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Abstract—Over the last few years, the ever-increasing use of
Graphic Processing Units (GPUs) in safety-related domains has
opened up many research problems in the real-time community.
The closed and proprietary nature of the scheduling mechanisms
deployed in NVIDIA GPUs, for instance, represents a major
obstacle in deriving a proper schedulability analysis for latency-
sensitive applications. Existing literature addresses these issues
by either (i) providing simplified models for heterogeneous CPU-
GPU systems and their associated scheduling policies, or (ii)
providing insights about these arbitration mechanisms obtained
through reverse engineering. In this paper, we take one step
further by correcting and consolidating previously published as-
sumptions about the hierarchical scheduling policies of NVIDIA
GPUs and their proprietary CUDA application programming
interface. We also discuss how such mechanisms evolved with
recently released GPU micro-architectures, and how such changes
influence the scheduling models to be exploited by real-time
system engineers.

I. INTRODUCTION

The sheer amount of data to be processed by next-generation

embedded platforms is creating new challenges to real-time

systems designers. In order to cope with massively parallel

and data-hungry algorithms, the industry started to adopt hard-

ware accelerators, e.g., programmable logic (FPGA), Graphic

Processing Units (GPUs) and various types of Application-

Specific Integrated Circuits (ASIC), like the increasingly

widespread neural network inference accelerators.

The adoption of heterogeneous platforms featuring a multi-

core host coupled with different accelerators makes it more

and more difficult to guarantee safety and real-time re-

quirements as the complexity of the system-on-chip (SoC)

increases. While commercial heterogeneous SoCs are very

appealing – cost- and performance-wise – their very complex

designs, often completely closed-source, prevent embedded

systems engineers from gaining a detailed understanding of the

temporal behavior of the various workloads that can coexist in

the system, ultimately losing control of when and how outputs

are produced.

Over the past few years, NVIDIA architectures have become

a popular choice in many latency-sensitive domains, mostly

thanks to a solid and simple programming model (CUDA)

which allows also non-expert GPU developers to quickly

achieve impressive performance-per-watt targets compared to

traditional CPUs. The parallelism of GPU architectures is

growing exponentially. Focusing on NVIDIA, the integrated

GPU of the Jetson TX2 platform features 256 SIMD cores,

while the core count of the discrete GPU featured in the

Pegasus AGX platform adopted in many autonomous driving

prototypes has grown up to 2816 computing units.

Historically, the GPU hardware and software development

kits have been designed for very high peak and average

performance (throughput), completely neglecting timing pre-

dictability. The typical execution pattern for a heterogeneous

CPU-GPU system is the following [1]: 1) move data from the

host CPU to the GPU device; 2) execute the compute kernel

(i.e., the part of the program containing abundant parallelism)

on the GPU device; 3) move data from the device back to the

host. This submission paradigm can be modelled as a non-

preemptive FIFO, in which different applications can access

the GPU in a mutually exclusive manner. In modern GPUs,

such a naive offloading strategy may lead to severe GPU under-

utilization.

To overcome this effect, CUDA introduced a software

mechanism called CUDA streams. A stream in CUDA is

defined as a workload queue for the device, where kernel

execution requests can be enqueued (offloaded) by the host
asynchronously, in a non-blocking fashion. The GPU device

then dispatches work requests from streams onto the GPU

compute clusters based on the current occupancy, i.e., the

utilization of processing and memory resources local to the

accelerator clusters.

Moving to a model in which multiple GPU kernels can

time-share GPU resources improves performance, but com-

plicates the design of real-time, safety-critical software [2].

Unfortunately, the details of how the NVIDIA GPU hardware

scheduler subdivides streams of work among the compute

clusters (streaming multiprocessors or SM in CUDA termi-

nology) are not publicly available. The lack of information

about the internals of NVIDIA hardware and software blocks

complicates the development of reliable models for system

timing analysis. Several such models proposed in the lit-

erature either treat the GPU as a black box, or assume a

simplified structure that unfaithfully represents the real system.

For example, the default block-to-SM distribution policy in

the GPU is round-robin (RR), but the scheduling algorithm

gets much more complex when multiple streams are used.

Simplistically assuming RR in this case [3], [4] can lead to

severe misprediction of the block execution times. Figure 3

shows the misprediction rate of a model of a block-to-SM

scheduler based on RR, plotted as a function of the number of
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Figure 1: Block diagram of the NVIDIA Xavier SoC. Figure 2: GPC architecture in the Volta iGPU.

streams per kernel. The values displayed in the bars are derived

from 7000 launch configurations of a target kernel1. For each

configuration we compare the RR block-to-SM distribution

with that observed on an NVIDIA Xavier platform (see Section

II). If they differ, we consider it a misprediction. The figure

shows that as the number of streams increases the probability

of misprediction gets as high as 96%. Understanding the

scheduling decisions of modern GPUs is a necessary step to

allow real-time engineers to safely model the performance

of these accelerators, as failing to do so can significantly

impact the predictability of concurrent CUDA streams. Yet,

to this day there is no comprehensive description of how the

scheduler distributes the work among the available SMs, nor

how such mechanisms changed in recently released NVIDIA

GPU micro-architectures. In this paper, we provide an in-depth

analysis of how the GPU hardware scheduler works, starting

from the CUDA stream dispatcher, to the actual scheduling of

individual warps, the minimal scheduling unit of each SM.

This paper is organized as follows: In Section II we describe

the most prominent architectural features of an NVIDIA GPU

and the key programming model constructs offered by CUDA

to exploit such features. Section III provides an in-depth

overview of the NVIDIA scheduler hierarchy, with Sections

IV and V dissecting the available mechanisms inside and

outside each SM, respectively. Each of these sections provides

1Using [2-8] streams, [1-4] blocks per kernel, [1-1024] threads per block.

Figure 3: Misprediction rate of a round-robin block-to-SM

mapping model compared to the real mapping.

detailed discussion on performance and predictability aspects,

along with extensive experimental evaluation. In Section VI

we provide an overview of related work on understanding

the scheduling and performance details of NVIDIA GPUs,

summarizing the novelties of our contribution. Section VII

concludes the paper, highlighting future research directions.

II. BACKGROUND ON NVIDIA GPUS

A. GPU hardware
Modern heterogeneous SoCs (hSoC) are typically composed

of a multi-core CPU host, one or more hardware accelerators

(devices) and the related memory interface and hierarchy.

