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Abstract—Teaching software development to under-
graduate students is a challenging task. One of the
challenges is to secure a high education quality for
large numbers of students. Different projects should
be easily comparable while allowing for different tasks
for different teams to reduce the risk of plagiarism.
Our solution is to use an application framework.
The student project teams’ final applications attained
varying degrees of complexity, which led to com-
plaints from students. An approach to approximate
the size of project tasks is to model project tasks
by a feature model. The features in this model are
weighted with function points. Then, each project
task can be refined as a product configuration derived
from the feature model with a predefined total num-
ber of function points. We present the approach at
the example of the SalesPoint framework and report
on the results of its application in our software project
courses.

1. Introduction

Teaching object-oriented software development to
undergraduate students is a challenging task for several
reasons. Students need to develop a lot of complex skills.
These include technical skills in object-oriented software
development, but also social skills. To acquire these
skills, students need development experiences, mostly
through team-oriented project courses. Designing such
project courses is a challenge in itself. In particular,
we set ourselves high standards of education quality for
large numbers of students supervised by small numbers
of staff to secure. Therefore, an important requirement is
scalability: Different projects should be easily compara-
ble while allowing for different tasks for different teams
to reduce the risk of plagiarism. The solution that in
our experience satisfies these requirements is to use an
application framework for an everyday application do-
main. In our special case, we have been used SalesPoint
for web-based point-in-sale applications [1] in several
versions since 19971. Each project team is supported

1. www.salespoint-framework.org

in its software development process by a student tutor.
The team gets a one-page project task for a point-of-
sale application and negotiates details with the customer
(represented by the tutor) during the analysis phase.
At the end, it depends on the tutor how extensive the
detailed project requirements will be. The experience
showed that the final applications of the student project
teams were of varying degrees of complexity, which led
to complaints from students.

The idea to approximate the size of project tasks
was to consider the family of SalesPoint applications as a
Software Product Line (SPL) [2]. We modeled the Sales-
Point SPL in terms of features to create a feature model
[3]. Then, we consider a derived product configuration
of this feature model as requirement specification for a
specific project task. The intention is to approximate the
needed effort (or cost) in the software project course for
the implementation of the applications by the students
relating to (1) the average effort measured in hours
and (2) comparable effort for each project task. We
started with the analysis of existing SalesPoint applica-
tions developed in former software project courses and
derived the feature model by feature extraction. Feature
extraction starts from an initial set of data, identifies
commonalities and differences of existing products based
on domain knowledge, and builds derived features [2].
The next step was to weight the features in the feature
model with Function Points (FPs) [4] as the basis for the
cost estimation of a single project task. We developed a
tool which guides the tutor to derive a product configu-
ration with features he or she wants to have in his role
as a customer in the SalesPoint application to be imple-
mented. This product configuration should be of a nearly
predefined number of Function Points to achieve project
requirements of comparable size for all student projects.
The tutor uses his product configuration of the feature
model to fulfill his customer role in discussions with the
students during the analysis phase of the project. Note
that it is not the intention that the students work with
the product configuration. They should by themselves
elucidate the requirements for their special point-of-sale
application.

In the past two years, we applied this approach and
tool to approximate the project tasks in our annual soft-
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ware project course. In this paper, we briefly present our
approach, and report on our experiences. Our research
questions are the following:

RQ1 Is the approach of a Weighted Feature
Model-based derivation of related project
task appropriate to approximate the project
tasks in a large-scale software project course
relating to (1) a mean effort measured in
hours and (2) a comparable effort for each
project task.

RQ2 Do the students still complain about differ-
ent requirements?

RQ3 How do the tutors evaluate the approach?

RQ3.1 Do the tutors evaluate the ap-
proach as appropriate to achieve
the goal of RQ1?

RQ3.2 Do the tutors evaluate the tool as
useful for their role as a customer?

One might argue that students should not be
shielded from real-world challenges such as real cus-
tomers and real projects, or the confrontation with team
problems, unforeseen technical and project management
issues. While true to a certain extent, our students have
to face theses issues, especially with regard to teamwork.
Regarding the question of real customers, we have, for
many years, implemented a two-track strategy. Besides
our SalesPoint based project (academic) approach, we
offer real projects in the industry to interested students
who are then usually more motivated for their software
development activities than in our academic projects [8].
In [9], we reported that our academic approach led, in
most cases, to a higher program quality compared to real
projects with about the same time resources used. The
challenge is to balance the trade-off between students’
request for real projects and a strong guidance in aca-
demic software development. In a recent empirical study
on the evaluation of the effects of experience on code
quality and programmer productivity, it was reported
that programming experience in academia has a positive
influence on programmer performance compared to pro-
gramming experience gained in the industry which has
neither has an effect on quality nor productivity [10].
This confirms our long-term observations in teaching,
which is why we prefer academic projects for undergrad-
uate students.

