
A Pilot Study on Introducing Continuous
Integration and Delivery into Undergraduate

Software Engineering Courses

Brian P. Eddy, Norman Wilde, Nathan A. Cooper, Bhavyansh Mishra, Valeria S. Gamboa,
Keenal M. Shah, Adrian M. Deleon, Nikolai A. Shields

University of West Florida

Pensacola, Florida

Email: beddy, nwilde - @uwf.edu

nac33, bm37, vsg3, knp8, kms118, nas30, amd87 - @students.uwf.edu

Abstract—As continuous delivery and continuous integration
practices become more prevalent in industry, the need for edu-
cation in these areas grows. Introducing these topics introduces
complexities due to the learning curve of the involved tools
and the amount of time available for teaching these topics.
Furthermore, there has been limited research into effective
teaching practices for incorporating continuous integration and
delivery concepts into traditional software engineering courses. In
this paper, we discuss the results of an initial study of introducing
a continuous delivery educational pipeline into an undergraduate
software engineering course. The pipeline used was designed to
help instructors introduce continuous integration and delivery
into preexisting courses and allow students to visually understand
the processes of continuous delivery and continuous integration.

Index Terms—continuous integration, continuous delivery, un-
dergraduate education, automated software engineering

I. INTRODUCTION

Agile software engineering processes are developed around

a set of common principles defined by the Agile Manifesto.

The principles identified in the Agile Manifesto include, the

early and continuous delivery of software to the customer and

the ability to easily adapt to changing requirements. In order to

support agile principles more easily, software engineers have

adopted new practices that help to decrease the amount of time

required to take software from the development team to the

customers and users of the software. Furthermore, at the same

time a high level of quality should be maintained with each

release.

Continuous integration and continuous delivery are two

related practices that help to reduce the amount of time needed

to release software to customers while also maintaining a

high level of quality. Continuous integration is a software

development practice where members of a team integrate

their work frequently, usually with each person integrating

at least daily [1]. Continuous integration includes automated

building and unit and integration testing of each version of the

software system. Continous delivery is a software development

practice where software is built in such a way that the software

can be released to production at any time [2]. Continous

integration is usually a part of the continuous delivery practice.

As agile processes have become more widely adopted in

industry, so have the practices of continuous integration and

delivery. For this reason, it is important for students of a

software engineering program to be exposed to the practices

of continuous integration and delivery, however teaching these

practices presents a set of challenges.

Both continuous integration and continuous delivery are

facilitated through the use of pipelines of automated tools.

Continuous integration and delivery pipelines can become

extremely sophisticated and complex, with each tool and step

in the pipeline’s process presenting a new learning curve. This

can make it quite difficult to teach the concepts of continuous

integration and delivery in software engineering courses where

the majority of the time in the class is devoted to other con-

cepts. It can also be difficult for an instructor to learn each of

the tools needed to build a complete pipeline. For this reason,

our previous work focused on the design and implementation

of a continous delivery pipeline that can be used by instructors

to teach these concepts [3]. In this paper, we present the results

of a study in which students complete software engineering

change tasks using the continuous delivery pipeline. Our main

goal was to understand whether using a continuous delivery

pipeline with a visual dashboard and automated feedback

could help improve a student’s understanding of continuous

integration and delivery. The study presented in this paper

makes the following contributions:

• An initial study on methodologies and tools for teach-

ing students the concepts of continuous integration and

delivery and the related steps.

• Guidance and recommendations on how to create ac-

tivities and labs that improve student understanding of

continuous integration and delivery.

• Noticed challenges on teaching the concepts of contin-

uous integration and delivery to undergraduate software

engineering students.

The rest of this paper is organized as follows: Section II

presents background information on continuous integration

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.18

47

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.18

47

Fig. 1. Stages of a Simplified Continuous Delivery Process

and delivery, the pipeline used in the study, and related

research, Section III discusses the design of our study, Sec-

tion IV discusses the results of our study and presents recom-

mendations for instructors teaching the concepts of continuous

integration and delivery, Section V discusses future work

planned by the authors, and Section VI concludes the paper.

II. BACKGROUND

In this section, we present necessary background infor-

mation on continuous integration and delivery, the specific

pipeline used during our study, and related work.

A. Continuous Integration and Delivery

Figure 1 gives a simplified overview of the steps involved

in a continuous delivery pipeline. When a developer commits

changes to source code to a version control repository, the

continuous delivery pipeline is triggered. The first few steps

of the process are to perform continuous integration. Multiple

steps are possible during the continuous integration process,

and different pipelines handle the steps in different ways. We

primarily focus on some of the most common steps during

continuous integration which includes:

• Static Analysis - The static analysis step checks the

source code without executing it by evaluating for well-

known traps and pitfalls (e.g., security vulnerabilities) [4].