Figure 1 depicts a schematic representation of the most

recent NVIDIA Tegra hSoC, codenamed Xavier. The hSoC

incorporates an NVIDIA-proprietary design featuring an eight-

core host processor compliant with the ARM v8.2 architecture

(Carmel), and an integrated GPU (iGPU) based on the Volta
microarchitecture. The system RAM consists of a 16-GB

LPDDR4x module, shared among all the computing devices.
Internally, the iGPU features 512 cores organized in com-

puting clusters called Streaming Multiprocessors (SMs). More

SMs can be grouped within larger clusters named Graphic
Processing Clusters (GPCs), sharing a common interface to-

wards the 512KB L2 memory (a unified cache). Multiple GPCs

also share a DMA engine, called Copy Engine or CE in CUDA

terminology. The computing resources within all GPCs also

are called Execution Engines or EE in CUDA terminology.
The architectural details of a GPC in the Xavier platform

are depicted in Figure 2. Here a GPC is composed of two

SMs sharing the physical interface towards the L2 memory.

Internally, each SM is partitioned into four processing blocks,

each with 16 INT32 cores, 16 FP32 cores, 8 FP64 cores, 2

mixed-precision Tensor Cores (TC) for deep-learning matrix

arithmetic, one special function unit (SFU) one warp scheduler

and a 64KB register file. Globally, all the processing blocks

share a L1 data cache plus a L1 shared memory (a fast

scratchpad memory), with a cumulative capacity of 128 KB.

B. CUDA Execution and Programming Model Basics
In its most simple incarnation, the CUDA execution model

envisions three steps: (i) the host CPU copies data and program
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Listing 1: Naive host CUDA code

1 void cpuThread(){
2 // data init and allocation
3 const size_t msize =

↪→ W_MATRIX*H_MATRIX*sizeof(float);
4 float *h_iData = (float*)malloc(msize);
5 float *h_oData = (float*)malloc(msize);
6 float *d_iData;cudaMalloc(&d_iData,msize);
7 float *d_oData;cudaMalloc(&d_oData,msize);
8

9 fillInputData(h_iData, ...);
10 dim3 dimGrid(W_MATRIX/TILE_DIM,

↪→ H_MATRIX/TILE_DIM, 1);
11 dim3 dimBlock(TILE_DIM, BLOCK_ROWS, 1);
12

13 // actual command submission
14 cudaMemcpy (d_iData, h_iData, msize,

↪→ cudaMemcpyHostToDevice);
15 transpose<<<dimGrid, dimBlock>>>

↪→ (d_Odata,d_iData);
16 cudaMemcpy (h_oData, d_oData, msize,

↪→ cudaMemcpyDeviceToHost);
17 cudaDeviceSynchronize();
18 // data post-processing
19 }

code from its memory domain to memory accessible by the

GPU; (ii) the GPU executes the offloaded kernels; (iii) data

produced by the offloaded computation is copied back to

the host memory. These operations are abstracted as copy
and execution commands that can be enqueued in the GPU

scheduling hardware, to be performed by the (CE) and (EE),

respectively. Once data is available to the GPU, the CUDA

programming model follows a Single Instruction Multiple

Threads (SIMT) paradigm, where the same instructions are

issued to multiple threads working on different data items.

Threads are logically organized in arrays (groups) of 32, called

warps. A warp is the minimum schedulable entity in the GPU.

Besides the SIMT parallelism within a warp, the GPU

can leverage other dimensions of parallelism (multiple warps

within an SM, multiple SMs in the GPC and in the whole

device). To enable the exploitation of this abundant parallelism

CUDA kernels are launched as grids of blocks of threads. A

thread block, also called a Cooperative Thread Array (CTA),

is an abstraction used to specify a group of warps that can be

executed in parallel. The warp schedulers within each SM are

in charge of distributing the threads to the available hardware

resources. Thread blocks can be organized as 1D, 2D and 3D

grids. The hardware scheduler treats each block as a multiple

of 32 threads (i.e., a warp) regardless of the effective number

of threads defined in the kernel invocation.

Listings 1 and 2 show the simplified CUDA code [5] to

implement host (CPU) and device (GPU) operations to trans-

pose a W MATRIX x H MATRIX matrix of float elements.

Focusing on the host code, the first step is to allocate memory

for host and device data (lines 3-7): for host data, a regular

Listing 2: Naive device CUDA code

1 __global__ void transpose(float *odata,
↪→ const float *idata){

2 int x = blockIdx.x*TILE_DIM+threadIdx.x;
3 int y = blockIdx.y*TILE_DIM+threadIdx.y;
4 int width = gridDim.x*TILE_DIM;
5

6 for (int j=0;j<TILE_DIM;j+=BLOCK_ROWS)
7 odata[x*width + (y+j)] =

↪→ idata[(y+j)*width + x];
8 }

malloc is used, whereas the CUDA API runtime function

cudaMalloc is used for device data. Host memory is then

initialized (line 9) before the kernel launch configuration is

defined (lines 10, 11). The dim3 data structure hosts three

integer values that represent the number of threads or blocks
along the x, y and z dimensions. By defining the organization

of the compute grid along each dimension the programmer

implements a tiling scheme for the offloaded work. A tile is a

portion of the input matrix: each block contains enough threads

to operate on that portion of the matrix. In this example, thread

blocks are defined in two dimensions only (as the matrix is

bidimensional), with the third dimension set to 1. dimGrid
contains the number of blocks for the next kernel invocation

(matrix width/height/TILE DIM ), while dimBlock
defines the number of threads per block (TILE DIM ∗
BLOCK ROWS).

Copy commands are issued to transfer data from the host
to the device (line 14) and back (line 16). The actual ker-

nel offloading happens at line 15. The name of the kernel

(transpose, in this example) must match the entry-point of

the device code, shown in Listing 2.

Focusing on the device code, the first thing to notice is that

work partitioning happens via thread indexing (lines 2 - 4):

thread IDs range from 0 to the number of threads in a block -

1. Retrieving the thread ID within the block along the x and y

dimension relies on the CUDA keyword threadIdx.x/y.

Similarly, the block ID can be retrieved via the CUDA

keyword blockId.x/y. The number of blocks along the

x dimension can be queried via the gridDim.x keyword.

Based on these IDs, each worker thread will compute the

offset at which to index its own share of the input/output

data. In this example TILE_DIM=32, BLOCK_ROWS=8 and

both iData and oData are 1024x1024-element matrices.

The loop at line 6 tells us that each thread in the block reads

4 elements from iData, with a stride of 32*8 elements and

copies them with reversed x, y coordinates in oData.

