; c′, h′, and w′ denote the channel, height,

and width of the output. For input Ol−1, c, h, and w denote

its channel, height, and width. For convolution, convolutional

filter (weight parameter) denoted as Wl ∈ R
c′×c×y×x is

applied to input, Ol−1, where c′, c, y, and x denote the size of

the output channel, input channel, height, and width of filter.

Given sub-input neuron, Õl−1 and sub-output neuron, Õl

composed by al−1
i and ali, respectively, the computational

complexity of convolution operation at layer l with filter Wl,

denoted as f l
c(·), is given by:

f l
c(a

l−1
i , ali,W

l)

= O(
∣∣ali∣∣ ∣∣Wl

∣∣− ∥∥1− al−1
i

∥∥
1
− ∥∥1− ali

∥∥
1

∣∣Wl
∣∣) (12)

where ‖·‖1 denotes �1-norm, |·| denotes the number of ele-

ments, and 1 is a vector whose all elements are 1. The first

term indicates the total amount of computation at the l-th
layer of the full-size network, while the second and third term

indicates the amount of computation reduced by the sub-input

and sub-output neuron, respectively. The activation vector of

the previous layer, al−1
i also determines the complexity since

an output of one layer is the input of the next layer.

We define sub-convolution as the convolution of a sub-

network whose computational complexity is determined by

al−1
i and ali as shown in Equation 12. Equation 13 is an

example of sub-convolution with Õl−1 ∈ R
1×1×3×3, Õl ∈

R
1×1×2×2, and Wl ∈ R

1×1×2×2, where only two and five

elements are activated as sub-output and sub-input neuron.

[
��o
l
11 ol12
ol21��o

l
22

]
=

⎡
⎢⎣
�
��ol−1

11 ol−1
12 ol−1

13

ol−1
21
�
��ol−1

22
�
��ol−1

23

ol−1
31
�
��ol−1

32 ol−1
33

⎤
⎥⎦ ∗

[
wl

11 wl
12

wl
21 wl

22

]
(13)

Here, ∗ denotes the convolution, ol−1
ij = 0 and olij = 0 are

the non-zero neuron elements, whereas���ol−1
ij = 0 and��o

l
ij = 0

17

are the zero neuron elements. With vectorization, Equation 13

can be rewritten as matrix multiplication, which is given by:[
��o
l
11 ol12 ol21��o

l
22

]

=
[
wl

11 wl
12 wl

21 wl
22

]
⎡
⎢⎢⎢⎣
�
���
��ol−1

11 ol−1
12 ol−1

21 �
���
��ol−1

22

�
��ol−1

12 ol−1
13
�
��ol−1

22 �
���
��ol−1

23

�
��ol−1

21
�
��ol−1

22 ol−1
31 �

���
��ol−1

32

�
���
��ol−1

22
�
��ol−1

23
�
��ol−1

32 �
��ol−1

33

⎤
⎥⎥⎥⎦

(14)

Figure 4 illustrates the sub-convolution of Equation 14,

where only four out of sixteen multiplications are performed.

It efficiently performs only the necessary computation by

*=

Multiplication

Addition

Not computed (since = 0)

0111
1
0
0
0
1
0 1 1 0

Activated (0 or 0)

Deactivated (= 0 or = 0)

Not computed (since = 0)

Sub-output
neuron

Sub-Input
neuron

Convolution
Filter

Fig. 4: An example of sub-convolution: Given a sub-input, sub-
output neuron, and convolution filter, the sub-convolution is per-
formed by walking through the sub-input (vertical direction) and sub-
output (horizontal direction) only once to see if the elements are zero
or not. By skipping computation related to zero-elements, the total
computation time becomes proportional to the number of non-zeros.

checking the sub-input and sub-output neurons only once to

see whether they are zero or not with linear complexity, i.e.,

O(|Õl−1|+|Õl|), while a naive algorithm takes O(|Õl||Wl|).
For example, a sub-convolution between 100× 100 input and

10 × 10 filter, which results in 91 × 91 output, requires only

18, 281 zero-element checks. On the contrary, a naive algo-

rithm requires 828, 100 zero-check (i.e., 45× less efficient).

Sub-Multiplication. For a fully-connected layer l, layer output

Ol ∈ R
n×ml

is computed by taking the input, Ol−1 ∈
R

n×ml−1

from the previous layer l − 1, where n is the size

of the input batch, ml−1 and ml are the input and the output

size, respectively. The output, Ol is obtained by multiplying

a weight parameter Wl ∈ R
ml−1×ml

to the input, Ol−1.

Given sub-input Õl−1 and sub-output Õl composed by al−1
i

and ali, respectively, the computational complexity of matrix

multiplication with weight parameter Wl, f l
m(·) is given by:

f l
m(al−1

i , ali,W
l)

= O (∥∥al−1
i

∥∥
1

∣∣ali∣∣+ ∥∥ali∥∥1 ∣∣Wl
∣∣− ∥∥ali∥∥1 ∥∥al−1

i

∥∥
1

) (15)

Equation 15 is proportional to the number of non-zero ele-

ments in the weight matrix used for multiplication. The first

and second term indicate the number of row-wise and column-

wise elements in the matrix, respectively. The last term cancels

out the overlapped elements between the first and second term.

We define sub-multiplication as the matrix multiplication of

a sub-network whose computational complexity is determined

by al−1
i and ali as shown in Equation 15. Equation 16 is an

example of sub-multiplication with 1×3 sub-input, 1×3 sub-

output neuron, and 3× 3 weight.

[
��o
l
11 ol12 ol13

]
=
[
ol−1
11
�
��ol−1

12 ol−1
13

]⎡⎣wl
11 wl

12 wl
13

wl
21 wl

22 wl
23

wl
31 wl

32 wl
33

⎤
⎦ (16)

With ol−1
12 and ol11 being zero in sub-input and sub-output

neuron, respectively, (1× 3) by (3× 3) matrix multiplication

reduces to (1× 2) by (2× 2), as follows:

[
ol12 ol13

]
=
[
ol−1
11 ol−1

13

] [w12 w14

w32 w34

]
(17)

B. Time-Bound Back-Propagation

Time-Bound Back-Propagation. The training of a DNN

is achieved by the compute-intensive process called back-

propagation [90]. The goal of back-propagation is to update

weight parameter, Wl of each layer l by computing the

gradient [91] of a loss function, denoted as L, w.r.t. Wl. The

back-propagation is repeated with multiple iterations until the

loss function, L converges to a particular criterion.

Given sub-output, õl
j composed by ali, the gradient of the

loss, L w.r.t. Wl for the j-th training instance, ∇L is:

∇L =
∂L

∂Wl
=

∂L

∂õl
j

· Jl =
∂L

∂
(
ali ◦ σ

(
ỹl
j

)) · Jl (18)

where Jl ≡ ∂
(
ali ◦σ

(
ỹl
j

))
/∂Wl is the Jacobian matrix [92],

and ỹl
j is defined as the same in Equation 1. By computing

∇L only for the non-zero elements of a sub-output neuron,

õl
j , which is determined by the activation vector, ali, a back-

propagation job, Ji is completed within the execution time

budget, Bi. We name it as time-bound back-propagation since

the gradient computation time is bounded by the size and

configuration of a sub-network depending on a set of ali.
Since the sparse-neuron-aware gradient is also not sup-

ported by the existing back-propagation [90], we propose

sub-convolution-gradient and sub-multiplication-gradient for

convolutional and fully-connected layers, respectively.

