PREPARING STUDENTS FOR PROFESSIONAL PRACTICE

Thomas B. Hilburn, PhD, IEEE-CS CSDP Professor Emeritus, Software Engineering Embry-Riddle Aeronautical University (ERAU)
email: hilburn@erau.edu
web: http://faculty.erau.edu/hilburn
In 1992, Peter Denning [Denning 1992] wrote “Employers and business executives complain that graduates lack practical competence. Graduates, they say, cannot build useful systems, formulate or defend a proposal, write memos, draft a simple project budget, prepare an agenda for a meeting, work on teams, or bounce back from adversity; graduates lack a passion for learning. They say the current concepts-oriented curriculum is well suited for preparing research engineers, but not the practice-oriented engineer on which their competitive advantage increasingly depends.”
What is Professional Practice?

Professionals
• Acquire and maintain the appropriate technical knowledge and capability to work effectively in their profession.
• Possess sufficient critical reasoning skills to solve problems in their discipline.
• Have the capability to work collaboratively with other professionals.
• Communicate effectively with colleagues, the employer, and clients.
• Accept full responsibility for their own work.
• Cooperate in efforts to address matters of grave public concern related to their work.
• Act fairly and avoid deception in all statements, particularly public ones, concerning their work.
• Volunteer their professional skills to good causes and contribute to public education concerning their discipline.
How are things 20 years later? (1)

• Software engineering practice as been significantly influenced by the following
 • advances in computing methods and technology,
 • modern software system complexity,
 • increased demand for software, and
 • the need to work across cultures and time zones have influenced significant change
 in the practice of software engineering.
• Employment of “software engineers” has improved.
 • Job Ranking (2012)
 • U.S. News ranks Software Developer as No. 7 job – based on employment opportunity, good
 salary, manageable work-life balance, job security
 • CareerCast ranks Software Engineer as No. 1 job - based on Environment, Income, Outlook,
 Stress and Physical Demands.
 • Job Availability (EngineerJobs.com - 5/10/13)
 • Lists 126,547 Software Engineering Jobs
 • Lists 17,673 Mechanical Engineering Jobs
 • BLS 2013 Job Outlook
 • Employment of software developers projected to grow 30 percent from 2010 to 2020, much
 faster than the average for all occupations.
 • The 2010 BLS Job Outlook changed Computer Software Engineer to Software Developer.
• There have been some significant advances in support of software engineering professional practice.
How does one become a Professional?

[Ford 1996]
ABET Student Outcomes (EAC)

- (a) an ability to apply knowledge of mathematics, science, and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an **ability to design** a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on **multidisciplinary teams**
- (e) an ability to identify, formulate, and **solve engineering problems**
- (f) an understanding of **professional and ethical responsibility**
- (g) an ability to **communicate effectively**
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in **life-long learning**
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for **engineering practice**.
SwE Professional Practice Influences (1)

- **CS 2013**
 - “The education that undergraduates in Computer Science receive must adequately prepare them for the workforce in a more holistic way than simply conveying technical facts.”
 - SwE and SE &Sys fundamentals - 97 contact hrs + CS - 294 contact hrs
 - Social Issues and Professional Practice - 16 contact hours

- **SE 2004**
 - “A key objective of any engineering program is to provide graduates with the tools necessary to begin the professional practice of engineering.”
 - SwE knowledge – 322 contact hours + CS - 172 contact hours
 - Professional Practice (Group Dynamics/Psychology, SwE Communication Skills, Professionalism) – 35 contact hours

- **SWEBOK 2013**
 - Includes a chapter on Professional Practice
 - CSDP covers professional practice
SwE Professional Practice Influences (2)

- **CSEET 2013** – lots of events related to professional practice
 - University Meets Industry: Calling in Real Stakeholders
 - Revisions to SE 2004
 - A Project Spine for Software Engineering Curricular Design
 - The Software Assurance Competency Model: A Roadmap to Enhance Individual Professional Capability
 - Software Engineering in CS 2013

- **SIGCSE 2013**
 - Computer Science Curriculum 2013: Social and Professional Recommendations
 - Gaps Between Industry Expectations and the Abilities of Graduates
 - A Case for Course Capstone Projects in CS1
Software Development Programs

- There are thousands of undergraduate software degree programs (CS, SwE, CE, IS, IT, etc.)
- ABET Accredited Programs
 - BSCS – 273 programs
 - BSSE – 26 programs
 - BSCE – 247 programs
 - BSIS – 47 programs
 - BSIT – 25 programs
- SwE ABET-EAC Program Criteria
 - The curriculum must provide both breadth and depth across the range of engineering and computer science topics implied by the title and objectives of the program.
 - The curriculum must prepare graduates to analyze, design, verify, validate, implement, apply, and maintain software systems; to appropriately apply discrete mathematics, probability and statistics, and relevant topics in computer science and supporting disciplines to complex software systems; to work in one or more significant application domains; and to manage the development of software systems.
How are things 20 years later? (2)