C. Advanced CUDA Execution Model and Programming Con-
structs

CUDA allows to lift the limitations of its basic execution

model by providing constructs to define the execution of

interleaved compute and data operations. This is achieved with
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Listing 3: Optimized host CUDA code

1 void cpuThread(){
2 const size_t msize =

↪→ W_MATRIX*H_MATRIX*sizeof(float);
3 float *h_iData;

↪→ cudaMallocHost(&h_iData,msize);
4 float *h_oData;

↪→ cudaMallocHost(&h_oData,msize);
5 float *d_iData;cudaMalloc(&d_iData,msize);
6 float *d_oData;cudaMalloc(&d_oData,msize);
7

8 cudaStream_t s; cudaStreamCreate(&s);
9 fillInputData(h_iData, ...);

10 dim3 dimGrid (W_MATRIX/TILE_DIM,
↪→ H_MATRIX/TILE_DIM, 1);

11 dim3 dimBlock (TILE_DIM, BLOCK_ROWS, 1);
12

13 cudaMemcpyAsync(d_iData, h_iData, msize,
↪→ cudaMemcpyHostToDevice, s);

14 transpose<<<dimGrid, dimBlock, 0, s>>>
↪→ (d_Odata, d_iData);

15 cudaMemcpyAsync(h_oData, d_oData, msize,
↪→ cudaMemcpyDeviceToHost, s);

16 // cpu work might be performed here,
17 // while the gpu is working
18 cudaStreamSynchronize(s);
19 }

CUDA streams. A CUDA stream is an abstraction of a queue

of commands offloaded to the GPU; a software entity that

has to be created and specified for each copy and compute

command. If a stream is not specified, the CUDA runtime

uses the default stream (Stream 0). Its standard behaviour

implies implicit synchronization with every other stream from

the same application. Commands pushed in different streams
can be interleaved and, whenever possible, they run con-

currently. Commands in the same stream are ordered in a

FIFO fashion and cannot overlap. Stream execution can be

either synchronous or asynchronous. If synchronous, the CPU

thread dispatches the work to the GPU and blocks until the

kernel completes. If asynchronous, host-side computation is

possible during GPU execution. In both cases, upon GPU

kernel completion the CE copies back the data computed by

the accelerator, if the CPU or other compute devices need it.

The use of CUDA streams implies the knowledge of a

few more advanced constructs: pinned host memory and

device shared memory. To illustrate these concepts, Listing

3 shows an optimized version of the matrix transpose host
code. CPU data allocation is now performed through the

cudaMallocHost function (lines 3, 4). While a regular

malloc allows the developer to allocate pageable memory,

cudaMallocHost requests pinned memory, i.e. memory

that is allocated in an area in which paging is bypassed.

This drastically improves the bandwidth for data transfers.

Pinned memory also enables overlapping of copy and compute

operations within different CUDA streams.

A CUDA stream is created at line 8: this is the queue

of commands where copy and compute operations are in-

serted. Data transfers from/to the host are enqueued through

the cudaMemcpyAsync function (lines 13, 15), which –

different from the cudaMemcpy – allows the CPU to perform

other work while copies are pending.

The kernel launch syntax becomes slightly more compli-

cated when using streams (line 14): besides grid and block
dimensions, in the triple bracket structure we now have to indi-

cate the amount of dynamic shared memory used by the kernel

(0 Bytes in the example) and the stream in which we want to

enqueue the kernel command. The device shared memory is

a fast and local per SM scratchpad memory, accessible by

all threads within a block. Accessing it is considerably faster

than accessing memory devices located outside the SM (GPU

last-level cache, system DRAM). Requesting shared memory
dynamically via the triple bracket syntax on the host side, as

we just discussed, is useful whenever the size of the data to

be offloaded is not known at compile time. When the size of

the data is known at compile time it can be statically allo-

cated in shared memory by using the __shared__ variable

declaration specifier in the device code.

Note that commands are all pushed to the same

stream s, hence they will be executed on the GPU in

that same order. If by the time the CPU reaches the

cudaStreamSynchronize function call at line 18 the

GPU is still consuming the commands pushed to the stream(s),

then the CPU thread will block.

When using shared memory in the device code data must be

explicitly copied from/to the main memory. For performance,

memory accesses to the main memory (i.e. outside the SM)

should always be coalesced. Coalesced main memory ac-

cesses greatly improve the use of memory bandwidth, and are

achieved when parallel threads within the same warp access

contiguous memory locations; this enables combining different

memory access requests into a reduced number of coalesced

requests hitting the same cache lines.

III. GPU SCHEDULING HIERARCHY

GPU scheduling in NVIDIA architectures can be seen as a

hierarchical arbitration mechanism. As illustrated in Figure 4,

at the top level of the scheduling hierarchy lies the application
scheduler. A CUDA application might use multiple streams,

the scheduling of which involves different levels of the hier-

archy. Kernels launched in different streams are composed of

blocks of threads. More specifically, streams are pushed in a

FIFO queue. The thread blocks are then distributed among the

SM cores with a block scheduler. Finally, within the blocks
dispatched to the same SM, the last level of the scheduling

hierarchy manages the warps composing the currently active

CTAs (or blocks).

A. NVIDIA Application scheduler

A detailed description of the scheduling policy at the highest

level of the GPU arbitration mechanism has been presented in

[6] and [7]. At the driver-level, each application that needs

the GPU opens a number of channels, which are inserted

in a runlist. Each entry in the runlist is characterized by
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Figure 4: GPU scheduling hierarchy. Streams from S0 to Si belong to an application selected from the runlist.

a timeslice length and a priority value (low, medium and

high). This whole mechanism is therefore described as a work-

conserving TDMA (Time Division Multiple Access) among

channels, where each channel can be assigned multiple slots

within the runlist, according to its priority value, thus shaping

the sequence of slots for the TDMA round. Preemption

occurs at the end of the timeslice of the currently running

channel at different granularities: CUDA thread block or CTA

boundary, CUDA Kernel instruction boundary, or at pixel-

level in purely graphic contexts. We refer the interested reader

to the cited contributions for more in-depth discussion on

the NVIDIA interleaved scheduler and related response time

analysis. However, one detail is worth further investigation:

the cited contributions and the NVIDIA Drive 2 documentation

hint that only the channels belonging to a single application

are considered by the scheduler at a given time. In section

V-A, we will show that this is not always the case.

B. Stream scheduler

The stream scheduler is the entity in charge of arbitrat-

ing work submitted to different streams of an application.