It may also check for adherence to or violations against

coding standards or best practices.

• Unit Testing - The unit testing step tests individual units

of code (e.g., methods) in isolation from the rest of the

software system [5]. Because unit tests test each unit

independent of other units of code, these types of tests

allow for developers to easily identify where problems

occur.

• Integration Testing - Unlike unit testing which focuses

on each unit or module independently, integration testing

combines two or more modules together for bugs that cut

across multiple units [6].

• Build Application - The final build step depends on the

type of software system. For a web application, this step

may be optional. In the build step, any dependencies are

bundled together with the source code to make the system

ready to be downloaded and installed.

For the activity used in our study, we used a web application

and therefore did not look at the build step. In addition,

there may be other types of tests that are performed during

continuous integration. Since the remaining types of tests may

be optional or dependent on the type of system that is being

developed, we do not discuss them here. The listed steps are

the steps involved in continuous integration. When the tests

pass, they may be sent to a staging environment or simply

uploaded to another repository. Continuous delivery extends

beyond the continuous integration process.

The focus of continuous integration is to maintain high

quality code and to decrease the time and effort needed for

testing. The main focus of continuous delivery is to go from

a code change to a verified production ready change in as

little amount of time and manual interaction with the process

as possible. The continuous delivery process incorporates the

testing and analysis steps of continuous integration, but also

improve the pipeline with various tools for notification systems

and deployment schemas to staging environments for the

quality assurance (QA) testers.

The main requirements for a continuous delivery pipeline

are as follows:

• Continuous integration system for automated testing

• An archiving system for versioning and performing roll

backs when necessary

• A deployment process for moving a passing build to a

staging environment before it is approved to be shipped

off to production

• A notification system to update developers of passes and

fails of a build

• A feedback system for QA testers to allow for discussion

of changes that may need to be done before it is sent to

production

4848

The main form of testing performed during staging is

acceptance testing which seeks to make sure that the software

system meets the business requirements of the users and

customers.

Continuous delivery is often confused with a similar process

called continuous deployment. The main differences between

the two is that continuous delivery has a manual step, usu-

ally some sort of QA testings, before a code change that

successfully passes through the continuous delivery process

is sent into production while continuous deployment is sent

automatically to production and has actual users do the QA

testing. Continuous deployment requires additional macha-

nisms to allow users to provide feedback and to report bugs.

We do not focus on continuous deployment in our study.

There are several studies that focus on continuous delivery

use in industry. Success stories of continuous delivery being

implemented of those like Neely and Stolt [7], Chen [8], and

Gmeiner et al. [9] talk about the benefits of continuous delivery

with quick feedback from users, bugs are found faster due to

quicker release cycles, and features don’t need to wait long

periods of time to be implemented.

Building your software to work best with continuous deliv-

ery was discussed in Bellomo et al. [10], Austel et al. [11],

and Chen [12] with the idea of software architectural design

for continuous delivery. Bellomo et al. attempted to validate

whether architectural design could significantly impact how

well software systems can adjust to continuous delivery. Chen

discusses some of what is called Architecturally Significant

Requirements (ASR) which are design decisions that have

a benefit for implementing continuous delivery. Austel et al.

describes a research project to create a Platform as a Service

(PaaS) with roles, tools and processes needed for having

composite, low coupling, software systems that will benefit

the greatest with continuous delivery.

Bae and Kim [13] and Soni [14] discuss different designs

and frameworks for full CI/CD pipelines. Bae and Kim

attempted to design a continuous integration and delivery

framework for IoT devices all of which could have different

underlying architectures requiring most communication to be

performed through strong interfaces. Soni’s approach was

to design an entire end to end continuous integration and

delivery pipeline using tools like Jenkins [15] for continuous

integration management with builds, git [16] or svn [17]

for source control, and other tools for performing automated

testing and feedback systems.

Dunne et al. [18] looked at bug bounties for prioritizing

continuous delivery resources. The study involved analyzing

one company’s bug reports generated both internally and

externally and classifying them based on severity. The authors

found that minor bugs that were functional bugs were generally

found by users meaning that whatever continuous delivery

steps in place were not catching those types of bugs and

perhaps using users and bug hunters and using continuous

delivery resources to target different more critical bugs would

be more beneficial.

Fig. 2. The work flow of the continuous delivery educational pipeline tool

B. Continuous Delivery Education Pipeline (CDEP)

The continuous delivery educational pipeline (CDEP) is a

set of tools that allow students to learn the fundamentals of

continuous integration and continuous delivery and the work

flow of such a system [3]. It was created to demonstrate

the usefulness of such tools and provide instructors who are

interested in teaching these practices to students in a laboratory

style environment. The design of the system is meant to

be simple to lower the learning curve for instructors while

also allowing for multiple students to work with the system

concurrently.

