
Truth, Science and Software
Engineering: A View from the

Trenches
W. Michael McCracken
College of Computing

and
EduTech Institute

Georgia Institute of Technology

A talk given at the Leaders in Software Engineering Education Luncheon
Conference on Software Engineering Education and Training

March 23, 1999

Software

• Too broad a term to describe anything
• Jackson - “The ability to build a machine by

simply describing it”
• A system that interacts within a context and

with humans
• Winograd - “A medium for creating virtualities

- A world in which the user of the software
perceives, acts, and responds to
experiences”

Constructed Artifacts and
Intangible Artifacts

• Architects and Engineers Construct Physical
Artifacts for Use

– They are constrained by nature which creates numerous
opportunities as well as frustrations

» Design costs are secondary to construction costs
» Standard parts, reusable components, trade

practices occur easily

• Software Engineers Construct Stuff
– They are constrained by nothing but their imagination

» Design costs dominate
» Reinventing the wheel is the standard practice

A Simple View of Software

• Engineering Software - Software for machines
– The augmentation of human physical ability by means of

devices controlled by computation
» A fuel control system on an automobile
» A power distribution system
» A product distribution management system

• Human Software - Software for people
– The augmentation of human intellect by means of

computation
» A word processor
» A decision support system
» A piece of educational software

Implications of the Simple
Model

• Engineering Software can be understood,
modeled and analyzed using standard
engineering methods

– A flight control system, whether hydraulic or fly by wire,
implements the same function.

• Human Software cannot be understood,
modeled or analyzed using standard
engineering methods

– Those darn users just don’t do what they are supposed to
do

Design of Human Software
(Interactive Systems)

• Is focused on the creation of usable computer
artifacts

• Is the creation of solutions to ill-structured
problems

• Is dominated by issues of problem
understanding

Where are we?

• Software is not harder or easier, just different
– Intangible artifacts
– Context of use is with humans
– Relatively young
– Has no constraints

Problem

• The current approaches of teaching engineering
(science)/computer science are in conflict with the
learning of software engineering

Truth and Science

• The teaching and learning of science
– Science is the accumulation of factual knowledge about the

universe we live in
– Science learning is about how to assimilate the facts of

science, and how to create those facts

Engineering Science

• Early engineering was experimental and heuristic
• Engineering science is the application of

scientific principles to the design of artifacts
• A body of factual knowledge guides engineering

design
• Methods of teaching engineering science follow

the model of science education

Computer Science

• By name - An attempt to attach science to the
generation of computational artifacts

• By discovery - The accumulation of factual
knowledge about computing (proofs of
correctness, complexity theory, turing machines,
unified models of cognition, etc)

• By reaction - To deflect criticism at a young field
• The teaching of computer science follows the

method of science education

A Sidetrip into Education

• Most university education continues the theme of
the acquisition of factual knowledge (learn
science not by how it is discovered, but by
studying the results of the discoveries, I.e, factual
knowledge)

– Individual doses of deconstructed facts
– Students are expected to integrate the facts on their own

Models of Designing

• A means of describing the activities of
designers

– By describing the activities of experts and novices we
may be able to understand how to teach design.

• There are many studies of design in
architecture, engineering, and a few in
software development we can take advantage
of

Models of Software Designing

• Jeffries , Turner, Polson, and Atwood
– Schema based
– Novice versus Expert Designing

• Adelson and Soloway
– Goals and Operators of Design

• Guindon and Curtis
– Schema based
– Design Breakdowns

What these models tell us

• Software designers are similar to other
designers

– Generation of alternatives
– Evaluation of alternatives against constraints
– Iteratively refine problems and solutions
– Move between multiple layers of abstraction
– Use cases from prior experience
– Have an overall high level control to manage design

process

Deficiencies of the models

• Don’t explicitly concern themselves with
learning to design

• Minimally integrate the tools of design (e.g.,
ac circuit analysis, or algorithm analysis) with
design processes

Another Model of Software
Design

Design Manager

Design Engine

Design Controller

Domain Knowledge
General Design Guidance
Question Asking

Domain Independent Design Invariants
Iteration, generation of alternatives,
use of artificial symbol systems, problem
formulation, etc.

Domain dependent and independent
skills, methods, etc. (e.g., math,
science, analysis, synthesis)

Design Engine

Domain Specific
Skills

General
Skills

Domain
Knowledge

General
Knowledge

The Design Engine solves well structured problems
It is developed through typical engineering or computer science education.
It is the tools of designing (math, analysis, physics, etc.)

.

.

Design Controller

Problem Struct.
Dist. Prob. Solv
Phases Rev. Direction Modularity Increment. Dev Ctl Struct

Make and Prop
Commitments

Pers Stopping
Rules and Eval

Memory Retriev
nondem. inference

Const and Manip
Models

Abstraction
Hierarchies

Artificial Symbol
Systems

The Design Controller forms well structured problems from ill-structured
problems for the Design Engine to solve
It is developed by actual design activity. Not from solving “toy” problems.

Design Manager

Question Asker

The Design Manager opportunistically controls design activities
Should I consider the economic implications of this approach?
Why don’t I explore this previous design that appears related
to the current problem
Why don’t I try this unrelated path to see if it exposes some
element of the problem I am overlooking

The design manager develops primarily through experience, but can be
developed by by appropriate problem selection at the university level.

Learning to Design
• The Engineering Science View (seek the truth)

– A body of factual knowledge guides engineering design.
Learn those facts and you can design

– This leads to a robust design engine

• The Computer Science View (seek what
appears to be the truth)

– Attempts to achieve an engineering science of computing
– This leads to a robus design engine

Teaching Design

• University based models of design teaching
– ID/Architecture use immersive techniques

» Design studios throughout the curriculum interspersed
with factual knowledge learning

» This attempts to initiate development of the design
manager, develops a robust design controller, and may
develop a less than robust design engine

– Engineering uses capstone models
» An integrative course at the end intended to tie everything

together in a semester
» This typically adds little to the design controller, and

fosters a belief in students that the design engine can
solve all design problems

Teaching Design (cont.)

– Computer science doesn’t know what it uses
» Most programs have some type of software engineering

course that is fact based (survey) but there is little
understanding of what design is (algorithm design is not
design)

– Software engineering uses the engineering model (most
existing MSSE programs)

» Feed them some stuff and wrap it up in a project course

The Impact of Truth Seeking on
Designing

• A robust Design Engine
– Algorithmic approach to all problems
– Single point solution fixation
– Design stuckness
– Case indices are narrow

• Rudimentary or no Design Controller
• Design Manager is naive if it exists

Our Research Tells Us

• Isolated islands of knowledge are constructed
in most design education programs

• Capstone courses don’t support construction
of design controller and manager

• Design is an integrative activity, and should
be taught as an integrative activity

• Design engines need to be constructed that
are accommodating of change

Conclusion

• Design uses truth
• It doesn’t

– Create truth
– Adhere to truth
– Lend itself to mechanisms that prescribe, and measure truthful

activities