Stream operations are introduced in FIFO order according

to their submission time. It is important to highlight that

CUDA streams relate to a single application. For example,

let us suppose the following scenario: Application A0 has 2

streams and Application A1 has 1 stream. If application A0 is

currently running, streams of application A1 are not supposed

to interfere with A0, as this is a direct consequence of the

isolation between contexts imposed by the NVIDIA applica-

tion scheduler. If A0 is running, then the stream scheduler

has to take a decision with respect to the streams utilized

by A0. Operations within the same stream are ordered in a

FIFO fashion and execute sequentially, whereas operations in

different streams are unordered and can execute in parallel.

Starting from the Maxwell GPU micro-architecture (featured

in the Jetson TX1 embedded board) and subsequent micro-

architectures, CUDA provides a runtime function call for

assigning priorities to streams. At the time of writing, all the

tested GPU micro-architectures (Maxwell, Pascal, Volta and

Turing) feature only two discrete levels of priorities (high and

low). If a low priority stream is currently occupying all the

compute resources of an SM, a kernel submitted later in time

on a high-priority stream can preempt the currently running

2https://www.nvidia.com/en-us/self-driving-cars/drive-platform/

kernel. In this case, preemption occurs at CTA boundary [8].

Further details about priority assignments of CUDA streams

can be found in [9].

C. Thread Block Scheduler: Block-to-SM mapping

In NVIDIA GPUs, SM identifiers range from 0 to the

maximum number of available SMs minus one. If all kernels

are dispatched to a single stream, thread blocks will be

distributed through all the available SMs in a RR fashion,

beginning with even-ID SMs and then proceeding with odd-ID

SMs in increasing ID order [10]. The thread block scheduler –

also called CUDA work distributor (CWD) in old architectures

– performs an occupancy test before assigning a block to

an SM, in such test, the status of each SM is inspected to

determine its current degree of resource utilization [3]. The

test aims at assessing whether the current occupancy is such

that a new block can be allowed into the target SM (i.e.,

if the unused compute and memory resources are sufficient

to satisfy the new kernel’s demand), with the final goal of

mapping thread blocks to SMs.

The factors that dictate the occupancy level of a ker-

nel are: (i) number of threads/warps per thread block; (ii)

shared memory per thread block; (iii) number of registers per

warp. An SM is considered fully utilized when all the warp

schedulers have some instruction to issue for some warp at

every clock cycle. When this happens, the latency of memory

operations is hidden. The CUDA Occupancy Calculator3 is

a publicly-available spreadsheet distributed by NVIDIA that

helps computing the theoretical occupancy of a target GPU

given a specific thread/block configuration. Combining the use

of this calculator with the architectural parameters obtained

via the deviceQuery command4, we derive Equation 1. This

formula can be used to obtain the percent utilization of thread,

shared memory and register resources.

Occupancy = max

(⌊MaxThreads

NWarp ∗ 32 ,
TSHM

(USHM + ε) ∗NB
,

dimRegFile

Regs ∗NWarps

⌋)
where NWarp =

⌈#Threads

32

⌉
(1)

MaxThreads is the maximum number of threads per SM;

TSHM represents the maximum amount of shared memory that

3https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
4A utility included in the CUDA SDK.
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can be used for a single block; and dimRegFile denotes the size

of the register file. These are all architecture-specific features.

We summarize these values in Table I, for all the tested GPUs.

NWarp indicates the number of warps already allocated

to the current SM, plus those requested by the new block,

i.e., the ones that the scheduler is trying to accommodate

on the SM, and it can be derived from the total number of

threads dispatched by the kernel (#Threads). USHM is the

shared memory allocated by the kernel already in execution

on the SM, plus that requested from the new kernel block. ε
represents a minimum threshold of 3KB of allocated shared

memory, below which the scheduler disregards shared memory

usage when deciding where to allocate the new kernel to. More

details are provided in Section III-C2. NB is the number of

blocks already launched. Similarly, Regs is the number of

registers used by the kernel already allocated to the SM, plus

those requested by the new kernel.

Normally, an expert programmer tries to maximize the

occupation of the GPU, with the aim of improving the

performance. Distributing the workload across the multi-

dimensional thread grid (i.e., determining the number of

threads/warps per block) is a means to maximize the SM

occupancy value, just like sizing the data structures so as

to use as much shared memory as possible. Playing with

register usage is also controllable to some extent, as the

programmer can limit the number of registers available for

each warp during compilation. However, while in general

low occupancy implies low instruction issue efficiency and

thus sub-optimal kernel performance, maximizing occupancy

does not necessarily lead to minimizing kernel execution

times [11], as typically one of the three resources is saturated

much earlier than the others5. The general assumption made

in all previous work is that thread blocks are scheduled with

a round-robin policy, provided that the maximum occupancy

of an SM – as given in Equation 1 – is not exceeded. In

the following sections, we show that this assumption is not

always correct when multiple streams are used. In particular,

we analyse separately the cases where each of the three terms

in Equation 1 dominates (i.e., each of the three resource types

is saturated), and derive models to describe the cases where

block-to-SM mapping does not comply with the RR policy.

1) Block Scheduling when Thread Usage is Maximum:
In contrast to the default round-robin policy, some specific

configurations of blocks belonging to kernels coming from dif-

ferent streams cause the block scheduler to counter-intuitively

allocate more than one block to the same SM, even if other

SMs are idle.

We first focus on thread usage, neglecting register and

shared-memory resource constraints in the kernel configura-

tions of the submitted streams. In other words, the second and

third terms of Equation 1 are dominated by the first term.

Unless otherwise stated all the following experiments are

5And, in particular, typically programmers mostly focus on maximizing
thread usage.

conducted on top of the Xavier platform (Volta GPU archi-

tecture), assigning an identical priority value to all involved

CUDA streams. The maximum thread count for a single block

is 2048 (64 warps) per SM. We assume all SMs to be initially

idle. Two streams are launched, each stream having a single

kernel in its queue. Each kernel is composed of one block.

In order to determine how blocks are mapped onto SMs,

we vary the number of threads (i.e., warps) per kernel and

report the results of all the possible permutations in Table II.

Varying the number of warps per kernel allows us to analyze

the rationale behind the heuristic used to perform the block-

to-SM mapping. This can be achieved by simply varying

the number of threads within a block (see grid creation in

Line 11 of Listing 3). To retrieve in which SM each block

is scheduled, a thread per block performs a read from a

special register. Specifically in device code, a thread with local

ID equal to 0 executes the following assembly instruction

asm volatile(”mov.u32%0,%%smid; ” : ” = r”(smid));
This instruction returns the identifier of the SM on which a

particular thread is executing.