It has two major components: the Jenkins server and the

Docker box. The Jenkins server is responsible for orchestrating

the pipeline using a continuous integration tool called Jenkins.

The tasks Jenkins performs are retrieving code changes from

version control (e.g., Github), performing static analysis and

tests on the retrieved code, and, if the code passes all the

tests, moving the code change into a staging environment for

acceptance testing. The Docker box uses a software container

tool called Docker which allows for lightweight containers to

be easily created and managed. Docker containers are used

to create multiple environments for each student, including

separate environments for static analysis, unit testing, and in-

tegration testing, as well as containers for storing an activity’s

database and a staging server for acceptance testing. Using

containers allows for each student to have their own copy of

each environment in the pipeline, for multiple build processes

to be ongoing at the same time, and for each step of the process

to be highly customizable.

The workflow of the CDEP system is shown in Figure 2.

The process when the version control system (VCS) notifies

our Jenkins server through webhooks that a code change has

been made and is ready for integration. The next step is

4949

to instruct the Docker box server to provision the needed

analysis and testing environments to perform their individual

tasks on the new code change. Once the code change has

successfully passed through the static analysis, unit testing,

and integration testing phases, Jenkins instructs the Docker

box to update the VCS staging branch with the new changes.

A new staging environment is then created and the updated

application deployed to it for acceptance testing. At each step

in the process, detailed feedback reports about success and

failure are provided to the student through a dashboard. If any

of the tests failed then the process immediately terminates and

a report is available to the user through the dashboard. The

student can then choose to fix the issue and recommit new

changes. Since each student has their own set of containers, a

failure in one student’s activity has no effect on the completion

of other students’ activities. The current version of CDEP

handles all of the described tasks, however new changes are

still ongoing.

C. Related Work

Research into how to teach students the topics of continuous

integration and delivery is limited. Research that has looked at

such issues has typically focused on integrating such concepts

as a major component in a semester long course such as

the work by Krushche and Alperowitz [19]. Krushche and

Alperowitz required the use of a continous delivery pipeline

in a multi-customer project based software engineering course.

In the course used by Krushche and Alperowitz, a considerable

amount of time and resources could be devoted to continuous

integration and delivery.

Süß and Billingsley did significant work with trying to

reduce the requirements and resources needed in order to allow

students to gain hands on experience with different industry

standards, and practices [20]. Their premise was to use legacy

code as a code base that students would maintain and add

to over a semester long course. This would give students

an accurate environment that is similar to ones they would

experience in actual industry. In addition, they used continuous

integration practices to provide automated feedback to the

students over the course of the semester. However, their focus

was on using these practices to provide feedback as opposed

to teaching students about the practices themselves.

Christensen [21] looked at how to teach DevOps princi-

ples in a cloud computing course. Christensen identified that

traditional software engineering courses typically focus on

the beginning stages of software engineering and have less

emphasis on the later stages of deployment and maintenance.

Over a seven week course, students would make changes

to a cloud based application and Docker was used to learn

infrastructure logic.

These approaches have their own merit and advantages

such as students gaining practice over a significant amount of

time with these tools, team oriented projects, and processes.

However, most of these approaches require continuous inte-

gration and delivery to be a primary focus of the courses

and do not address the problem facing instructors of how

to implement these types of practices into a more traditional

software engineering course. Specialized courses on these

topics may not always be possible due to either lack of

resources or lack of time to devote to the concepts. The

continuous delivery pipeline for education used in our study

allows students to learn about industry standards in terms of

software development in a concise and visual way and can be

incorporated if time or resources are limited.

III. STUDY DESIGN

In this section we discuss the design of our study.

A. Definition and Context

We conducted an empirical study to evaluate whether us-

ing a continuous delivery pipeline with visual and informed

feedback in a laboratory setting could help improve a stu-

dent’s comprehension of continuous integration and delivery

processes. Our primary interest was in improving a student’s

understanding of the steps involved in continuous integration

and delivery and not in improving their understanding of a

specific tool or tool chain.

In the study we asked students to complete a software

change task which involved adding features to an existing

web application. As the focus was on their understanding of

continuous integration and delivery and not on their coding

ability, they were provided with detailed instructions for how

to make the change and additional details on each step they

were performing. They were given an hour to complete the

activity and data was collected by the researchers before and

after the study.

1) Students and Demographics: There were 16 students

involved in the study (S1-S16). All were software engineering

undergraduate students with at least two years of programming

experience. Before the study, each student completed a demo-

graphic form. The purpose of the demographic information

was to help establish the experience of the students on the

types of tools they would be exposed to through the laboratory

environment. The information collected by the demographic

form included:

• Year of study

• Highest level of development experience

• Tasks performed in a professional environment

• Technologies in which there is current familiarity

The course used in the study was a senior level software

engineering course at the University of West Florida. There-

fore, of the 16 students who completed the study, 94% (15) of

the students were senior students with the remaining student

being a junior.