Sub-Convolution-Gradient. Given sub-input neuron, Õl−1

and sub-output neuron, Õl of a convolutional layer composed

by al−1
i and ali, respectively, the complexity of computing

convolution gradient with filter Wl, glc(·) is given by:

glc(a
l−1
i , ali,W

l
i)

= O (∥∥ali∥∥1 ∣∣Wl
∣∣−max

(∥∥1− al−1
i

∥∥
1
− ∥∥ali∥∥1 ∣∣Wl

∣∣ , 0))
(19)

The first term depends on the number of non-zero elements

in sub-output, and the second term depends on the number of

non-zero elements in sub-input.

We define sub-convolution-gradient as the gradient of the

convolution of a sub-network whose computational complexity

is determined by al−1
i and ali as shown in Equation 19.

Equation 20 is an example of a sub-convolution-gradient for

18

Equation 13, which shows only four out of sixteen differenti-

ations are performed for the computation of ∇L.

∇L =
[

∂L
∂wl

11

∂L
∂wl

12

∂L
∂wl

21

∂L
∂wl

22

]

=
[
�
��∂L

∂ol11

∂L
∂ol12

∂L
∂ol21 �

��∂L
∂ol22

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�
���
��

∂ol11
∂wl

11 �
��∂ol11

∂wl
12 �

��∂ol11
∂wl

21 �
���
��

∂ol11
∂wl

22

∂ol12
∂wl

11

∂ol12
∂wl

12

�
��

∂ol12
∂wl

21

�
��

∂ol12
∂wl

22

∂ol21
∂wl

11

�
��

∂ol21
∂wl

12

∂ol21
∂wl

21

�
��

∂ol21
∂wl

22

�
��∂ol22

∂wl
11 �

��∂ol22
∂wl

12 �
��∂ol22

∂wl
21 �

��∂ol22
∂wl

22

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(20)

Here, the matrix on the right-hand side is the Jacobian,

��
∂o
∂w = 0 and ��

∂o
∂w = 0 denote that the computation related

to ∂o
∂w is skipped since the corresponding sub-input and sub-

output neuron element is zero, respectively. The zero elements

of sub-output neuron eliminate the corresponding rows of

the Jacobian, e.g., the first and last rows of the Jacobian

become unnecessary since ol11 and ol22 are zeros as shown in

Equation 13. The zero elements of sub-input neuron result in

scattered elimination of individual derivatives in the Jacobian,

e.g.,
∂ol12
∂wl

21
is not computed since the corresponding sub-input

neuron element, ol−1
22 is zero, i.e.,

∂ol12
∂wl

21
= ol−1

22 = 0.

Sub-Multiplication-Gradient. Given sub-input neuron, Õl−1

and sub-output neuron, Õl of a fully-connected layer com-

posed by al−1
i and ali, respectively, the complexity of com-

puting multiplication gradient with weight Wl, glm(·) is:

glm(al−1
i , ali,W

l)

= O (∥∥al−1
i

∥∥
1

∣∣ali∣∣+ ∥∥ali∥∥1 ∣∣Wl
∣∣− ∥∥ali∥∥1 ∥∥al−1

i

∥∥
1

) (21)

We define sub-multiplication-gradient as the gradient of ma-

trix multiplication of a sub-network whose computation com-

plexity is determined by al−1
i and ali as shown in Equation 21,

which is equivalent to the sub-multiplication (Equation 15).

VI. IMPLEMENTATION

We implement SubFlow as an extended version of the

TensorFlow library [49], which is fully compatible with the

existing TensorFlow operations. The programmers can easily

apply SubFlow to their DNNs in the same way they design

DNNs without SubFlow. SubFlow is implemented to run on

both CPU and GPU, which makes it adaptable to a wide range

of platforms. For CPU, it is implemented based on the Eigen

library [51] that is optimized to perform matrix operations in

CPU. For GPU, it is implemented with CUDA library [52],

[93] to support the parallel computation of sub-networks like

the other GPU operations.

In constructing and executing sub-networks, SubFlow does

not generate and save multiple versions of sub-networks a

priori. Based on a single DNN designed by the program-

mer, SubFlow is implemented to construct and execute sub-

networks at run-time based on time-bound sparse execution.

Figure 5 shows the SubFlow framework, along with the

TensorFlow, which consists of a sub-network library, Python

client operations, and kernel implementations.

Fig. 5: SubFlow Framework: The SubFlow framework consists
of the sub-network library, python client operations, and kernel
implementations. It is fully compatible with TensorFlow and provides
all the necessary components of the TensoFlow hierarchy.

Sub-Network Library. It is a high-level module that computes

the importance of output neurons in the DNN for the construc-

tion of sub-networks. Since the computation of the Hessian

matrix in Equation 11 is intractable with DNNs of considerable

size, an approximation of the Hessian using sample covariance

is computed [82] instead.

This module is also responsible for the online construction

of sub-networks. Based on the importance of neurons and time

budget of the i-th job, Ji, it produces ali in Equation 1 for all

layers at run-time, except the last layer where all the final

output neurons of the DNN should be selected.

Python Client Operations. Python client operations provide

the programmer with a set of wrapper APIs that help design

a DNN model using SubFlow, which is fully compatible with

other existing operations of TensorFlow. Each API represents

and corresponds to its kernel implementation that is executed

with higher efficiency when a sub-network runs.

Kernel Implementations. They are the lower-level imple-

mentation of four operations used in SubFlow, i.e., sub-

convolution, sub-multiplication, sub-convolution-gradient, and

sub-multiplication-gradient. These operations are responsible

for executing a sub-network of the DNN designed with Python

client operations. Written in C and C++, they are optimized

to hardware platforms and able to perform the efficient time-

bound execution of sub-network with minimum overhead.

VII. EXPERIMENT

A. Experimental Setup

Hardware and Software. We conduct experiments on a

system consisting of Intel Core i9-9900K CPU, NVIDIA RTX

2080 Ti GPU with 11 GB of memory, and 32 GB of system

memory (RAM). We use TensorFlow 1.13.1 with Eigen 3.3.90

and CUDA 10.0 (CUDNN 7.4.2) for implementation.

Datasets and DNN Models. We use three standard machine

learning datasets in our evaluation, i.e., MNIST [53] (hand-

written digits), CIFAR-10 [55] (image classification), and GSC

(Google Speech Commands V2) [56]. For each dataset, the

state-of-the-art DNN model that provides the best performance

for the dataset is designed with SubFlow, i.e., LeNet-5 [53],

AlexNet [6], and KWS (Key-Word Spotting) architecture [54].

Table I summarizes the DNN architectures and datasets.