Note that the same table correctly captures the behaviour

of older architectures, as identical results were obtained in

Maxwell- and Pascal-based chips. The first two columns and

rows of the table show the number of threads and warps used

by the first stream (rows) and the second stream (columns),

respectively. Each other cell indicates the number of warps

that an SM can still accommodate after the warps from the

first stream (shown in the rows) have been assigned. We

use color coding to indicate the cases when the scheduler

chooses a different mapping than the default round-robin

policy. More specifically, white cells show the cases when the

two blocks are distributed to different SMs (the default policy),

whereas light gray cells show the cases when both blocks

are mapped onto the same SM. For instance, considering a

launch configuration where the first stream uses 32 threads (1

warp) and the second stream uses 96 threads (3 warps), Table

II reveals that both blocks are allocated onto the same SM,

overriding the default round-robin policy. From the analysis

of the whole table we can infer the following scheduling rule:

Definition III.1. Let mw be the maximum number of schedu-
lable warps per SM. Given a block with x warps launched by a
stream and allocated to a given SM, a second block composed
of y warps and launched by a different stream gets allocated
to the same SM, if the following condition holds:

mw − x ≥
(⌊mw − y

y

⌋
+ 1

)
y (2)

It can be observed that light gray cells appear only above

the numbers in the diagonal (underlined in the table). These

numbers have the form mw − x, or rather mw − y, as in the

diagonal x = y. Furthermore it can also be seen that these cells

correspond to the cases when the number of remaining warps,

mw − x, is greater than or equal to the smallest number that

is multiple of y and lies above the diagonal, i.e. both blocks
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Table I: Different NVIDIA architectures and main related features.

Jetson TX2 (Pascal)
# Multiprocessors 2
# CUDA Cores per SM 128
Maximum number of
schedulable threads per SM

2048

# registers per block 65536
Total SHM per block 48KB
L2 cache size 512KB

Jetson Xavier (Volta)
# Multiprocessors 8
# CUDA Cores per SM 64
Maximum number of
schedulable threads per SM

2048

# registers per block 65536
Total SHM per block 48KB
L2 cache size 512KB

Pegasus AGX (Discrete Turing)
# Multiprocessors 44
# CUDA Cores per SM 64
Maximum number of
schedulable threads per SM

1024

# registers per block 65536
Total SHM per block 48KB
L2 cache size 4MB

Table II: Block-to-SM mapping common to the Maxwell, Pascal and Volta architecture.

are allocated to the same SM if and only if mw − x ≥ k · y,

where k = �(mw − y)/y�+1. These observations provide the

rationale for Equation 2.

Performing the exact same experiment on the Drive AGX

Pegasus platform, which includes two discrete Turing GPUs

and whose maximum number of threads per SM is 1024,

results in Table III. By examining this new table, we can

verify that our block allocation rule applies if we consider

mw = 32. Moreover, further experiments (not included due to

space constraints), where the maximum number of schedulable

warps varies, show that we can extend the previous scheduling

rule in the following manner:

Definition III.2. Given a block with x warps launched by a
stream and allocated to a given SM, whose total number of
allocated warps was z prior to the allocation, a second block
composed of y warps and launched by a different stream gets
allocated to the same SM, if the following condition holds:

(mw − z)− x ≥
(⌊ (mw − z)− y

y

⌋
+ 1

)
y (3)

This indicates that from a warp occupancy point of view, a

Turing SM with 0 scheduled warps (mw = 32, z = 0) behaves

in the same way as a Maxwell/Pascal/Volta SM with 32 warps

already scheduled (mw = 64, z = 32).

This scheduling rule can be applied to kernels from different

streams even if they are dispatched using multiple blocks per

invocation. To explain this concept, a visual representation

of two different scenarios performing a basic Mandelbrot
computation dispatched in two streams is shown in Figure 5.

To perform this experiment we used the CUDA scheduling

mirror6. Specifically, in this experiment we consider two

streams, S0 and S1, each featuring one kernel composed of 4

blocks. In a first experiment we consider that S0 and S1 are

launched with 128 threads (4 warps) each. This is illustrated

on the left side of Figure 5. As per the default mapping policy

(i.e., round-robin), all blocks of S0 and S1 are fairly distributed

across the SMs because all the blocks are dispatched with

the same number of threads. In a second experiment (results

shown on the right side of Figure 5) S0 is launched with 128

threads (4 warps) and S1 with 160 threads (5 warps) for each

block. In this case it is observable that the mapping process

performed does not follow a round-robin policy.

Let us consider the latter case in more detail. Following the

described rules, the first 4 blocks of S0 will be mapped onto

SMs 0, 2, 4 and 6. To analyze where the blocks of S1 are

mapped, we evaluate Equation 2 for each SM. S0 launches 4

warps and S1 launches 5 warps, so x = 4 and y = 5. When

S1 is dispatched, the first condition that the block scheduler

evaluates is if there are enough available resources to schedule

the first block of S1. This condition is satisfied since there are

6https://github.com/yalue/cuda scheduling examiner mirror
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Table III: Block-to-SM mapping of the Turing architecture.

Figure 5: Streams S0 and S1 executing 2 instances of the

Mandelbrot kernel. Block-to-SM mapping and related execu-

tion time is shown in case of (left) expected round-robin and

(right) anomalous block-to-SM mapping.

4 SMs executing 4 warps and the rest of SMs are empty.

Then the condition from Equation 2 is evaluated first against

the current occupancy of SM 0. Thus,

64− 4 ≥
(⌊ (64− 0)− 5

5

⌋
+ 1

)
5

Hence, 60 ≥ 60. Equation 2 holds, therefore the first block

in S1 will be mapped onto SM 0. Then, the scheduler will

consider the second block of S1, and will check it against the

same condition on the same SM 0, but this time with a different

outcome. Hence, the same condition will be tested against the

actual occupancy of SM 2 (recall that SMs with even IDs

will be considered before the whole set of SMs with odd

IDs). This will cause the second block of S1 to be scheduled

in SM 2. Eventually, all the blocks in S1 will be scheduled

onto the same SMs used by stream S0, leaving half of the

SMs idle. This may cause severe under-utilization issues of

GPU resources, potentially harming performance and leading

to larger worst-case response time bounds for both kernels.