Figure 3 indicates the highest level of experience students

have in developing software systems. All students were as-

sumed to have experience with class projects from prior

undergraduate classes, however we also asked for experience

working on individual paid projects, as interns in a software

development company, or as part time or full time employees

in a software development company. The highest responses

were for students who had only completed some class projects

5050

Fig. 3. Highest Level of Software Development Experience

Fig. 4. Experience with Continuous Delivery Tasks

or had participated in an internship. Of the 16 students

involved in the study, only three of the students had worked

as either part time or full time employees of a software

development company.

The students were asked about their experience with con-

tinuous delivery related tasks performed professionally. Of the

16 students in the student, 11 of the students have performed

some basic professional programming either individually or

as a part of a company. In Figure 4, it can be seen that the

majority of students lacked some form of testing or static

analysis experience. This is possibly due to classes that involve

intensive programming concepts required for their degrees.

Another reason to encourage continuous delivery education is

to improve testing concepts. A course module in continuous

delivery could help the students grasp the concepts of software

testing.

In addition to previous professional experience, we were

also interested in the types of technologies that students had

been exposed to. According to the results of this question,

students were most familiar with IDEs and version control

systems. We also found that multiple students had exposure

to unit testing frameworks, however experience in other types

of software development tools was lacking. As a follow up

to this question, we asked students to list the tools they

were familiar with. Many tools were listed, but the tools

students were most familiar with included NetBeans, jGrasp,

and Eclipse, all of which are IDEs with jGrasp being an

IDE meant for educational purposes. While the focus of our

study is on the steps involved in continuous integration and

continuous delivery, an additional benefit of using a pipeline

is the exposure to other types of tools.
2) Study Materials: Prior to the study, one of the re-

searchers developed a PHP web application to be used for

the study. The web application was an online electronics store

which stored information on products in a MySQL database.

The web application included unit tests and integration tests

written in the PHPUnit framework. The source code for the

web application and the tests as well as documentation were

stored in a repository on GitHub. Each student was provided

with their own fork of the repository, therefore giving each

student their own copy of the application. As part of the

activity used in the study, students were required to use git

through the command line interface.
Before and after the study, students were asked to complete

a survey to gather information about how comfortable the

students were with the concepts of continuous integration and

delivery and the involved tasks. The surveys collected the

following information:

• Understanding of version control, branching, static analy-

sis, unit testing, integration testing, continuous integration

and delivery tasks, and the usefulness of continuous

integration and delivery based on a six point scale.

• Concepts that the students believed the pipeline and

activity helped them to understand.

• Remaining questions that the students have on the con-

cepts contained within the activity.

• Possible improvements to the pipeline or the activity that

the students believed would help them better understand

the concepts.

The first point was expressed as a six point Liekert scale

with 1 being the lowest value and 6 being the highest value.
Using the command line interface for git, students would

create a local repository on their machine of the example

application. Then, following the instructions for the lab, they

would make small changes to either the source code of the

system or to the automated tests. There were two parts to the

lab. The first part of the lab had students editing PHPUnit

test cases. The student would edit a test case and then push

their code to the remote repository. A webhook on the remote

repository would trigger Jenkins to pull the updated code. Then

on the Docker box, scripts would run through unit testing,

integration testing, and deployment to a production server.

Feedback to the students existed in two forms. First, students

could monitor the deployment through the dashboard available

in Jenkins. If a failure occured, they could fix the issue and

push out a new change which would trigger the process from

5151

the beginning. Second, upon a successful deployment, students

would be able to instantly access the newly deployed website.

This gave students the ability to directly witness the pipeline

in action and to also observe the intermediate results from

each stage of the pipeline.

The second part of the activity asked them to implement

functionality that would allow users of the website see details

related to a product in the online store. Students would need

to develop appropriate tests along with the new functionality.

Creating new functionality allowed the students to understand

the support provided by the pipeline and the use of automated

testing. Both parts of the activity were meant to give students

a different perspective on how the continuous delivery pipeline

worked.

3) Setting and Study Procedure: Students were part of the

Software Engineering Management course at the University

of West Florida. This is a 15 week undergraduate course

focusing on topics of both traditional and agile software

project management. Students learned concepts of scoping,

planning, monitoring and tracking, estimation and cost analy-

sis, as well as quality assurance, cultural challenges of change,

and making decisions regarding technical debt. As part of

the course, students learned concepts related to deploying the

system to the customer. The course was taught by one of the

authors, however the study was carried out and conducted by

the other researchers. The study was conducted in a classroom

with each student having their own computer.