Time Measurement. The execution time of a sub-network,

including individual operations, is measured by using Ten-

19

LeNet-5 (MNIST) AlexNet (CIFAR-10) KWS (GSC)
Layer 1 Input: 28×28×1 Input: 32×32×3 Input: 61×13×1
Layer 2 Conv1: 5×5×1×6 Conv1: 3×3×3×64 Conv1: 12×6×1×64
Layer 3 Conv2: 5×5×6×16 Conv2: 3×3×64×192 Conv2: 6×3×64×64
Layer 4 FC1: 400 Conv3: 3×3×192×384 FC1: 1024
Layer 5 FC2: 84 FC1: 4096 FC2: 512
Layer 6 FC3 (Output): 10 FC2: 2048 FC3 (Output): 35
Layer 7 FC3 (Output): 10

* KWS: Key-Word Spotting, Conv: Convolution layer, FC: Fully-connected layer

TABLE I: The DNN models and datasets used in the evaluation.

sorFlow’s Timeline tool [94] that traces and records the

execution time of all the operations of a DNN in the unit

of microseconds. We analyze and compare the execution time

of different sub-networks by analyzing their tracing log files

saved in the JSON (JavaScript Object Notation) format [95].

B. End-to-End Execution Time and Performance

We evaluate the end-to-end execution time and performance

(i.e., inference accuracy) of sub-networks of different sizes

determined by the network utilization, N . The inference time

is measured on both CPU and GPU by calculating the average

feed-forward time on the entire test samples as one input

batch. The training time is evaluated on GPU by measuring the

execution time of one training iteration for both feed-forward

and back-propagation with a mini-batch size of 96 samples.

We use separate datasets for training and testing.

0.96
0.97
0.98
0.99
1.00

In
fe

re
nc

e
ac

cu
ra

cy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Network utilization (N)

0
10
20
30
40

In
fe

re
nc

e
tim

e
(

s)

GPU (L) CPU (L) Accuracy (R)

(a) LeNet-5 (MNIST): Inference

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Network utilization (N)

0

5

10

15

20

Tr
ai

ni
ng

 ti
m

e
(m

s) GPU (single train-iteration)

(b) LeNet-5 (MNIST): Training

0.60
0.65
0.70
0.75
0.80

In
fe

re
nc

e
ac

cu
ra

cy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Network utilization (N)

0
1
2
3
4
5
6

In
fe

re
nc

e
tim

e
(m

s)

GPU (L) CPU (L) Accuracy (R)

(c) AlexNet (CIFAR-10): Inference

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Network utilization (N)

0

30

60

90

120

150

Tr
ai

ni
ng

 ti
m

e
(m

s) GPU (single train-iteration)

(d) AlexNet (CIFAR-10): Training

0.80
0.82
0.84
0.86
0.88
0.90

In
fe

re
nc

e
ac

cu
ra

cy

0.10.20.30.40.50.60.70.80.91.0
Network utilization (N)

0
100
200
300
400
500
600

In
fe

re
nc

e
tim

e
(

s)

GPU (L) CPU (L) Accuracy (R)

(e) KWS (GSC): Inference

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Network utilization (N)

0
10
20
30
40
50
60
70

Tr
ai

ni
ng

 ti
m

e
(m

s) GPU (single train-iteration)

(f) KWS (GSC): Training

Fig. 6: The end-to-end execution time and inference accuracy
over the network utilization (N): The inference time is measured
on both GPU and CPU, and training time is measured on GPU.

Figure 6 shows the end-to-end inference and training time

of the three DNNs for different network utilizations, i.e., from

N = 0.1 to 1.0. All three DNNs show that their inference time

decreases as N decreases without significant loss of inference

accuracy. For example, the sub-network of AlexNet with N =
0.1 achieves 6.7x speedup with only 9% drop of inference

accuracy, i.e., from 76% to 67%. The inference accuracy of

LeNet-5 stays almost the same, i.e., a maximum 2% drop while

providing 2x speedup when N = 0.1. The training time also

decreases as N decreases, e.g., the training time of KWS is

reduced by 4.4x with a sub-network of N = 0.1. However,

their speedup is not linear to N since 1) all the neurons in the

first and the last layers are activated for all sub-networks in

our implementation, and 2) run-time overhead occurs.

C. Usefulness (Utility) of DNN

We next evaluate how SubFlow improves the usefulness of

a DNN given dynamic deadlines against the same original

DNNs that run without SubFlow. We measure the usefulness

of inference and training tasks based on the inference accuracy

and the training ratio that indicates the ratio of the DNN

components trained within the deadline, respectively. Figure 7

shows the usefulness of the three DNNs, i.e., the inference

accuracy (GPU and CPU) and training ratio (GPU) over a

range of dynamic deadlines. Unlike the non-SubFlow DNNs,

SubFlow makes the best use of the DNNs for a given deadline

by flexibly utilizing them, and completing the inference or

training task in time. For example, SubFlow AlexNet achieves

74% average inference accuracy, which is 2% lower than

the original DNN (76%), for the deadlines ranging between

1800μ and 5700μs, while the non-SubFlow DNN achieves 0%

accuracy for the same set of deadlines as shown in Figure 7d.

As the deadline gets closer to the execution time of the original

DNN, the accuracy of SubFlow AlexNet approaches 76% since

the full network is executed. On the other hand, the non-

SubFlow DNN results in zero usefulness unless the deadline is

equivalent to or larger than the execution time. For deadlines

smaller than that, its usefulness is zero since they are not even

executed, or the execution completed after the deadline.

5 7 9 11 13 15
Deadline (s)

0.96
0.97
0.98
0.99
1.00

Ac
cu

ra
cy

SubFlow Non-SubFlow

(a) Inference (GPU)

20 25 30 35 40
Deadline (s)

0.96
0.97
0.98
0.99
1.00

Ac
cu

ra
cy

SubFlow Non-SubFlow

(b) Inference (CPU)

5 10 15 20 25 30
Deadline (ms)

0
0.2
0.4
0.6
0.8

1

Tr
ai

ni
ng

 ra
tio

SubFlow Non-SubFlow

(c) Training (GPU)

0 2000 4000 6000
Deadline (s)

0.6
0.65
0.7

0.75
0.8

Ac
cu

ra
cy

SubFlow Non-SubFlow

(d) Inference (GPU)

2000 4000 6000
Deadline (s)

0.6
0.65
0.7

0.75
0.8

Ac
cu

ra
cy

SubFlow Non-SubFlow

(e) Inference (CPU)

0 50 100 150 200
Deadline (ms)

0
0.2
0.4
0.6
0.8

1

Tr
ai

ni
ng

 ra
tio

SubFlow Non-SubFlow

(f) Training (GPU)

0 200 400 600 800
Deadline (s)

0.8
0.82
0.84
0.86
0.88
0.9

Ac
cu

ra
cy

SubFlow Non-SubFlow

(g) Inference (GPU)

200 400 600 800
Deadline (s)

0.8
0.82
0.84
0.86
0.88
0.9

Ac
cu

ra
cy

SubFlow Non-SubFlow

(h) Inference (CPU)

0 40 80 120
Deadline (ms)

0
0.2
0.4
0.6
0.8

1

Tr
ai

ni
ng

 ra
tio

SubFlow Non-SubFlow

(i) Training (GPU)

Fig. 7: The usefulness (inference accuracy and training ratio)
over dynamic deadline: SubFlow vs. non-SubFlow. (a)-(c): LeNet-
5 (MNIST), (d)-(f): AlexNet (CIFAR-10), and (g)-(i): KWS (GSC).