- 25 ABET Accredited BSCS programs reviewed in May 2013 (picked somewhat randomly)
- Program Educational Objectives
 - Most were a bit vague regarding professional practice — “prepare students for a successful career in computer science”
 - Many were not specially labeled or did not appear on the program website or in the school catalog; often appeared under link ABET.
 - Good example: http://www.msoe.edu/academics/academic_departments/eecs/bsse/objects.shtml
- Software Engineering Courses
 - 14 had one required course
 - 7 offered software engineering only as an elective course
 - 4 offered no software engineering courses
- Senior-level Team Software Development Project
 - 17 out of 25 required a senior-level software project course
How are things 20 years later? (3)

• Although as educators we have made much progress, there are still serious problems in meeting Deming’s Educational Challenge.

• A recent study [Radermacher 2013] of the gaps between CS graduates capabilities and industry expectations/needs showed the following “knowledge deficiencies”:

<table>
<thead>
<tr>
<th>Knowledge Deficiency</th>
<th>Occurences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral Communication</td>
<td>11</td>
</tr>
<tr>
<td>Teamwork</td>
<td>11</td>
</tr>
<tr>
<td>Project Communication</td>
<td>10</td>
</tr>
<tr>
<td>Problem Solving</td>
<td>10</td>
</tr>
<tr>
<td>Written Communication</td>
<td>9</td>
</tr>
<tr>
<td>Testing</td>
<td>9</td>
</tr>
<tr>
<td>Programming</td>
<td>8</td>
</tr>
<tr>
<td>Critical and Analytical Thinking</td>
<td>7</td>
</tr>
<tr>
<td>Design</td>
<td>6</td>
</tr>
<tr>
<td>Ethics</td>
<td>5</td>
</tr>
<tr>
<td>Configuration Management</td>
<td>5</td>
</tr>
<tr>
<td>Requirements</td>
<td>5</td>
</tr>
<tr>
<td>Programming Languages</td>
<td>5</td>
</tr>
<tr>
<td>User Interface Design</td>
<td>5</td>
</tr>
</tbody>
</table>
Success as an Engineer?

• A recent study [Passow 2012], using a survey of 4000 alumni of engineering programs, identified the four highest rated competencies (ABET outcomes):
 • “ability to function on a team”
 • “engineering problem-solving skills”
 • “ability to analyze and interpret data”
 • “written and oral communication skills”
Ability to Function on a Team

- “Students are not born with the project management, time management, conflict resolution, and communication skills required for high performance teamwork.” [Oaklley 2004]
- Building Effective Project Teams?
 - Teacher acts as a “coach”.
 - Coach selects team.
 - Provide some initial ideas about a team process, roles and responsibilities, how to hold a productive meeting, and establishing communication and decision-making procedures.
 - Teams are self-directed (somewhat).
 - Start with some team building activities.
 - Set team and individual goals.
 - Determine Roles and Responsibilities.
 - Have team solve problems on a fictitious team. (http://www.softwarecasestudy.org/)
 - Make sure teams have regular (weekly) deliverables and that the coach provides meaningful, timely feedback on teamwork.
Engineering Problem-Solving Skills
Faculty Interviews (with 25 colleagues)

How do you teach problem solving?

- “Give your students problems to solve.”
- “cover theory, then give lots of examples - different from the book”
- “ensure students have proper background and foundation for solving course problems”
- “start with very simple examples”
- “giving hints, seeding ideas”
- “fundamentals are necessary for problem solving”
- “provide students with an organized problem solving process”
- “help students to display there thinking”
- “show them how to do it, then have them try it out”
- “focus on things that make sense physically”
- “divide and conquer”

- “project-base teaching (with real customers)”
- “problem solving in one course supports problem solving in others”
- “stepwise refinement”
- “place responsibility for learning on students”
- “learn through doing”
- “teamwork enhances problem solving ability”
- “show how to set up problem”
- “cover theory, then work problems illustrating the theory”
- “use analogies to illustrate principles”
- “tell stories - use case studies”
- labs are the ultimate problem solving event”
Other Thoughts on Problem Solving

It isn't that they can't see the solution. It's that they can't see the problem.
- Gilbert K. Chesterton

A problem well stated is a problem half solved.
- John Dewey

An inevitable consequence of the knowledge explosion is that tasks will be carried out with far more collaboration.
- Lawrence Summers
Understanding the Problem
Problem-Solving Strategies

- Collaboration – Teamwork
- Incremental/Iterative, Divide & Conquer, Top-Down, Bottom-Up
- Analogy and Reuse
- Defined Process [Decartes 1637, Deming 1986, Polya 1957]
 - Understand the Problem (determine need and scope)
 - Make a Plan (determine tasks, schedule, resources)
 - Carry Out Plan (specify, design/construct solution)
 - Check (verify/inspect/test solution)
 - Look Back (analyze process and product quality, in order to improve)
Educating Problem Solvers