Before beginning the study, students were given a brief ex-

planation on the topics of continuous integration and delivery

and were given the lab’s instructions. In order to keep students

anonymous, each student was given a random number that

associated them with their data and their repository. Students

were asked to complete the pre-survey and the demographics

collection form. Then they were given the activity and an hour

to complete the steps involved. After a subject completed the

activity, they were given a post survey to fill out regardless

of whether or not students were able to complete the activity

in the hour allotted. The students were then debriefed on the

focus on the study and were asked to sign an informed consent

form if they agreed to let their data be used in the study. Given

an original count of 19 students within the course, 16 students

agreed to participate in the study.

B. Research Questions

The questions of interest are as follows:

RQ1 Does using a continuous delivery pipeline in a laboratory

environment help students better understand continuous

delivery related concepts?

RQ2 What concepts showed the greatest increase in under-

standing after using the continuous delivery pipeline?

RQ3 What concepts require a deeper discussion in addition to

exposure of the continuous delivery pipeline?

RQ4 What are the problems associated with using a continuous

delivery pipeline for teaching in a laboratory environ-

ment?

RQ1 is the primary question of the study and seeks to

identify whether using a continuous delivery pipeline and lab

activities can help students better understand the concepts

of continuous integration and delivery. In RQ2, we tried to

identify the concepts that had the greatest increase in under-

standing from the pre and post surveys. The answer to RQ2

could help understand what types of tasks similar learning

activities best help with. RQ3 looked at concepts where

students still struggled and that may require additional support,

such as additional lectures or activities. Finally, RQ4 focuses

on identifying unexpected problems that were encountered

during the activity.

C. Statistical Testing and Hypotheses

To determine whether there is a significant difference be-

tween the students’ responses of the pre and post surveys,

we form Wilcoxon signed-rank tests corresponding to each

continuous delivery concept. The Wilcoxon signed-rank test

is the nonparametric analog of the student’s t-test and is

used when distributions are not assumed to be normal. For

each Wilcoxon signed-rank test, we do not presuppose the

directionality of the difference between the pre and post

surveys. Therefore, each hypothesis test is two-tailed. For each

test, we formulate a null hypothesis to evaluate whether there

is a significant difference before and after the study. If, after

testing the null hypothesis, we find that we can reject the null

hypothesis with a high confidence (α = 0.05), we accept

an alternative hypothesis, which corresponds to there being

a significant difference between the pre and post surveys for

that concept.

An example null hypothesis:

H0 : Staticpre = Staticpost
There is no significant difference in the student’s under-

standing of static analysis between before and after the

study.

The corresponding alternative hypothesis:

H0 : Staticpre �= Staticpost
There is a significant difference in the student’s under-

standing of static analysis between before and after the

study.

The remaining null and alternative hypotheses are analo-

gous.

D. Threats to Validity

We have identified three primary threats to validity. First,

it is possible that the pipeline used within the study does not

adequately represent the concepts we wish for the students

to learn. To ensure that our pipeline reflects modern industry

practices, we validated the pipeline with the help of external

industry professionals. Therefore, we have reasonable confi-

dence that the pipeline correctly demonstrates the described

concepts. Second, as with most educational research, we run

the risk of students not answering sincerely out of fear that

reporting undesired results may hinder them in the class. To

mitigate this issue, students were not graded on the study or

5252

Student Version Control Branching Static Analysis Unit Testing Integration Testing CI & D Tasks CI & D Usefulness Activity Helped

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

S1 5 5 5 5 2 4 4 4 4 5 4 5 4 5 4

S2 6 4 5 4 2 2 5 4 5 5 3 3 3 3 2

S3 6 6 6 6 4 4 6 6 5 5 4 5 5 5 4

S4 5 6 3 5 3 3 5 5 5 6 3 6 4 6 6

S5 6 6 5 6 3 5 6 5 6 5 5 5 3 5 5

S6 4 3 4 5 2 4 4 4 4 4 3 5 4 5 5

S7 4 6 5 6 2 3 5 4 5 5 4 5 5 5 6

S8 4 4 4 4 1 3 4 5 4 5 4 5 4 5 5

S9 4 5 4 5 4 5 5 5 5 5 3 5 3 5 5

S10 5 6 5 6 3 2 1 2 1 2 3 3 3 4 3

S11 3 5 5 5 3 6 6 6 4 6 4 5 3 6 6

S12 6 6 6 6 3 3 6 6 6 6 5 5 5 5 4

S13 4 6 4 6 1 1 4 6 4 6 4 6 6 6 6

S14 6 6 6 6 3 2 5 3 6 3 6 6 6 6 6

S15 4 5 4 5 5 3 4 3 3 4 4 3 3 4 4

S16 4 4 6 3 3 3 5 4 3 4 4 4 4 4 4

TABLE I
STUDENT SURVEY RESPONSES

the corresponding activity, furthermore the instructor of the

course was not involved in the collection of results and all

results reported to him were completely anonymized. Finally,

there is the threat that students may not have an accurate gauge

of their understanding on a topic. For this reason, our goal is

not to get an absolute score of how well a student understands

the concept, but to increase awareness about the use, purpose,

and importance of each concept in the study. We therefore

believe that the pre and post surveys are sufficient for our

intended purpose.