20

D. Run-time Overhead

We measure two types of run-time overheads of SubFlow:

1) the sub-network construction overhead, and 2) the sub-

network execution overhead for one single input sample which

is the additional computation time required to run a DNN with

SubFlow. These two overheads are obtained 1) by measuring

the time needed to generate the activation vector, ali in

Equation 6 for all layers, which is required to construct a sub-

network, and 2) by measuring the execution overhead time and

the actual execution time separately during the feed-forward

and back-propagation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Network utilization (N)

0
50

100
150
200
250
300
350
400

Ti
m

e
(

s)

LeNet-5 AlexNet KWS

(a) Construction overhead

0.1 0.3 0.5 0.7 0.9 1.0
Network utilization (N)

0

1

2

3

4

5

Ti
m

e
(m

s)

Execution time Execution overhead

Inference
(GPU)

Inference
(CPU)

Train
(GPU)

(b) Execution overhead: LeNet-5

0.1 0.3 0.5 0.7 0.9 1.0
Network utilization (N)

0
2
4
6
8

10
12

Ti
m

e
(m

s)

Execution time Execution overhead

Train
(GPU)Inference

(GPU)

Inference
(CPU)

(c) Execution overhead: AlexNet

0.1 0.3 0.5 0.7 0.9 1.0
Network utilization (N)

0
1
2
3
4
5
6
7
8
9

10

Ti
m

e
(m

s)

Execution time Execution overhead

Inference
(GPU)

Train
(GPU)

Inference
(CPU)

(d) Execution overhead: KWS

Fig. 8: The run-time overhead: (a): the construction overhead for
all the three DNNs. (b), (c), and (d): the actual execution time (gray)
vs. execution overhead (red) of each DNN.

Figure 8a shows the sub-network construction overhead of

the three DNNs for different network utilizations, which stays

the same (LeNet-5 and KWS) or increases slightly (AlexNet)

with increased network utilization. They do not tend to change

significantly with different network utilization settings since

the same length of activation vector is generated for sub-

network of any size; the only difference between sub-networks

is the composition of ones and zeros. Also, their absolute time

costs are low since an activation vector is efficiently generated

from the rank of neurons that is pre-computed at compile-

time. Figure 8b, 8c, and 8d show the sub-network execution

overhead, which is higher than the construction overhead.

For example, the inference overhead of AlexNet on GPU,

709μs, which is 7% of the total inference time (8915μs), is

almost twice higher than the construction overhead of the full-

size sub-network (333μs, N = 1.0). The ratio of execution

overhead to the total execution time increases as the sub-

network size decreases, e.g., from 7% to 27% in AlexNet

with network utilization settings 1.0 and 0.1, respectively. The

execution overhead ratio increases for smaller sub-networks

since the overhead remains similar for all sizes of sub-network

while the actual computation time decreases with the size. It

shows that the execution overhead is critical to small sub-

networks and should be further decreased so that they can be

efficiently executed with tighter time constraints.

E. Comparison with the State-of-the-Art

We compare SubFlow with two state-of-the-art DNN execu-

tion algorithms: 1) BranchyNet [96] that makes an early exit of

the DNN for fast inference and 2) AdapDeep [97] that accel-

erates a DNN with a combination of compression techniques.

Table II provides their inference and training speeds on CPU

and/or GPU, and the inference accuracy of the two DNNs, i.e.,

LeNet-5 (MNIST) and AlexNet (CIFAR-10). We observe that

SubFlow achieves comparable speedup and inference accuracy

to the other two. Also, it achieves flexible execution for both

inference and training, unlike the other two methods that lack

such flexibility (AdaDeep) and training speedup (BranchyNet).

For example, SubFlow AlexNet on GPU achieves dynamic

speedup for both inference (1.0x–6.7x) and training (1.0x–

3.1x), while BranchyNet achieves 1.0x–2.4x speedup only

for inference without providing dynamic training speedup.

AdaDeep achieves a fixed speedup for inference (2.3x on

CPU), but does not achieve training speedup at all.

LeNet-5 Inference Speed Training Speed Inference
(MNIST) (CPU / GPU) (GPU) Accuracy
SubFlow 1.0x–1.3x / 1.0x–1.8x 1.0x–3.2x 0.97–0.99

BranchyNet [96] 1.0x–5.4x / 1.0–4.7x N/A 0.98–0.99
AdaDeep [97] 1.8x / N/A N/A 0.97

AlextNet Inference Speed Training Speed Inference
(CIFAR-10) (CPU / GPU) (GPU) Accuracy

SubFlow 1.0x–2.4x / 1.0x–6.7x 1.0x–3.1x 0.67–0.76
BranchyNet [96] 1.0–1.5x / 1.0–2.4x N/A 0.75–0.79

AdaDeep [97] 2.3x / N/A N/A 0.72

* For SubFlow, the network utilization is set as N = [0.1, 1.0].

TABLE II: Comparison between SubFlow, BranchNet, and AdaDeep.

VIII. APPLICATION

We implement an autonomous mobile robot as an example

application of SubFlow, which detects obstacles by generating

depth maps from a camera image in real-time [9], [58], [67],

[68]. While driving, a CNN (convolutional neural network)

transforms an RGB image into a depth map where the required

latency of transformation changes based on the traveling speed

of the robot. The faster it runs, the quicker the transformation

should be performed to detect an obstacle in time. Figure 9a

shows our mobile robot that executes a depth-estimation

CNN [58] with SubFlow on its GPU for obstacle detection.

It is implemented using Jetson Nano [57], an embedded GPU

platform having NVIDIA Maxwell GPU, ARM A57 CPU, and

4 GB of RAM. The robot has a camera in the front, and two

motors and wheels on both sides installed on the skeleton that

we printed on a 3D printer. Table III shows the architecture of

the depth estimation CNN [58] executed by the mobile robot.

We use NYU depth dataset V2 [98] for training and testing.

A. End-to-End Execution Time and Performance

Figure 10 shows the execution time and depth estimation

error of the CNN over the network utilization, N . The execu-

tion time is measured the same way as in Section VII, and the

estimation error is measured with linear RMSE [67], which

is calculated by

√
1
n

∑n
j=1

∥∥ỹj − y∗j
∥∥2
2
, where ỹj and y∗j is

the j-th output of a sub-network and ground truth, respectively.

21

Navigation
system

RGB image Depth CNN

Depth mapobstacle

camera

motors and wheels

(a) Depth-based obstacle detection (b) The mobile robot

Fig. 9: SubFlow robot performing depth-based obstacle detection.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

In
fe

re
nc

e
er

ro
r

0.10.20.30.40.50.60.70.80.91.0
Network utilization (N)

0

50

100

150

200

250

In
fe

re
nc

e
tim

 (m
s) GPU (L) Error (R)

Fig. 10: Execution time and er-
ror over the network utilization.

Depth CNN (NYU2)
Layer 1 Input: 60×80×3
Layer 2 Conv1: 11×11×3×96
Layer 3 Conv2: 5×5×96×256
Layer 4 Conv3: 3×3×256×384
Layer 5 Conv4: 3×3×384×384
Layer 6 FC1: 2048
Layer 7 FC2 (Output): 4800

TABLE III: The depth estima-
tion CNN architecture [58].

Figure 11 shows example depth maps generated from different

sub-networks with N = 0.1, 0.3, 0.5, 0.9, and 1.0.