Load Balancing: There are some scenarios, where the

behavior of the thread block scheduler that we discussed so far

does not hold, as the thread block scheduler aims at equally

distributing the workload through the SMs. For instance, let

us consider a kernel in a stream that launches 7 blocks, each

containing 192 threads (6 warps). Assuming the GPU was

initially fully idle, following the default scheduling rule, each

block gets assigned to a different SM, leaving only one of

the SMs idle. Let us now assume that two kernels from

two streams, each kernel composed of only one block, are

launched. Depending on the number of warps of the first

kernel, its only block is assigned to either one of the non-

idle SMs or to the empty one, according to Equation 3.

Table IV reports the allocation of the second kernel with

respect to the first one, when the number of threads/warps

composing the kernels vary. The first column and row repre-

sent the number of warps used by the first and second stream,

respectively. Akin to the previous tables, numbers in the other

cells indicate the number of remaining warps, after the first

block is assigned to an SM. White cells denote the cases when

the two blocks are mapped onto different SMs, light and dark

gray cells denote scenarios where blocks are assigned to the

same SM. Equation 3 predicts the block distribution encoded

by white and light gray cells, but it fails to anticipate the

block-to-SM allocation given in the dark-gray ones.

To better understand how the load balancing mechanism

works we present the following experiment. In this experiment

we assume that 6 SMs are occupied with one block of 512

threads (16 warps), then, the objective is to schedule 16 blocks

of 64 threads (2 warps). The fact that all 16 blocks are assigned

to the initially unoccupied SMs suggests that the scheduler

aims at balancing the load of all the SMs. However, if the

goal is to schedule 16 blocks of 128 threads (4 warps) instead,

while the first 8 blocks are mapped onto the initially empty

SMs, the remaining blocks are distributed among all the SMs.

In other words, when all the SMs reach a balanced state, the

distribution of the blocks turns to be round-robin until the

number of warps per block change.

By repeating the experiment for a large number of scenarios

where the work among the SMs is not evenly distributed, we

can infer an extra allocation rule:

Definition III.3. If initially each of the available SMs, except
for one, is occupied by a block composed of z′ warps and
launched by the same stream, given a block with x warps
launched by a second stream and allocated to a specific SM,
a new block composed of y warps and launched by a third
stream is to be allocated to the same SM, if the following
condition holds:
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mw − z′ <
⌊mw − x

y

⌋
y ≤ mw − x (4)

Akin to the derivation of Equation 2, it can be noticed that light

gray cells show up, when (i) the number of warps left after

the allocation of the block with x warps, mw − x, is greater

than or equal to the largest number that is multiple of y and

is less than or equal to mw − x, i.e. mw − x ≥ k′ · y, where

k′ = �(mw − x)/y�, and (ii) this number, �(mw − x)/y�·y, is

greater than the number of warps left in the SM where a block

with z warps was allocated, i.e. �(mw − x)/y� ·y > mw−z′.
Combining both conditions yields Equation 4.

In conclusion, our understanding is that the scheduler

first attempts to find an allocation by means of Equation 3,

resorting to Equation 4 if the first condition is not satisfied.

This fact sheds light on the rationale behind the scheduler

operation. Maximizing the utilization of the SMs appears to

be the highest priority. After that, decisions are made so that

the number of warps across all SMs stays balanced. Even

though the complete block scheduling algorithm is not yet

fully comprehended, as we still need to discern how the

scheduler behaves when the number of initial warps (z′) in

Equation 4 is not constant, we believe that the presented

rules lay the foundations for revealing the hidden details of

NVIDIA block scheduler.

2) Block Scheduling when Shared Memory and Register
Usage is Maximum: In this section we evaluate the scheduling

mechanisms when the dominating term in Equation 1 is the

amount of requested shared memory. We performed another

experiment in which we first launch a stream S0 that uses a

variable amount of shared memory and then another stream

(stream S1) that does not use shared memory at all. The

number of threads/warp per kernel per stream is such to avoid

saturation of the capacity of the involved SMs. According

to our experiments, the impact on scheduling given by the

requested shared memory is considered when a kernel is

allocating more than 3KB of shared memory. For shared mem-

ory allocations lower than such a threshold, the scheduling

mechanism is still dominated by the considerations highlighted

in the previous section. Once the kernel in S0 reaches the

3KB shared memory allocation threshold, our experiments

show that the block-to-SM mapping reacts for every 256B

increment of the requested shared memory allocation. It is

worth mentioning that, 256B matches with the granularity

of shared memory allocation that can be found in the file

cuda occupancy.h.

Previous work [9], [12] has shown that when shared memory

is used in conjunction with multiple streams, such streams are

forced to run sequentially. We have found that this issue can

be controlled via an advanced CUDA feature, that allows the

developer to configure the amount of L1 cache and shared

memory that the kernels will use (the cudaFuncSetCacheCon-
fig runtime function). If two kernels from different streams are

dispatched with different L1/shared configurations, then the

kernels belonging to those streams will indeed be forced to run

sequentially, even if the actual resource occupancy of the SMs

would allow a parallel execution. However, it is sufficient to

ensure that the kernels have identical configurations to restore

the parallel execution.

Evaluating register pressure as the dominating factor for

determining the number of active block in an SM (i.e., the

third term of Equation 1) is next to impossible. We observed

from experimental results that the impact on scheduling given

by the register usage dominates when a kernel is using more

than 32 registers (provided that the SM is not already saturated

by shared memory allocations or scheduled warps). If a kernel

uses less than 32 registers, the scheduling mechanism is

still dominated by the effect of shared memory allocations

and/or the threads per block configuration. Experimenting with

register usage per kernel is difficult: however, it is possible to

limit the register usage for kernels by using the –maxrregcount
compilation flag.

Lesson learned:
The CUDA API lacks features for mapping blocks onto spec-

ified SMs. Unfortunately, the CUDA Multi-Process Service

(MPS) that allows to partition applications into SMs is not sup-

ported on NVIDIA embedded solutions, hence the developer

has to avoid the pathological cases described in this section.

To this end, we derived a model to understand block-to-SM

mapping, as correctly predicting the number of active blocks

per SM and how they are partitioned among the SMs is a

crucial factor that impacts both performance and predictability

when multiple streams are considered. Moreover, the presented

findings allow to create smart strategies to schedule multiple

CUDA kernels and efficiently utilize the different resources

provided by the GPU.