The rest of the paper is organized as follows: In the
next section, we summarize related work. Our research
approach is presented in Section 3. The design of our
feature model and an extract of it is given in Section 4.
Then we report on experience with the application of our
approach (Section 5). Section 6 presents the results of
our case study and evaluates them against our research
questions. Threats to validity are listed in Section 7.
Finally, we summarize our research and discuss future
work.

2. Related Work

Running student software projects are often thema-
tized in education conferences because a software project
course comes with many issues regarding organization
and supervision. However, large-scale student software
project courses are not so often subject of research.

In [5], a framework is proposed how to set up a large-
scale student collaboration project, and how to be aware
of problematic issues. This framework considers four
features as a basis for developing and focusing studies of
large-scale student collaboration projects as well as ideas
for how to analyze the results of such studies. One of
the features is the mechanism for work allocation among
the members of a project. The work refers to the tasks
necessary to fulfill the main project task, and not how
the workload is allocated fair among multiple project
teams.

General reflections on large-scale student assessment
in academic education are written in [6]: what do teach-
ers need to know about valid assessment practices. In
our software project course, the student gets the certifi-
cate passed (successfully finished project) or failed. The
challenge for the teachers in our case is to fairly allocate
the workload.

Ceddia and Dick [7] investigate the estimation of the
size of student projects using modified function points
because of the huge variability of projects and clients
in their Bachelor of Computing program. The mean of
the number of FPs in 63 projects is 261 with a standard
deviation of 130 points. Such a high standard deviation
is exactly what we want to avoid.

To the best of our knowledge, there is no research
how to approximate project tasks in a large-scale student
software project course.

3. Research Methodology

The main goal of our research is to find a way
to define project tasks in large-scale software project
courses that have a fair and balanced effort for all
participating teams. Figure 1 shows important concepts
of our software project course and their relationships by
a UML class diagram.

Each student team (Team) consisting of five to six
members gets at the beginning a one-page project task
(Task) which is the basis for the analysis phase of the
project. Each team consists of an assigned tutor who
supervises the team and plays the role of the customer
in the project. In the customer role, the tutor has to
express his detailed requirements to refine the specified
one-page task to a Software Requirements Specification
(SRS). In order for these requirements to be expressed in
such a way that they correspond to the scheduled time
and are balanced against other tasks or teams, the tutor
prepares the discussion with the students by deriving a
product configuration (Product Configuration) from the
feature model (Weighted Feature Model). It is important
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Figure 1. Concepts and their Relationships of our Software Project
Course in the Context of the Presented Approach

that this product configuration must nearly meet the
predefined total number of Function Points.

After we have performed the project course many
years without the feature model, we started to analyze
SalesPoint applications to extract features (cf. Subsec-
tion 4.1) and designed the SalesPoint feature model (cf.
Subsection 4.2). In the next, step we assigned weights
to the features (cf. Section 4.3) and implemented a
tool which supports the work with the weighted feature
model (cf. Section 4.4).

During the past two years, we applied this approach
and tool to approximate the project tasks in our an-
nual software project course. In order to evaluate the
effects and to respond to our research questions (cf.
Section 1), we collected data both by student and tutor
questionnaires, and we required feedback of each student
to several concerns (cf. Section 5). As we have in pre-
vious years regularly collected data after the end of the
project, we were able to compare the data to evaluate
the new approach (cf. Section 6).

4. Design of a Weighted Feature Model

This section presents our approach of creating a
feature model and assigning weights to it. The process
we used to get relevant features for the creation of a
feature model is described in Section 4.1. Our approach
of creating a feature model out of these features is
discussed in Section 4.2, where we will also present a
small snippet of it. The way in which we assigned a
weight to each feature will be shown in Section 4.3.
Finally, we will describe our tooling which supports the
application of the feature model.

4.1. Extraction of Features

We used the extractive approach [2] to design a fea-
ture model for our application framework SalesPoint. We

were, in principle, able to analyze hundreds of student
projects from a period of 20 years. However, we decided
to focus on projects from the winter semester (WS)
2014/2015 which are based on the latest major version
of the framework. Of a total of 34 projects, we chose
those which had the highest degree of reuse of SalesPoint
packages. During the extraction process, we identified
such features that are either directly supported by the
SalesPoint framework or can at least be implemented
by reuse of them. Here we used the following artifacts:
(1) the finished application of each team; (2) the related
SRS; and (3) their use case diagrams (part of the SRS).
We extracted features from each team’s project and
structured them in order to allow us to assign a weight
to each feature.