(a) RGB image (b) Ground Truth (c) N = 0.1 (d) N = 0.3

(e) N = 0.5 (f) N = 0.7 (g) N = 0.9 (h) N = 1.0

Fig. 11: Depth map images generated from different settings of N .

B. Real-World Deployment

As a real-life experiment, we evaluate the execution time

and depth estimation error by running the mobile robot at

various speeds that impose different execution time budgets

(latency) on the depth CNN. We deploy the robot in the

corridor, kitchen, and bedroom of an apartment that has typical

furniture such as chairs, desks, and a bed (Figure 9b). The

robot runs for three hours and executes 50,000 CNN jobs. We

randomly change the speed of the robot (2cm/s–20cm/s) to

enable dynamic deadlines that we empirically obtain during

preliminary experiment. The result, summarized in Table IV,

shows that the execution of the CNN completes within the

time budget with a small variance.

Since obstacle detection is critical to safe driving, the robot

may want to execute only the sub-networks generating depth

map with an error lower than a threshold, which makes it

navigate without a collision. To experiment in this scenario,

we limit the execution of sub-networks that cause large errors

(0.068). Figure 12 shows the execution time and error over

velocity with and without the error threshold. The execution

Velocity 20 cm/s 16 cm/s 12 cm/s 8 cm/s 4 cm/s 2 cm/s
Budget 22 ms 66 ms 110 ms 154 ms 198 ms 220 ms
Avg-ET 23.1 ms 68.2 ms 112.6 ms 152.2 ms 197.6 ms 219.8 ms
Min-ET 22.5 ms 66 ms 108 ms 147 ms 192 ms 212.5 ms
Max-ET 23.62 ms 69.7 ms 114 ms 155.7 ms 202 ms 225 ms

N 0.01 0.04 0.25 0.61 0.92 1.00
Error 0.1669438 0.082438 0.054829 0.046986 0.044965 0.04365

* Velocity: Traveling speed of the robot (centimeters per second), Budget: Execution time
budget (milliseconds), Avg-ET: Average execution time (milliseconds), Min-ET: Minimum
execution time (milliseconds), Max-ET: Maximum execution time (milliseconds), N:
Network utilization, Error: Depth estimation error

TABLE IV: Execution time budget, actual execution time, network
utilization, and depth estimation error of the mobile robot with
various running speeds.

0
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

In
fe

re
nc

e
er

ro
r

2 4 6 8 10 12 14 16 18 20
Velocity (cm/s)

0

50

100

150

200

250

Ti
m

e
(m

s)

Execution time (L) Budget (L) Error (R)

Deadline miss

Deadline met

(a) Error threshold: None

0
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

In
fe

re
nc

e
er

ro
r

2 4 6 8 10 12 14 16 18 20
Velocity (cm/s)

0

50

100

150

200

250

Ti
m

e
(m

s)

Execution time (L) Budget (L) Error (R)

Error
threshold

Deadline miss

Deadline met

(b) Error threshold: 0.068

Fig. 12: The execution time and error over velocity with and
without an error threshold: The execution time budget that changes
based on the velocity is drawn with a diagonal line. The deadline is
met if the execution time is under the diagonal line, missed otherwise.

time budget is shown as a diagonal line, implying that the

execution time above the line is a deadline miss. Without

the threshold, Figure 12a shows that the robot meets all the

deadlines in the entire speed range, but generates a depth map

with a high error at high speed. On the other hand, Figure 12b

shows that the error is limited to 0.068 for all the speeds

by executing only the sub-networks with an error below the

threshold, which ensures the desired level of performance. In

consequence of not performing the sub-networks resulting in

error higher than the threshold, the robot misses the deadlines

when running faster than 14 cm/s in return for the low error.

IX. DISCUSSION

Scalability to Larger DNNs. Although the DNNs used in the

evaluation, e.g., AlexNet [6] (15M parameters), are smaller

than ResNet [99] (26M parameters), we expect SubFlow to

achieve better results with larger networks like ResNet since

they have more room for optimization [100]. An induced

sub-graph can be constructed with residual connections, and

SubFlow supports both convolution and fully-connected lay-

ers. In this paper, we followed to design our workload based

on many recent works [79], [97], [101]–[103] for embedded

systems, which demonstrates that results hold for both low-

end CPUs and embedded GPUs. We hypothesize that smaller

DNNs like LeNet-5 [53] used in the evaluation are harder

cases for SubFlow as there is little scope for speedup and/or

compression.

Accuracy Requirements. While SubFlow minimizes the loss

of inference accuracy when constructing a sub-network for

the time-bound execution, the accuracy drop is expected to

increase in general as the size of a sub-network decrease. Since

22

the accuracy is critical for many safety-critical applications,

SubFlow limits the maximum loss of accuracy above a certain

level by controlling the network utilization parameter that

limits the construction and execution of sub-networks whose

expected accuracy is lower than the desired level. The expected

accuracy over network size is obtained by running various

sizes of sub-networks offline before the DNN is deployed

on the system. For some applications where both accuracy

and real-time execution are critical, SubFlow can provide

intermediate inference results faster than the full-size network,

which serves as preliminary guidance before getting the high-

accuracy result from the full-size network.

X. RELATED WORK

Real-Time DNNs. RTDNN [104] adapts the parameters and

structure of DNN to a dataset in real-time conditions. Although

it performs an adaptation without requiring a significant num-

ber of samples, it does not support convolutional DNN and

relies on competitive learning [105] that is not widely used in

many DNNs. Based on the constructive network model [106],

[107] proposed a real-time learning algorithm, which can

automatically select appropriate values of neural quantizers

and determine the parameters of the network. However, their

learning is performed without any real-time constraints, which

is different from SubFlow having definite time budgets. Above

all, none of them provide timing guarantee of DNN execution.

Imprecise Computing. The imprecise computation [108]–

[110] divides a time-critical task into two sub-tasks: mandatory

and optional. The mandatory sub-task is executed to com-

pletion to produce an acceptable result. The optional sub-

task refines the result to reduce the error in the result. The

milestone, sieve function, and multiple version method [111]–

[114] are the popular algorithms for it. However, the division

of a task is not trivial and increases the complexity of schedul-

ing by adding optional tasks to the system. Also, dividing a

task into only two parts does not provide flexible execution.

SubFlow does not require an artificial division of a task

and automatically executes the proper amount of computation

based on flexible construction and execution of sub-networks.

DNN Compression/Prunning. The need to deploy DNNs

on resource constrained systems motivated techniques that

can reduce the storage and computational costs, including

knowledge distillation [38]–[40], low-rank factorization [41]–

[43], pruning [44]–[48], quantization [115]–[117], compres-

sion with structured matrices [118], [119], network binariza-

tion [120]–[122], and hashing [123]. However, they do not

provide real-time guarantee due to their primary focus on size

reduction. Also, the significantly compressed DNNs do not

run nearly as significantly faster since most parameters are

pruned in fully-connected layers while convolutional layers

consume most computation time, as shown in [48], [117],

[124]. Although some algorithms, such as DeepIoT [79],

[125] compress DNNs achieving less execution time, the final

network is not dynamically changed once it is compressed

offline. Moreover, they lack easy-to-follow procedures and

require significant effort, e.g., architecture modification, multi-

rounds of retraining, fine-tuning. In contrast, SubFlow enables

the run-time execution of multiple sub-networks of the DNN

instead of compressing the DNN into one single network

without requiring such an effort. SubFlow also supports time-

bound training, which is missing in most compression works

that only focus on the inference.