IV. RESULTS AND DISCUSSION

In this section we discuss the results of our study and try to

provide additional guidance for instructors teaching the studied

concepts. Table I presents the responses of each student for

the pre and post surveys.

A. RQ1 Does using a continuous delivery pipeline in a labo-
ratory environment help students better understand continuous
delivery related concepts?

Figure 5 shows the distribution of students ratings of

whether the activity and the pipeline improved their under-

standing of continuous integration and delivery. From the

figure, it can be seen that a majority of the students in the

study found that the pipeline and activity were useful to them

in understanding the concepts. Both S3 and S4 spoke highly

of the pipeline’s ability to help them visualize the steps in

the process. According to S4, “Now that I have physically

witnessed a pipeline in action, I can see how it is useful

to development. Being able to see tests passing and failing,

along with manually altering the source code has helped me

understand pipelines 100 times better.” S9, S13, and S14 stated

that they had heard of continuous pipelines before, but seeing

the pipeline in action allowed them to solidify their notion

Fig. 5. Ratings of the Usefulness of the Activity

of the topic. While these results were promising, there were

two students who still struggled after the study. We found

that S2 had difficulties with the study due to the fact that they

were not familiar with how to interact with the version control

tools from the command line as their previous experience

was with using GUI based tools. Based on S2’s response,

we identified that experience with command line tools should

be a prerequisite to the activity and lab. S10 was borderline

on their experience, while they found that they understood

many of the concepts better overall, they still struggled with a

few significant parts, primarily in their understanding of static

analysis.

B. RQ2 What concepts showed the greatest increase in un-
derstanding after using the continuous delivery pipeline?

To better understand the answer to this question, we look

at the results from multiple angles. We start by looking at

the overall percentage change in each concept. The results of

5353

Concept Decreased Unchanged Maxed Increased

Version Control 12 19 25 44

Branching 12 19 19 50

Static Analysis 18 38 0 44

Unit Testing 37 25 19 19

Integration Testing 12 32 6 50

CI & D Tasks 6 32 6 56

CI & D Usefulness 0 32 12 56

TABLE II
PERCENTAGE OF DECREASED, UNCHANGED, AND INCREASED RATINGS

this can be seen in Table II. From this table, it is apparent

that the concepts with the greatest percentage of students

who increased their understanding was for the overall con-

tinuous integration and delivery process and the usefulness

of these processes. If we look at the individual concepts, we

see that branching and integration testing have the second

highest percentages. However, it is important to note that

some subjects claimed an increased understanding of version

control despite rating their understanding of version control

as a 6 in the pre-survey. Maxed is the percentage of students

who rated themselves as having the maximum understanding

in both the pre and post surveys and could therefore not

demonstrate an increase. While most concepts had a higher

percentage for increased than any other column, unit testing

was an exception. Unit testing actually showed a decrease in

understanding. We believe this decrease is due to students

learning how to write basic unit tests in other courses, but

not seeing the usage of unit testing in a larger software

system. Not seeing unit testing in context led to an inaccurate

representation of their understanding of the concept of unit

testing. Once realizing the additional complexities involved in

unit testing, students corrected their scores in the post surveys.

Support for this observation comes from the point that while

the scores decreased, many of the comments reported a better

understanding of automated tests.

In addition to looking at the percentages of change, we also

look at the changes in the distributions of the ratings.

Fig. 6. Ratings of the Understanding of Version Control

In Figure 6, the distribution of ratings for the concept of

version control systems is shown. The results of the pre-

survey for version control showed that the majority of students

rated their understanding of version control at a 4 before the

study, however after the study, the majority of students rated

their understanding at a 5 or 6 with a 3 or 4 being in the

minority. We use the increase in ratings as a positive indicator

that the activity helped students to better understand version

control systems even though a majority of students had prior

experience with such systems.

Fig. 7. Ratings of the Understanding of Branching

Figure 7 shows the distribution for the concept of branching

in a distributed version control system. As with version

control, the distribution after the study showed that a majority

of students rated their understanding as a 5 or 6 with a minority

rating themselves at a 3 or 4.

Fig. 8. Ratings of the Understanding of Static Analysis

Figure 8 shows the distributions for static analysis. Static

analysis had one of the smallest degrees of change with the

largest number of students that rated themselves the same be-

fore and after the study. While there was a small improvement

in the distribution, overall it did not appear to be significant.