IV. INSIDE THE SM: THE WARP SCHEDULER

The thread block scheduler pushes thread blocks into the

different warp schedulers of each SM. Each SM features two

functional units, namely, a certain number of warp schedulers
and their respective instruction dispatch units. The warp

scheduler organizes ready-to-execute instructions from a set of

available and ready warps, while the instruction dispatch unit

forwards instructions to the GPU’s SIMD cores. For instance,

inside the SM of a Pascal GPU, two warp schedulers and two

dispatch instruction units are present. This implies that each

warp scheduler is able to launch two different instructions at

each clock cycle if these instructions are independent.

Experimental results and publicly available documents [13]

show that the warp scheduler used in Maxwell, Pascal, Volta

and Turing architectures is the Loose Round Robin (LRR)

scheduler [14]. Under this policy, warps are scheduled in

a round-robin manner. When a warp reaches an unsatisfied

dependency (for instance, a global memory miss), it stalls, so

that the next ready warp can be scheduled. This scheduling

policy allows hiding memory accesses if there are enough

warps ready to execute in order to guarantee fairness among

warps.

While the warp scheduling mechanisms remained the same

along all NVIDIA GPU generations, an important micro-
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Table IV: Load Balancing threshold

architectural improvement has been introduced starting from

the Volta architecture, i.e., including dedicated FP32 and

INT32 ALU pipelines. This allows the instruction dispatch-

ing unit to simultaneously execute both floating point and

integer operations, so that a kernel can now interleave inte-

ger arithmetic with floating-point computations. This aspect

becomes crucial when assessing the Worst Case Execution

Time (WCET) of a warp, as the presence of operation-type

dedicated units dramatically impacts the execution time of the

lockstep model. A simple experiment can show the magnitude

of such effects. We launch one kernel with a single block

composed of 512 threads, so as to saturate the capacity of the

ALUs within a single SM. In a first iteration, we force all the

16 warps of the block to only perform operations on double

precision variables, and we define the total block execution

time as our baseline. Then, 8 out of the 16 warps within

the block are changed to perform only integer operations. We

perform this experiment on the NVIDIA Jetson TX2 (Pascal

architecture) and on the Jetson Xavier (Volta architecture).

Results are shown in Figure 6.

Figure 6: Interleaving of pointer arithmetic with FP computa-

tions

The execution time of the single block changes when all

the warps perform floating point calculation (FP) and half

of the warps perform integer operations (FP/I). The number

of warps within the submitted block is such that all the

non-specialized ALUs are saturated in the Pascal architecture,

hence there is no significant difference in response time when

mixing the two kinds of operations. In Volta, floating point

ALUs are saturated, but integer specific cores can process the

8 integer-only warps in parallel with the floating point warps,

halving the total execution time of the block.

Lesson learned:
One of the issues raised in [12] is that the conclusions drawn

by reverse engineering GPU scheduling mechanisms might

have to be corrected when future architectures are released.

The experiments shown in this section confirms this latest

assertion, e.g., the independence of floating point and integer

ALUs can indeed play a significant role in WCET estima-

tion of CUDA blocks. The fact that modern NVIDIA GPUs

are moving towards architectures characterized by operation-

specific logic, as opposed to generic CUDA cores, imposes

additional considerations when schedulability issues are in-

volved. As an example, consider tensor cores, e.g., a specific

logic to compute tensor operations featured in Volta and Turing

GPUs. Even if we are unable to show the related experiments

for space constraints, we observed that also tensor cores are

independent from integer and floating point ALUs.

V. OUTSIDE THE SM

We would like to explore the factors that influence response

time analysis in a CUDA application composed of a plurality

of streams. While the previous section focused on the con-

tention within a single SM, this section analyzes the impact

of the mechanisms outside the SM where the CUDA blocks

under observation are executed.

A. Copy Engine to Execution Engine interference

As highlighted in section III-A, the NVIDIA application

scheduler, i.e., the one located in the highest scheduling

hierarchy, is designed to have only one application executing

on the GPU engines at a given time. This is easily verifiable by

dispatching GPU work from different host-side processes [15].

However, the following experiments show that an application

can use the copy engine while another application dispatches

a kernel in the execution engine. In the experiment depicted

in Figure 7, we measured the execution time of a vector

add (50MB of data footprint) along with a variable number

of processes that perform two different operations using the

copy engine: the memcpy (cudaMemcpy) and the memset
(cudaMemset). Both these memory operations are executed

periodically on pinned memory allocations, i.e., by allocat-

ing device-only visible memory through cudaMallocHost and

cudaMalloc. Each interfering process executes a memcpy or

memset on a single non-default stream. These experiments

have been conducted in the Jetson TX2 and Xavier platforms.

The difference in the response time with respect to the base-

line is noticeable. Hence, we can conclude that the NVIDIA

application scheduler may co-run different applications, break-

ing their temporal isolation when requiring different engines.

The implications may be substantial, in that the GPUs DMA

transfers operated through the copy engine can easily saturate
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Figure 7: Memory interference caused by EE and CE co-run with a varying number of processes: Jetson TX2 (left) and

embedded Xavier (right).

the total available bandwidth of the system RAM. In the Pascal

architecture, this causes deterioration in the kernel response

time up to almost 3x for memcpy operations and up to almost

8x for memset commands. Similar conclusions can be drawn

for the Volta integrated GPU.

Another experiment considers the memory interference

when varying the footprint of the kernel under observation.

Specifically, we launch a kernel performing a vector add with

a variable memory footprint (from 512KB to 500MB). Then,

we add an interfering process performing either a memset or

a memcpy on a fixed size working set (50 MB). The results

are shown in Figure 8. As expected, the interference impact

is more noticeable at higher footprints.

Lesson learned:
As the NVIDIA scheduler separately arbitrates EE and CE,

it is important to take into account the memory interference

due to copy operations performed by co-running jobs, be they

from the same process, or from different processes.

B. GPCs and shared memory bus

As already highlighted in section II, an NVIDIA GPU

is partitioned into SMs, which themselves are grouped into

larger clusters called Graphics Processing Clusters (GPC). For

instance, the integrated GPU in the Xavier embedded platform

features 8 SMs and 4 GPCs. Hence, each GPC is composed

of two SMs. The first GPC groups the SMs with ID 0 and

1, the second GPC groups the SMs with ID 2 and 3, and so

on. As mentioned in section III-C, the round-robin mechanism

forces blocks to be scheduled first in SMs with even IDs and

then in those with odd IDs. Previous works [16] focused on

the interference produced in the memory hierarchy, however

none of these works distinguished between the interference

caused by blocks scheduled in the same or in different GPCs.