Improving Inference Speed. To improve the inference speed,

parallel techniques such as SIMD [126] have been used [127],

which is also employed in the implementation of SubFlow.

Also, faster algorithms specifically for 3x3 convolutional filters

have been studied [128] for VGGNet [77] and ResNet [99].

The early exit is another approach. CDL [129] adds classifiers

to each layer and monitors the output to decide whether a

sample can be exited early. BranchyNet [96] enables more

general branches with additional layers at each exit point. In

contrast, SubFlow executes all the layers without exiting in

the middle. Instead, some neurons of each layer are selected

and executed for speedup. To speed up sparse convolution,

efficient sparse DNNs such as [130], [46], and [131] have

been proposed. Escoin [132] applies the direct sparse con-

volution [89] to GPU in optimizing parallelism and locality.

SparseSep [133] leverages the sparsification of fully-connected

layers and the separation of convolutional kernels for wearable

devices. Although SubFlow uses the direct sparse convolution,

it does not rely on CSR (compressed sparse row) format that

incurs overhead of decoding the sparse format, unlike them.

Improving Training Speed. Dropout [134] and DropCon-

nect [135] can be used not only to increase the performance

with reduced overfitting but also to reduce training time by

performing back-propagation only for a part of DNN. Stochas-

ticDepth [136] starts with deep networks, but during training,

randomly drops a subset of layers and bypasses them. Highway

networks [137] proposes to modify the architecture of deep

feed-forward networks such that information flow across layers

becomes easier. In meProp [138], only a small subset of

the gradient is computed to update the model parameters in

back-propagation. MSBP [139] proposes to store unpropagated

gradients in memory for the next learning. They either change

the DNN architecture or select weight parameters to be

trained based on the magnitude, which may eliminate wrong

parameters [44], [82], unlike SubFlow that does not modify

architecture and use the second-order derivative for selection.

XI. CONCLUSION

We propose SubFlow that enables real-time inference and

training of a DNN by dynamically executing an induced sub-

graph of the DNN according to varying time budget. We

implement SubFlow by extending TensorFlow, which allows

a programmer to design time-aware DNNs based on SubFlow.

Our empirical evaluation result shows that time-bound infer-

ence and training are achieved without experiencing significant

performance loss. We implement an autonomous robot as an

application of SubFlow, which demonstrates that the object

detection task is completed within the time budget that dy-

namically changes based on the running speed of the robot.

23

ACKNOWLEDGEMENT

This paper was supported, in part, by NSF grants CNS-

1816213 and CNS-1704469 and NIH grant 1R01LM013329-

01.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[3] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[4] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing,” ieee Computational
intelligenCe magazine, vol. 13, no. 3, pp. 55–75, 2018.

[5] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015,
pp. 815–823.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[7] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner,
L. Jackel, and U. Muller, “Explaining how a deep neural net-
work trained with end-to-end learning steers a car,” arXiv preprint
arXiv:1704.07911, 2017.

[8] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
1907–1915.

[9] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun,
“Monocular 3d object detection for autonomous driving,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2147–2156.

[10] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
2722–2730.

[11] R. Socher, Y. Bengio, and C. Manning, “Deep learning for nlp,”
Tutorial at Association of Computational Logistics (ACL), 2012.

[12] L. Deng and Y. Liu, Deep Learning in Natural Language Processing.
Springer, 2018.

[13] W. Khan, A. Daud, J. A. Nasir, and T. Amjad, “A survey on the state-of-
the-art machine learning models in the context of nlp,” Kuwait journal
of Science, vol. 43, no. 4, 2016.

[14] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep
learning for healthcare: review, opportunities and challenges,” Briefings
in bioinformatics, vol. 19, no. 6, pp. 1236–1246, 2017.

[15] F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, Y. Wang, Q. Dong,
H. Shen, and Y. Wang, “Artificial intelligence in healthcare: past,
present and future,” Stroke and vascular neurology, vol. 2, no. 4, pp.
230–243, 2017.

[16] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I.
Sánchez, “A survey on deep learning in medical image analysis,”
Medical image analysis, vol. 42, pp. 60–88, 2017.

[17] Z. Dong, Y. Liu, H. Zhou, X. Xiao, Y. Gu, L. Zhang, and C. Liu,
“An energy-efficient offloading framework with predictable temporal
correctness,” in Proceedings of the Second ACM/IEEE Symposium on
Edge Computing. ACM, 2017, p. 19.

[18] G. A. Elliott and J. H. Anderson, “Exploring the multitude of real-
time multi-gpu configurations,” in 2014 IEEE Real-Time Systems
Symposium. IEEE, 2014, pp. 260–271.

[19] H. Zhou and C. Liu, “Task mapping in heterogeneous embedded
systems for fast completion time,” in 2014 International Conference
on Embedded Software (EMSOFT). IEEE, 2014, pp. 1–10.

[20] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A framework
for real-time gpu management,” in 2013 IEEE 34th Real-Time Systems
Symposium. IEEE, 2013, pp. 33–44.

[21] G. A. Elliott and J. H. Anderson, “An optimal k-exclusion real-time
locking protocol motivated by multi-gpu systems,” Real-Time Systems,
vol. 49, no. 2, pp. 140–170, 2013.

[22] ——, “Robust real-time multiprocessor interrupt handling motivated
by gpus,” in 2012 24th Euromicro Conference on Real-Time Systems.
IEEE, 2012, pp. 267–276.

[23] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-
class {GPU} resource management in the operating system,” in Pre-
sented as part of the 2012 {USENIX} Annual Technical Conference
({USENIX}{ATC} 12), 2012, pp. 401–412.

[24] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
Gpu scheduling for real-time multi-tasking environments,” in Proc.
USENIX ATC, 2011, pp. 17–30.

[25] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel,
“Ptask: operating system abstractions to manage gpus as compute
devices,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. ACM, 2011, pp. 233–248.

[26] C. Augonnet, S. Thibault, and R. Namyst, “Starpu: a runtime system
for scheduling tasks over accelerator-based multicore machines,” Ph.D.
dissertation, INRIA, 2010.

[27] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping,” in 2009 42nd
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). IEEE, 2009, pp. 45–55.

[28] Ö. Ş. Taş, F. Kuhnt, J. M. Zöllner, and C. Stiller, “Functional system
architectures towards fully automated driving,” in 2016 IEEE Intelligent
vehicles symposium (IV). IEEE, 2016, pp. 304–309.

[29] A. Pongpunwattana and R. Rysdyk, “Real-time planning for multiple
autonomous vehicles in dynamic uncertain environments,” Journal of
Aerospace Computing, Information, and Communication, vol. 1, no. 12,
pp. 580–604, 2004.

[30] Z. Shiller, Y.-R. Gwo et al., “Dynamic motion planning of autonomous
vehicles,” IEEE Transactions on Robotics and Automation, vol. 7, no. 2,
pp. 241–249, 1991.

[31] P. Chen, Y. Dang, R. Liang, W. Zhu, and X. He, “Real-time object
tracking on a drone with multi-inertial sensing data,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 19, no. 1, pp. 131–139,
2017.