Figure 9 shows the distributions for unit testing. As dis-

cussed earlier, some students rated themselves lower in the

post-survey than in the pre-survey, however the minimum

rating did improve. Overall, a large portion of the distribution

remained unchanged and as discussed earlier, we do not neces-

sarily believe that the lower student ratings are a result of less

understanding as this would be contradicted by the students’

comments, but as a result of correcting their understanding

5454

Fig. 9. Ratings of the Understanding of Unit Testing

and realizing that unit testing is a more complicated process

than originally believed.

Fig. 10. Ratings of the Understanding of Integration Testing

Figure 10 shows the changes in the distribution for in-

tegration testing. Overall, integration testing showed good

improvement. In the pre-survey, the most frequent ratings were

4 and 5, however after the study students reported ratings of

5 and 6 more frequently.

Figures 11 and 12 look at students’ overall understanding

of continuous integration and delivery. These distributions

showed the largest improvements of all the distributions.

We looked for statistically significant differences between

the pre and post survey results. For this purpose, we used the

Wilcoxon signed-rank test. Statistically significant differences

were found in both the overall understanding of the tasks and

of the usefulness of the practices.

C. RQ3 What concepts require a deeper discussion in addition
to exposure of the continuous delivery pipeline?

The majority of concepts resulted in an improvement of

understanding, however there are two exceptions in unit testing

and static analysis. Students coming from a software engineer-

ing program should have a good understanding of how unit

testing works. One of the problems with teaching unit testing

is if a student learns the basics of a unit testing framework

or tool, but does not learn how to divide a software system

for testing and to isolate the individual units using mocks,

stubs, and fakes. This is one of the more complicated parts

Fig. 11. Ratings of the Understanding of CI & D Tasks

Fig. 12. Ratings of the Understanding of CI & D Usefulness

of learning unit testing and the degree of isolation is one of

the things that sets unit testing apart from integration testing.

This is what we believe may have caused some discrepancies

in a student’s understanding during the study.

We believe that students had a harder time understanding

static analysis due to the lack of failures when static analysis

detects possible issues. Instead of failing the pipeline as is

done with testing, the static analysis stage generates a detailed

report of possible issues for the student to look over. With the

limited amount of time provided in the lab students did not

look too in depth at the generated reports. For this reason,

special attention should be paid to the static analysis stage

during the activity to ensure that students do not overlook this

information.

D. RQ4 What are the problems associated with using a
continuous delivery pipeline for teaching in a laboratory
environment?

One of the primary issues that occurred during the study

was the lack of experience of some students in using version

control from the command line. This inexperience caused a

dip in productivity as students without experience with the

command line interface took longer to complete the activity.

These students were the most likely to not complete the

assignment. There are apparent ways to help mitigate this

issue. The first is for students to gain familiarity with the

command line interface for version control before beginning

the activity. The second is to provide detailed instructions

5555

within the activity for both the command line interface and

the graphical interface.

Some students struggled with getting started and performing

the intial setup of the activity. Before the two main parts of the

activity, the activity instructions go over details about how to

setup the environment and ensure that the pipeline is working

as expected so that the steps in the activity can be followed.

There were some struggles with the initial steps, however after

the initial steps were complete, students were able to follow the

instructions for the remainder of the activity. It is advised that

when setting up for independent labs, that the instructor leads

the class through the setup process. Otherwise, the instructor

will have to work one on one with students to help them

start the activity which limits the amount of time they have to

complete the activity.

In addition to the setup that must be performed by the

students, instructors should make note of the amount of time

that it will take for them to setup for the lab. If the instructor

is setting up each student’s repository themselves, this can be

a significant time investment without automated scripts to help

in the process. Furthermore, depending on the tools that the

instructor is using to run the activity, they should be aware

that there may be an involved learning curve. They will need

to familiarize themselves with the technologies before the start

of the activity.

V. FUTURE WORK

Based on the results of our study, we believe that there

are multiple benefits to using visual feedback and laboratories

for teaching continuous integration and delivery. In future

research, we plan to expand our current study by improving

CDEP and our activities with information gathered during

the pilot study, increasing the number of students studied,

and increasing the range of students studied. Additionally,

the focus of the study was on the concepts of continuous

integration and delivery and not on the tools used to build such

a pipeline. Future research will look at methods for instructing

students on the usage of such tools.

Futhermore, in the future we intend to develop additional

educational tools that help to teach the processes and steps

discussed throughout this paper. These tools will use a variety

of visualizations and feedback mechanisms to help students

understand these modern software development practices. In

the future, we intend to release all activities and tools that we

develop for use by educators at other colleges and universities.