In the following experiment, we performed a vector add on

the Xavier platform. The baseline workload executed a single

kernel with 4 blocks, utilizing 4 SMs (0, 2, 4 and 6) on 4

different GPCs. This causes each GPC to have one idle SM.

The completion time of the kernel block scheduled in SM 0 is

shown in the baseline curve of Figure 9, varying the working

set size of the vector add. Then, we launched an additional

kernel on a different stream, performing another vector add on

a single block. This block is scheduled in SM 1, thus causing

the first GPC to be fully utilized. The interfering effect on the

execution time of the original block in SM0 is shown in the

dotted curve of Figure 9. If the interfering kernel is instead

launched on a different GPC (e.g., in SM3), the interference

is milder, as shown in the dashed curve of the figure.

Note that the interference is not caused by sharing ALUs

(i.e., CUDA cores), as blocks are scheduled in different SMs,

but it is due to memory contention. The contention is higher

in case of intra-GPC interference (up to 10x), since in this

case the warps share the same bus for accessing GPU L2 and

system RAM.

Lesson learned:
Interference on the GPU memory hierarchy can significantly

impact response times of tasks submitting commands to more

than one stream. More specifically, the WCET of a single

observed CUDA block can increase up to 10x if a memory

bound kernel block is scheduled onto the same GPC. If the

interfering block runs on a different GPC, contention is still

present, although to a lesser extent. Interestingly, by following

equations 2-3, the NVIDIA block scheduler initially distributes

blocks with the same dimensions in a round-robin fashion,

starting with SMs with an even index and then proceeding

with the ones with an odd index. In this way, the scheduler

mitigates any possible memory interference among SMs that

are part of the same GPC.

VI. RELATED WORK

In [17], Jia et al. presented an extensive analysis of the

NVIDIA Volta GPU architecture, unveiling many architectural

details, such as instruction latencies and warp scheduler de-

tails, by means of microbenchmarking. While this work de-

rived important considerations for a schedulability analysis of

CUDA-enabled applications, it did not discuss CUDA threads

scheduling details and the related predictability pitfalls. In our

work, we detailed how scheduling works in NVIDIA GPU-

accelerated systems, highlighting the predictability and per-

formance threats given by memory interference (Section V).

In [9], an analysis is presented of the scheduling behavior of

the NVIDIA Jetson TX2 platform. The authors acknowledge

that it is not possible to confirm with certainty the scheduling

behavior of the GPU through black-box experimentation. In

contrast, we were able to achieve a deeper understanding of
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Figure 8: Memory interference memset and memcopy, TX2 (left) and Xavier (right).

Figure 9: Memory interference at inter/intra GPC level.

the behavior of the GPU scheduler through reverse engineering

and by performing simple experiments. This allowed us to

correct misstatements or errors found in previously published

works. For example, we have shown that the policy adopted

by the CUDA thread block scheduler to assign blocks to SMs

may be different from the round-robin policy assumed in [4],

[18], [19]. Moreover, we shed some light on the hidden and

implicit inter-stream synchronization points assumed in [9],

[12] when launching multiple CUDA streams with different

shared memory requirements. Correctly inferring the details of

the block scheduler is important also to correct the many works

that propose CUDA stream reordering mechanisms assuming

round-robin policies [20], [21], [3].

Existing works motivated GPU concurrency [22], [23] as a

means to improve GPU resource utilization and, consequently,

throughput. Rodinia [24] and Parboil [25] are well-known

benchmark suites for heterogeneous platforms designed to

evaluate the performance of different APIs and programming

models (e.g., OpenMP, CUDA, OpenCL). In [10], a compre-

hensive set of measurements is presented to assess the resource

utilization of Parboil2 and Rodinia on a Fermi architecture.

Architecturally, Fermi (released in 2010) has 32768 registers

available per block, 49152 bytes of shared memory per block

and a maximum number of 1536 threads per SM. Specifically,

Parboil2 benchmarks present an average under-utilization of

40% of threads and blocks, 30% of registers and 80% of

shared memory. On the same line, Rodinia under-utilizes 35%

the number of threads, 47% on the number of registers, 88%

on the amount of shared memory and 52% on the number of

blocks that are defined in the kernel invocation. In [26], Karki

et al. present a benchmark suite that evaluates different deep

neural network (DNN) architectures from a temporal and a

spatial perspective. The metrics considered in this analysis are

grid dimension, block dimension, shared memory usage and

register utilization. Experimental results show that in many

cases inference on the networks under-utilizes GPU resources.

For instance, SqueezeNet, VGG or CifarNet are described by

kernel configurations that are unable to dispatch thread blocks

in all the available streaming multiprocessors, hence severely

under-utilizing the GPU computing resources. Paras Jain et

al. in [27] claim that small inference batch sizes can lead the

GPU to low utilization under 15%.

In this regard, most neural network topologies can be mod-

elled as sequences of operations, e.g., sequentially executing

inference layers. However, other popular neural network mod-

els also feature parallel layers in which precedence constraints

are relaxed. As an example, GoogleNet [28] is a convolutional

neural network composed of 22 convolutional layers, featuring

a large number of inception modules [29]. Each inception

module is a convolutional subnetwork that integrates four

parallel and independent layers. Unfortunately, most of the

APIs for tensor processing, such as Tensorflow or Keras, do

not natively support the parallel execution of layers within

the same GPU, hence leading to a severe under-utilization.

Another example is given by the Apollo Autonomous Driving

framework, which can present up to seven instances of DNN-

inference work concurrently running [30], e.g., by having a

single process dispatching work through many CUDA streams.

VII. CONCLUSION

In this work, we provided an exhaustive overview of the

different arbitration mechanisms that characterize an NVIDIA

GPU-accelerated platform. Through extensive experiments we

showed that a number of previously accepted assumptions

with regards to CUDA streams and block scheduling were

incomplete, potentially leading to wrong conclusions. We

therefore inferred the different heuristics employed by the

hierarchical scheduling scheme adopted by the NVIDIA GPU

subsystem, so as to consolidate previously published assump-

tions. Our experiments showed that a precise understanding

on the arbitration mechanisms is of paramount importance

for deriving a sound schedulability analysis and to maximize

GPU’s resource utilization. As future work, we aim at exploit-

ing such results to provide more accurate timing bounds for

GPU-accelerated workloads. We also plan to derive stream

re-ordering mechanisms that are able to fully utilize GPU

parallelism while guaranteeing predictability.
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