Average Student Retention Rates

- Lecture: 5%
- Reading: 10%
- Audio-Visual: 20%
- Demonstration: 30%
- Discussion Group: 50%
- Practice by Doing: 75%
- Teach Others / Immediate Use: 90%

[Dale 1969]
Active Learning

- In the last twenty years there has been considerable interest and research in applying active learning techniques and activities to improve student learning.
 - The teacher becomes a facilitator, guiding and coaching, rather than directing and lecturing.
 - Students learn by doing: class discussions, exercises, debates, study and analysis of case studies, and collaborative learning groups.
- “Tell me and I forget. Show me and I remember. Involve me and I understand.”
 - An old Chinese proverb
A Life-Cycle Engineering Case Study

- The use of Case studies is an especially effective active learning technique for introducing realistic aspects of practice into a curriculum.
- The Digital Home Case Study [Salamah 2011] (http://www.softwarecasestudy.org/) is “life-cycle” case study designed to be used throughout a computing curriculum (CS1 to Senior Design), covering topics such as:
 - Requirements, Design, Construction, Testing, Maintenance
 - Project Planning, Risk Management, Configuration Management
 - Team Building
 - Quality Assurance
 - Process Management
 - Ethics and Professionalism
Ability to Analyze and Interpret Data (1)

• Analysis and interpretation of data is essential in an evolving, dynamic discipline, like software engineering.

• Data and its analysis can help us answer critical questions:
 • How does one evaluate and decide on best practices?
 • Is the latest popular “method du jour” a fad or practice that should be adopted?

• Unfortunately, proponents of a particular method, technique, or tool too often take rigid positions without looking at or seeking supporting data.
 • For several years, a key question at the SIGCSE Symposium was what is the best programming language for beginning programmers?
 • In a study of software development process models [Jones 2012], Caper Jones states “selecting a software development method is more like joining a cult than a technical decision”.
Ability to Analyze and Interpret Data (2)

- Although the students need to be exposed to research on software data collection and analysis, we also need to make sure our students do some of this on their own.
- Answering questions about their own work can help them to better see the importance of measurement and analysis:
 - How much effort is spent in various software development activities? E.g., the % of time in analysis & specification, design, construction testing, etc.
 - What is the quality of your work? E.g., number and type of defects found, defect removal effectiveness, cost of quality, etc.
 - How well are quality attributes achieved? E.g., usability, performance, maintainability, etc.
Written and Oral Communication Skills

• We should not depend solely on “communication” courses.
• Technical communication (written and oral) should be a prominent part of the curriculum, especially in project courses.
• We often fail to recognize the importance of general education in fostering communication skills (history, literature, philosophy, psychology, physical sciences).
• SWEBOK 2013 will have chapter on Professional Practice, which includes a section on communication.
• Unfortunately, we often overlook the importance of “reading” and “listening” skills in effective communication.
 • Reviews and inspections require careful and focused reading.
 • [Radermacher 2013] -- “the biggest discrepancy between employer expectations and student ability was their ability to listen”
Professional Practice Teaching Challenges

• Teaching in an Academic Setting
 • Curriculum is divided into chunks of academic terms and courses. Student effort is divided between seemingly unrelated and incongruent curriculum units.
 • Education is typically delivered by lecture and individual homework assignments. Course grades are generally assigned on the basis of individual work;
• Many, if not most, faculty are not properly prepared to teach professional practice.
 • Lack experience in professional practice in their discipline.
 • Focus their research and teaching on a narrow subfield of the discipline.
 • Are not motivated to do engage in collaboration (such as team teaching).
 • Lack preparation in teaching techniques that best serve preparing students for professional practice.
• A survey of teaching in engineering departments shows that 74% of computer science and software engineering faculty were aware of innovative teaching techniques (e.g., student-active pedagogies, first year design projects, and artifact dissection), but less than 40% of these faculty members use such techniques – the lowest percentages of the faculty disciplines surveyed [Borrego 2010].
Ideas for Meeting Deming’s Challenge

- Curriculum goals need to be the central driving element in meeting the challenge.
- Faculty need a better understanding of professional practice.
 - Professional Experience - Faculty Internships
 - Industry Visits and Tours
 - Interview Professionals
 - Industrial Advisory Boards
 - Industry Guest Lecturers
 - Applied research – helping industry to solve problems
 - Study of Competency Models
 - Attend CSEET 2014
- Faculty need to Embrace “Active Learning”
 - Spread project work and team activities throughout the curriculum.
 - Use case studies and other student-centered learning exercises
 - “Coach” rather than “Lecture”
 - Emphasize a Students’ responsibility for their learning.
 - Learn more about how to build effective teams.
Questions/Comments?
Sources