VI. CONCLUSION

We looked at using a continuous delivery pipeline to teach

students the concepts of continuous integration and delivery

within a lab environment. We presented an initial study on

such an approach and showed promising results. We identified

concepts in which the pipeline was most effective, where

students still struggled, and areas for improvement to our

approach. Further research is still required to better understand

how to best teach these practices to students.

ACKNOWLEDGMENT

This research was funded in part by the Nystul Foundation

at the University of West Florida.

REFERENCES

[1] M. Fowler. (2006) Continuous integration. [Online]. Available:
https://martinfowler.com/articles/continuousIntegration.html

[2] ——. (2013) Continuous delivery. [Online]. Available: https:
//martinfowler.com/bliki/ContinuousDelivery.html

[3] B. P. Eddy, N. Wilde, N. A. Cooper, B. Mishra, V. S. Gamboa,
K. N. Patel, and K. M. Shah, “Cdep: Continuous delivery educational
pipeline.” Kennesaw, GA, USA: ACM Southeast, 2017. [Online].
Available: http://dx.doi.org/10.1145/3077286.3077301

[4] P. Louridas, “Static code analysis,” IEEE Software, vol. 23, no. 4, pp.
58–61, July 2006.

[5] P. Runeson, “A survey of unit testing practices,” IEEE Software, vol. 23,
no. 4, pp. 22–29, July 2006.

[6] P. C. Jorgensen, Software testing: a craftsmans approach. CRC press,
2016.

[7] S. Neely and S. Stolt, “Continuous delivery? easy! just change every-
thing (well, maybe it is not that easy),” in 2013 Agile Conference, Aug
2013, pp. 121–128.

[8] L. Chen, “Continuous delivery: Huge benefits, but challenges too,” IEEE
Software, vol. 32, no. 2, pp. 50–54, Mar 2015.

[9] J. Gmeiner, R. Ramler, and J. Haslinger, “Automated testing in the
continuous delivery pipeline: A case study of an online company,”
in 2015 IEEE Eighth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), April 2015, pp. 1–6.

[10] S. Bellomo, N. Ernst, R. Nord, and R. Kazman, “Toward design deci-
sions to enable deployability: Empirical study of three projects reaching
for the continuous delivery holy grail,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, June
2014, pp. 702–707.

[11] P. Austel, H. Chen, T. Mikalsen, I. Rouvellou, U. Sharma, I. Silva-Lepe,
and R. Subramanian, “Continuous delivery of composite solutions:
A case for collaborative software defined paas environments,” in
Proceedings of the 2Nd International Workshop on Software-Defined
Ecosystems, ser. BigSystem ’15. New York, NY, USA: ACM, 2015, pp.
3–6. [Online]. Available: http://doi.acm.org/10.1145/2756594.2756595

[12] L. Chen, “Towards architecting for continuous delivery,” in 2015 12th
Working IEEE/IFIP Conference on Software Architecture, May 2015,
pp. 131–134.

[13] J. Bae and J. Kim, “An experimental continuous delivery framework for
smartx-mini iot-cloud playground,” in 2016 International Conference on
Information Networking (ICOIN), Jan 2016, pp. 348–350.

[14] M. Soni, “End to end automation on cloud with build pipeline: The
case for devops in insurance industry, continuous integration, continuous
testing, and continuous delivery,” in 2015 IEEE International Conference
on Cloud Computing in Emerging Markets (CCEM), Nov 2015, pp. 85–
89.

[15] Jenkins, “Jenkins,” 2011–2016. [Online]. Available: https://jenkins.io/
[16] L. Torvalds, “Git,” 2005–2016. [Online]. Available: https://git-scm.com/
[17] Apache Software Foundation, “Subversion,” 2000–2016. [Online].

Available: https://subversion.apache.org/
[18] J. Dunne, D. Malone, and J. Flood, “Social testing: A framework to

support adoption of continuous delivery by small medium enterprises,” in
2015 Second International Conference on Computer Science, Computer
Engineering, and Social Media (CSCESM), Sept 2015, pp. 49–54.

[19] S. Krusche and L. Alperowitz, “Introduction of continuous delivery
in multi-customer project courses,” in Companion Proceedings of the
36th International Conference on Software Engineering, ser. ICSE
Companion 2014. New York, NY, USA: ACM, 2014, pp. 335–343.
[Online]. Available: http://doi.acm.org/10.1145/2591062.2591163

[20] J. G. S and W. Billingsley, “Using continuous integration of code and
content to teach software engineering with limited resources,” in 2012
34th International Conference on Software Engineering (ICSE), June
2012, pp. 1175–1184.

[21] H. B. Christensen, “Teaching devops and cloud computing using a
cognitive apprenticeship and story-telling approach,” in Proceedings of
the 2016 ACM Conference on Innovation and Technology in Computer
Science Education. New York, NY, USA: ACM, 2016, pp. 174–179.

5656

