Truth, Science and Software
Engineering: A View from the
Trenches

W. Michael McCracken
College of Computing
and
EduTech Institute
Georgia Institute of Technology

A talk given at the Leaders in Software Engineering Education Luncheon
Conference on Software Engineering Education and Training
March 23, 1999



Software

Too broad aterm to describe anything

Jackson - “The ability to build a machine by
simply describing it”

A system that interacts within a context and
with humans

Winograd - “A medium for creating virtualities

- A world in which the user of the software
perceives, acts, and responds to
experiences”



Constructed Artifacts and
Intangible Artifacts

e Architects and Engineers Construct Physical
Artifacts for Use

— They are constrained by nature which creates numerous
opportunities as well as frustrations

» Design costs are secondary to construction costs
» Standard parts, reusable components, trade
practices occur easily
o Software Engineers Construct Stuff
— They are constrained by nothing but their imagination
» Design costs dominate
» Reinventing the wheel is the standard practice



A Simple View of Software

 Engineering Software - Software for machines

— The augmentation of human physical ability by means of
devices controlled by computation

» A fuel control system on an automobile
» A power distribution system
» A product distribution management system

« Human Software - Software for people

— The augmentation of human intellect by means of
computation

» A word processor
» A decision support system
» A piece of educational software



Implications of the Simple
Model

 Engineering Software can be understood,
modeled and analyzed using standard
engineering methods

— A flight control system, whether hydraulic or fly by wire,
implements the same function.

« Human Software cannot be understood,
modeled or analyzed using standard
engineering methods

— Those darn users just don’t do what they are supposed to
do



Design of Human Software
(Interactive Systems)

» Is focused on the creation of usable computer
artifacts

e |s the creation of solutions to ill-structured
problems

e Is dominated by issues of problem
understanding




Where are we?

o Software is not harder or easier, just different
— Intangible artifacts
— Context of use is with humans
— Relatively young
— Has no constraints



Problem

 The current approaches of teaching engineering
(science)/computer science are in conflict with the
learning of software engineering



Truth and Science

 The teaching and learning of science

— Science is the accumulation of factual knowledge about the
universe we livein

— Science learning is about how to assimilate the facts of
science, and how to create those facts



Engineering Science

Early engineering was experimental and heuristic

Engineering science is the application of
scientific principles to the design of artifacts

A body of factual knowledge guides engineering
design

Methods of teaching engineering science follow
the model of science education



Computer Science

By name - An attempt to attach science to the
generation of computational artifacts

By discovery - The accumulation of factual
knowledge about computing (proofs of
correctness, complexity theory, turing machines,
unified models of cognition, etc)

By reaction - To deflect criticism at a young field

The teaching of computer science follows the
method of science education



A Sidetrip into Education

 Most university education continues the theme of
the acquisition of factual knowledge (learn
science not by how it is discovered, but by
studying the results of the discoveries, l.e, factual

knowledge)
— Individual doses of deconstructed facts
— Students are expected to integrate the facts on their own



Models of Designing

A means of describing the activities of
designers

— By describing the activities of experts and novices we
may be able to understand how to teach design.
 There are many studies of design in
architecture, engineering, and afew iIn

software development we can take advantage
of



Models of Software Designing

e Jeffries , Turner, Polson, and Atwood
— Schema based
— Novice versus Expert Designing

 Adelson and Soloway
— Goals and Operators of Design

e Guindon and Curtis
— Schema based
— Design Breakdowns



What these models tell us

o Software designers are similar to other
designers
— Generation of alternatives
— Evaluation of alternatives against constraints
— Iteratively refine problems and solutions
— Move between multiple layers of abstraction
— Use cases from prior experience

— Have an overall high level control to manage design
process



Deficiencies of the models

 Don’t explicitly concern themselves with
learning to design

 Minimally integrate the tools of design (e.qg.,
ac circuit analysis, or algorithm analysis) with
design processes



Another Model of Software
Design

Domain Knowledge
General Design Guidance
Question Asking

Domain Independent Design Invariants
Iteration, generation of alternatives,

use of artificial symbol systems, problem
formulation, etc.

Domain dependent and independent
skills, methods, etc. (e.g., math,
science, analysis, synthesis)




Design Engine

Domain
Knowledge

Domain Specific
Skills

General
Skil Is

General
Knowledge

The Design Engine solves well structured problems
It is developed through typical engineering or computer science education.
It is the tools of designing (math, analysis, physics, etc.)



Design Controller

Dist. Prob. Solv . ]
Problem Struct Phases Rev. Direction Modularity Increment. Dev Ctl Struct
Make and Prop | Pers Stopping Memory Retriev Const and Manip|[ | Abstraction Artificial Symbo
Commitments Rules and Eval hondem. inferencel | Models Hierarchies Systems

The Design Controller forms well structured problems from ill-structured
problems for the Design Engine to solve
It is developed by actual design activity. Not from solving “toy” problems.



Design Manager

Question Asker

The Design Manager opportunistically controls design activities
Should I consider the economic implications of this approach?
Why don’t | explore this previous design that appears related
to the current problem
Why don’t I try this unrelated path to see if it exposes some
element of the problem | am overlooking

The design manager develops primarily through experience, but can be

developed by by appropriate problem selection at the university level.



Learning to Design

« The Engineering Science View (seek the truth)

— A body of factual knowledge guides engineering design.
Learn those facts and you can design

— This leads to a robust design engine

« The Computer Science View (seek what
appears to be the truth)
— Attempts to achieve an engineering science of computing
— This leads to arobus design engine



Teaching Design

e University based models of design teaching
— ID/Architecture use immersive techniques

» Design studios throughout the curriculum interspersed
with factual knowledge learning

» This attempts to initiate development of the design
manager, develops a robust design controller, and may
develop a less than robust design engine

— Engineering uses capstone models

» An integrative course at the end intended to tie everything
together in a semester

» This typically adds little to the design controller, and
fosters a belief in students that the design engine can
solve all design problems



Teaching Design (cont.)

— Computer science doesn’t know what it uses

» Most programs have some type of software engineering
course that is fact based (survey) but there is little
understanding of what design is (algorithm design is not
design)

— Software engineering uses the engineering model (most
existing MSSE programs)

» Feed them some stuff and wrap it up in a project course



The Impact of Truth Seeking on
Designing

 Arobust Design Engine
— Algorithmic approach to all problems
— Single point solution fixation
— Design stuckness
— Case indices are narrow

 Rudimentary or no Design Controller
 Design Manager is naive if it exists



Our Research Tells Us

Isolated islands of knowledge are constructed
In most design education programs

Capstone courses don’t support construction
of design controller and manager

Design is an integrative activity, and should
be taught as an integrative activity

Design engines need to be constructed that
are accommodating of change



Conclusion

 Design uses truth

e |t doesn’t
— Create truth
— Adhere to truth

— Lend itself to mechanisms that prescribe, and measure truthful
activities