[32] T. Nägeli, L. Meier, A. Domahidi, J. Alonso-Mora, and O. Hilliges,
“Real-time planning for automated multi-view drone cinematography,”
ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 132, 2017.

[33] M. Soto, P. Nava, and L. Alvarado, “Drone formation control system
real-time path planning,” in AIAA Infotech@ Aerospace 2007 Confer-
ence and Exhibit, 2007, p. 2770.

[34] S. He, Y. Liu, and H. Zhou, “Optimizing smartphone power con-
sumption through dynamic resolution scaling,” in Proceedings of
the 21st Annual International Conference on Mobile Computing and
Networking. ACM, 2015, pp. 27–39.

[35] C. Wanpeng and B. Wei, “Adaptive and dynamic mobile phone data
encryption method,” China Communications, vol. 11, no. 1, pp. 103–
109, 2014.

[36] H. Balog, D. Salmon, P. DeVries, M. Saks, B. Jansen, and S. Arnison,
“Dynamic protocol selection and routing of content to mobile devices,”
Feb. 21 2002, uS Patent App. 09/823,654.

[37] D. B. Stewart and P. K. Khosla, “Real-time scheduling of sensor-based
control systems,” IFAC Proceedings Volumes, vol. 24, no. 2, pp. 139–
144, 1991.

[38] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, “Learning effi-
cient object detection models with knowledge distillation,” in Advances
in Neural Information Processing Systems, 2017, pp. 742–751.

[39] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[40] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Ben-
gio, “Fitnets: Hints for thin deep nets,” arXiv preprint arXiv:1412.6550,
2014.

[41] Y. Ioannou, D. Robertson, J. Shotton, R. Cipolla, and A. Criminisi,
“Training cnns with low-rank filters for efficient image classification,”
arXiv preprint arXiv:1511.06744, 2015.

[42] C. Tai, T. Xiao, Y. Zhang, X. Wang et al., “Convolutional neural net-
works with low-rank regularization,” arXiv preprint arXiv:1511.06067,
2015.

[43] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramab-
hadran, “Low-rank matrix factorization for deep neural network train-
ing with high-dimensional output targets,” in 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE, 2013,
pp. 6655–6659.

[44] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598–605.

24

[45] A. Polyak and L. Wolf, “Channel-level acceleration of deep face
representations,” IEEE Access, vol. 3, pp. 2163–2175, 2015.

[46] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[47] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao,
C.-Y. Lin, and L. S. Davis, “Nisp: Pruning networks using neuron
importance score propagation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 9194–9203.

[48] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Advances In Neural Information Processing Systems, 2016,
pp. 1379–1387.

[49] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system
for large-scale machine learning,” in 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16), 2016, pp.
265–283.

[50] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[51] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[52] NVIDIA, “Nvidia cuda home page,” https://developer.nvidia.com/
cuda-zone, 2019.

[53] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[54] T. Sainath and C. Parada, “Convolutional neural networks for small-
footprint keyword spotting,” 2015.

[55] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[56] P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” arXiv preprint arXiv:1804.03209, 2018.

[57] NVIDIA, “Jetson nano,” https://developer.nvidia.com/embedded/
jetson-nano-developer-kit, 2019.

[58] P. Chakravarty, K. Kelchtermans, T. Roussel, S. Wellens, T. Tuytelaars,
and L. Van Eycken, “Cnn-based single image obstacle avoidance on
a quadrotor,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 6369–6374.

[59] R. Diestel, “Graph theory (graduate texts in mathematics). 3rd,” Ed
Springer, pp. 17–18, 2006.

[60] P. Li, X. Chen, and S. Shen, “Stereo r-cnn based 3d object detection
for autonomous driving,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 7644–7652.

[61] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial as deep: Spatial
cnn for traffic scene understanding,” in Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[62] H. Gao, B. Cheng, J. Wang, K. Li, J. Zhao, and D. Li, “Object
classification using cnn-based fusion of vision and lidar in autonomous
vehicle environment,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 9, pp. 4224–4231, 2018.

[63] M. Al-Qizwini, I. Barjasteh, H. Al-Qassab, and H. Radha, “Deep
learning algorithm for autonomous driving using googlenet,” in 2017
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 89–96.

[64] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg,
“Aggressive deep driving: Model predictive control with a cnn cost
model,” arXiv preprint arXiv:1707.05303, 2017.

[65] S. Ingle and M. Phute, “Tesla autopilot: semi autonomous driving,
an uptick for future autonomy,” International Research Journal of
Engineering and Technology, vol. 3, no. 9, 2016.

[66] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q.
Weinberger, “Pseudo-lidar from visual depth estimation: Bridging the
gap in 3d object detection for autonomous driving,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 8445–8453.

[67] M. Mancini, G. Costante, P. Valigi, and T. A. Ciarfuglia, “Fast
robust monocular depth estimation for obstacle detection with fully
convolutional networks,” in 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 4296–
4303.

[68] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” in Advances in neural
information processing systems, 2014, pp. 2366–2374.

[69] Z. Kappassov, J.-A. Corrales, and V. Perdereau, “Tactile sensing in
dexterous robot hands,” Robotics and Autonomous Systems, vol. 74,
pp. 195–220, 2015.

[70] E. Badreddin, “Obstacle avoidance using tactile sensing for an au-
tonomous mobile robot,” IFAC Proceedings Volumes, vol. 25, no. 29,
pp. 325–329, 1992.

[71] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Neural networks for perception. Elsevier, 1992, pp. 65–93.

[72] H. J. Sussmann, “Uniqueness of the weights for minimal feedforward
nets with a given input-output map,” Neural networks, vol. 5, no. 4,
pp. 589–593, 1992.

[73] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp.
2223–2232.

[74] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, “Predicting
the computational cost of deep learning models,” in 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 2018, pp.
3873–3882.

[75] J. Han and C. Moraga, “The influence of the sigmoid function pa-
rameters on the speed of backpropagation learning,” in International
Workshop on Artificial Neural Networks. Springer, 1995, pp. 195–201.

[76] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1–9.

[77] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[78] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the fourteenth international conference
on artificial intelligence and statistics, 2011, pp. 315–323.

[79] S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher, “Deepiot:
Compressing deep neural network structures for sensing systems with
a compressor-critic framework,” in Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems. ACM, 2017, p. 4.

[80] C. Davis, “The norm of the schur product operation,” Numerische
Mathematik, vol. 4, no. 1, pp. 343–344, 1962.

[81] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural
networks via layer-wise optimal brain surgeon,” in Advances in Neural
Information Processing Systems, 2017, pp. 4857–4867.

[82] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in neural information
processing systems, 1993, pp. 164–171.

[83] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
arXiv preprint arXiv:1607.03250, 2016.

[84] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in neural
information processing systems, 2015, pp. 1135–1143.

[85] A. Sharma, N. Wolfe, and B. Raj, “The incredible shrinking neural
network: New perspectives on learning representations through the lens
of pruning,” arXiv preprint arXiv:1701.04465, 2017.

[86] G. B. Arfken and H. J. Weber, “Mathematical methods for physicists,”
1999.

[87] G. Upton and I. Cook, A dictionary of statistics 3e. Oxford university
press, 2014.

