Designing Q\\ wce Why Now?

@ Happy teaching Java next 3-5 years

Can an Frooramming :
@ In 2015, Java will be 20 years old

Lanocuaoe Sunnort the Teaching of

@ Java 8 is coming...
@ State of the art has advanced
James Noble » ~ Andrew Black - patches look like ... patches

&

" @ Essential difficulties vs Accidental difficulties

Kim Bruce

= '

S r Michael Hotten S @ To be ready in 2015, we need to start now.

gracelang.org

Q\&m@ User Model Q\&m@mxoBEm

method average(in : InputStream) -> Number

// reads numbers from in stream and averages them
@ objects early or late, { var total := 0

var count := 0

while { ! in.atEnd } do {
@ functionals first or scriptings first or .. count := count + 1

@ First year students in OO CSl or CS2

@ static or dynamic types,

@ Second year students total := total + in.readNumber }
if (count == 0) then {return 0}

@ Faculty & TAs — assignments and libraries return total / count }

@ Researchers wanting an experimental vehicle

@ Language Designers wanting a good example

Method Requests

aPerson.printOn(outputStream)

printOn(outputStream) // implicit self
(x +y)>2z) & Iq // operators are requests

while { ! in.atEnd } do { print (in.readNumber) }

// multi-part method name

Object constructors

object §
def x = 2
def y = 3
method distanceTo(other) §
((x - other.x)"2 + (y - othery)“2) }

Object constructors

object §
def x. =&
def y = 3
method distanceTo(other) {
((x - otherx)"2 + (y - othery)"2) }

Object constructors

object §
def x = 2
def y = 3
method distanceTo(other) §
((x - other.x)"2 + (y - othery)"2) }

Ry

m_nw+muﬂnqoﬁvom=+v

def x = x’
defy =y’

Classes

class CartesianPoint.new(x’, y’) §

method distanceTo(other) §
((x - other.x)"2 + (y - othery)"2) }

m.mw,fm._._nm._.oanomzs

Consistency

@ Syntactic Consistency:

if (count

if (count

== 0) { return O

== 0) then

return O

Can an Frooramming
Lanouaoe Sunnort the Teaching of

Consistency

@ Syntactic Consistency:
if (count == 0) { return O

if (count == 0) then { return O

@ Semantic Consistency:
while (x > 0) { other.iterate

while { x > O { do { other.iterate

Static vs. Dynamic Types

class CartesianPoint.new(x’,
y')

def x = x'
defy =y’

method distanceTo(other) §
((x - other.x)"2 + (y - othery)"2) }

Types vs Classes

type Point = {
X => Number
y -> Number
distanceTo(other : Point) -> Number

@ Types are separate from classes

@ Types need to be defined separately

Static vs. Dynamic Types

class CartesianPoint.new(x’ : Number,
Number) -> Point

def x : Number
def y : Number

method distanceTo(other : Point) -> Number §
((x - other.x)"2 + (y - othery)"2) }

Implicit vs. Explicit
Declarations

@ JavaScript, FORTRAN:
countr = counter + delta

@ Pascal, C, Java, Ada...

def delta = 3
var counter := 0

counter := counter + delta
if (counter == 100) then { ... }

Information Hiding

def joe = object {
var forename := "Joe"
var surname := "Bloggs"
var id := 234567

method asString
{"Name: {forename} {surname} Id: {id}"}

print "joe is {joe}."

Formal Reasoning

method ged(m, n) {
{m>=0)& (n>=0) & ((Mm!'=0) | (n'=0))}

var a := max(m,n)
var b := min(m,n)
{b 1= O}
{a>=b}
{def remainder = a % b
=0
b := remainder

ib}

return a }

Information Hiding

def joe = object {
var forename := "Joe"
var surname := "Bloggs"
var id := 234567

method asString
{"Name: {forename} {surname} Id: {id}"}

print “joe is {joe}." // works now

Formal Reasoning

assert {(letters.size > 0) && (letters.size < 20)}

// implementation of
method (block : Block<Boolean>) §
if (! block.apply)
then {error "Assertion Failed"}

Formal Reasoning

method (collection) (inv) (blk) §

for (collection) do {element->
if (! inv.apply) then {
InvariantFailure.raise "Loop invariant not satisfied.” }
blk.apply(element)

}

if (! inv.apply) then {
InvariantFailure.raise "Loop invariant not satisfied." }

Can an Frooramming
Lanouace Sunonort the Teaching of

o Q\&Qﬁ objects and method requests

@ Consistency: syntactic vs semantics
@ Static vs Dynamic Types

@ Types vs Classes

@ Information Hiding

@ Formal Reasoning

@ Dialects

Dialects

"loopinvariant"

import "mgcollections” as collections
def data = collections.list.new(2, 3, 4, 5)

var sum : Number := 0

for (data) invariant { sum >= 0 } do
{ item : Number -> sum := sum + item }

No conclusions —
we arent done yet

Questions
Comments
Suggestions
Brickbats

@ Supporters

@ Programmers

@ Implementers
@ Library Writers
@ IDE Developers!!!!

@ Testers

@ Teachers

@ Students

@ Tech Writers

@ Textbook Authors
@ Blog editors

@ Community Builders