[88] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proceedings of the
IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.

[89] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and P. Dubey,
“Faster cnns with direct sparse convolutions and guided pruning,” arXiv
preprint arXiv:1608.01409, 2016.

[90] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[91] D. Bachman, Advanced calculus demystified. McGrawHill, 2007.
[92] W. Kaplan, “Advanced calculus. redwood city,” 1984.
[93] S. Cook, CUDA programming: a developer’s guide to parallel com-

puting with GPUs. Newnes, 2012.
[94] Google, “Timeline visualization for tensorflow using chrome trace for-

mat,” https://github.com/tensorflow/tensorflow/blob/master/tensorflow/
python/client/timeline.py, 2018.

[95] Ecma International, “Standard ecma-404 the json data interchange
syntax,” https://www.ecma-international.org/publications/standards/
Ecma-404.htm, 2017.

25

[96] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). IEEE, 2016,
pp. 2464–2469.

[97] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand
deep model compression for mobile devices: A usage-driven model
selection framework,” in Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services. ACM,
2018, pp. 389–400.

[98] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from rgbd images,” in European Conference on
Computer Vision. Springer, 2012, pp. 746–760.

[99] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[100] Y. Wang, C. Xu, C. Xu, and D. Tao, “Beyond filters: Compact feature
map for portable deep model,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
3703–3711.

[101] S. Lee and S. Nirjon, “Neuro. zero: a zero-energy neural network ac-
celerator for embedded sensing and inference systems,” in Proceedings
of the 17th Conference on Embedded Networked Sensor Systems, 2019,
pp. 138–152.

[102] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence beyond the
edge: Inference on intermittent embedded systems,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2019, pp. 199–
213.

[103] C. Jiang, G. Li, C. Qian, and K. Tang, “Efficient dnn neuron pruning
by minimizing layer-wise nonlinear reconstruction error.” in IJCAI, vol.
2018, 2018, pp. 2–2.

[104] Á. S. Miralles and M. Á. S. Bobi, “Real time dynamic neural network
(rtdnn).”

[105] T. Martinetz and K. Schulten, “Topology representing networks,”
Neural Networks, vol. 7, no. 3, pp. 507–522, 1994.

[106] G.-B. Huang, “Learning capability and storage capacity of two-hidden-
layer feedforward networks,” IEEE Transactions on Neural Networks,
vol. 14, no. 2, pp. 274–281, 2003.

[107] G.-B. Huang, Q.-Y. Zhu, and C. K. Siew, “Real-time learning capability
of neural networks,” IEEE Trans. Neural Networks, vol. 17, no. 4, pp.
863–878, 2006.

[108] J. W. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise
computations,” Proceedings of the IEEE, vol. 82, no. 1, pp. 83–94,
1994.

[109] J. W.-S. Liu, K.-J. Lin, W. K. Shih, A. C.-s. Yu, J.-Y. Chung,
and W. Zhao, “Algorithms for scheduling imprecise computations,”
in Foundations of Real-Time Computing: Scheduling and Resource
Management. Springer, 1991, pp. 203–249.

[110] K.-J. Lin, S. Natarajan, and J. W.-S. Liu, “Imprecise results: Utilizing
partial computations in real-time systems,” 1987.

[111] K.-J. Lin and S. Natarajan, “Expressing and maintaining timing con-
straints in flex,” in Proceedings. Real-Time Systems Symposium. IEEE,
1988, pp. 96–105.

[112] W.-K. Shih, J. W. Liu, and J.-Y. Chung, “Algorithms for scheduling
imprecise computations with timing constraints,” SIAM Journal on
Computing, vol. 20, no. 3, pp. 537–552, 1991.

[113] J.-Y. Chung, J. W.-S. Liu, and K.-J. Lin, “Scheduling periodic jobs
that allow imprecise results,” IEEE transactions on computers, vol. 39,
no. 9, pp. 1156–1174, 1990.

[114] K. B. Kenny and K.-J. Lin, “Structuring large real-time systems with
performance polymorphism,” in [1990] Proceedings 11th Real-Time
Systems Symposium. IEEE, 1990, pp. 238–246.

[115] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein, “Training
quantized nets: A deeper understanding,” in Advances in Neural
Information Processing Systems, 2017, pp. 5811–5821.

[116] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convo-
lutional neural networks for mobile devices,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 4820–4828.

[117] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[118] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-
F. Chang, “An exploration of parameter redundancy in deep networks
with circulant projections,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 2857–2865.

[119] V. Sindhwani, T. Sainath, and S. Kumar, “Structured transforms for
small-footprint deep learning,” in Advances in Neural Information
Processing Systems, 2015, pp. 3088–3096.

[120] Z. Li, X. Wang, X. Lv, and T. Yang, “Sep-nets: Small and effective
pattern networks,” arXiv preprint arXiv:1706.03912, 2017.

[121] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
in European Conference on Computer Vision. Springer, 2016, pp.
525–542.

[122] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks
with weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

[123] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compress-
ing neural networks with the hashing trick,” in International Conference
on Machine Learning, 2015, pp. 2285–2294.

[124] J. Park, S. R. Li, W. Wen, H. Li, Y. Chen, and P. Dubey, “Holistic
sparsecnn: Forging the trident of accuracy, speed, and size,” arXiv
preprint arXiv:1608.01409, vol. 1, no. 2, 2016.

[125] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher,
“Fastdeepiot: Towards understanding and optimizing neural network
execution time on mobile and embedded devices,” in Proceedings of
the 16th ACM Conference on Embedded Networked Sensor Systems.
ACM, 2018, pp. 278–291.

[126] D. A. Patterson and J. L. Hennessy, Computer organization and design
MIPS edition: the hardware/software interface. Newnes, 2013.

[127] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of
neural networks on cpus,” 2011.

[128] A. Lavin and S. Gray, “Fast algorithms for convolutional neural
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 4013–4021.

[129] P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for
energy-efficient and enhanced pattern recognition,” in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2016, pp. 475–480.

[130] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse
convolutional neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 806–814.

[131] V. Lebedev and V. Lempitsky, “Fast convnets using group-wise brain
damage,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2554–2564.

[132] X. Chen, “Escoin: Efficient Sparse Convolutional Neural Network
Inference on GPUs,” arXiv e-prints, p. arXiv:1802.10280, Feb 2018.

[133] S. Bhattacharya and N. D. Lane, “Sparsification and separation of
deep learning layers for constrained resource inference on wearables,”
in Proceedings of the 14th ACM Conference on Embedded Network
Sensor Systems CD-ROM. ACM, 2016, pp. 176–189.

[134] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The journal of machine learning research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[135] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in International conference on
machine learning, 2013, pp. 1058–1066.

[136] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in European conference on computer
vision. Springer, 2016, pp. 646–661.

[137] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”
arXiv preprint arXiv:1505.00387, 2015.

[138] X. Sun, X. Ren, S. Ma, and H. Wang, “meprop: Sparsified back
propagation for accelerated deep learning with reduced overfitting,”
in Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 2017, pp. 3299–3308.

[139] Z. Zhang, P. Yang, X. Ren, and X. Sun, “Memorized sparse backprop-
agation,” arXiv preprint arXiv:1905.10194, 2019.

26