We decided on a manual feature model design to
extract features from artifacts because the diversity of
artifacts and student’s programs do not support an
automatic or semi-automatic approach (which is called
feature mining [11]). This decision has multiple reasons,
ranging from vastly differing knowledge of the teams
and the resulting project quality to the fact that the
projects based on an SPL in mind were never considered
in former courses. So we had to master several issues in
the manual extraction process.

(1) Inconsistency and Incompleteness of students’
projects. Inconsistency refers to different names for se-
mantically equivalent features. Incompleteness means
existing differences between the SRS and the finally
implemented application.

(2) Different but essentially the same implemen-
tations of features must be generalized. For exam-
ple, one project has a feature/use-case manage sales
personnel, while another has one called manage
waitresses. These features have a slightly different
meaning in their respective domain, however, essentially
they evolve from the management of personnel. There-
fore it is irrelevant how exactly this personnel is named.
These features are represented in our feature model by
personnel_management.

(3) Feature names should be short and applicable
to the whole domain, but generally self-explanatory. In
conjunction with the generalization requirement, this
was not trivial and only partially possible. For the two
extracted features (from different projects) edit shift
schedule and edit calendar of events, the intro-
duced abstraction focuses on time-based events, which
are performed in a plan or calendar. However, a feature
name could be misunderstood as the tutor might not
associate a plan with a schedule or event calendar, but
with something else. For this reason, each feature is
provided not only by a name but also by a description
and examples of different sub-domains.

4.2. Creation of the Feature Model

The feature model was created basically according
to the structure of the analyzed projects and their com-
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ponents. Components were decomposed into more fine-
grained features to allow them to assign an accurate
weight. The resulting feature model is a tree, in which
each child B of a node A requires A to be selected
(or later on implemented), in order for B to become
selectable.

A node in the feature model is either Mandatory:
The node must be selected if the parent is selected, or
Optional: It is possible to select the node. Furthermore,
a node is either Abstract: The node has no direct repre-
sentation through artifacts (i.e. is no concrete feature),
but is a means to group other features; or Concrete: The
node represents a feature, which can be selected and
implemented. Features in a group with the same parent
are by default logically joint by an AND constraint.
But it is also possible to include them into an OR-
Group (at least one child must be selected if the parent
is selected), or into an XOR-Group (exactly one child
must be selected if the parent is selected). In addition, a
feature model allows specifying Cross-Tree Constraints
(CTC) which define constraints on features in different
branches of the tree.

Figure 2 shows a small snippet of the SalesPoint
feature model. In this snippet, the abstract root node
has only one child, namely the concrete and mandatory
feature A_2_Personnel_Management. The feature
A_2_Personnel_Mangement consists of the features
(B_1_Personnel_Overview, B_6_Create_Personnel,
and B_1_Remove_Personnel). The mandatory feature
B_1_Personnel_Overview provides the functionality
to list personnel data through a simple user interface.
It is the prerequisite for the use of the optional sub
features C_5_Filter_Personnel, C_3_Sort_Personnel,
and C_3_Search_Personnel. The optional children
of A_2_Personnel_Mangement are the feature
B_6_Create_Personnel, which provides the
functionality as well as a user interface to create a new
employee, and the feature B_1_Remove_Personnel,
which represents the removal of an existing staff
member. Note that each feature name (<level
>_<weight >_<mnemonic >) is composed of the
level of the feature tree, the assigned weight to the
feature (cf. Subsection 4.3) and a mnemonic name.

4.3. Assignment of Weights to each Feature

We used the Function Point Analysis (FPA) as de-
fined by the IFPUG2 as the foundation for the assign-
ment of weights to the features in the feature model.
The number of Function Points (FP) is a metric which
describes the functional size of a feature measured by
the necessary cost to implement the feature whereby we
measure the cost based on hours.

The FPA distinguishes five components of three com-
plexity levels to categorize functionality, and assigns
fixed values, the so-called Function Points, depending on

2. International Function Point User Group, www.ifpug.org

the complexity level the functionality is put in. The com-
ponents are External Input (EI), External Output (EO),
External Inquiry (EQ), Internal Logical File (ILF), Ex-
ternal Interface File (EIF). Each of them is ranked as
Low, Average, or High. According to the Component and
the complexity ranking, an FP value is assigned to each
function.

In the FPA of the SalesPoint SPL, the components
of the FPA were adjusted to match the needs of our
project course. We removed EQ features from further
considerations because the requirements for EQ were
nearly never met. We shifted the according functions
to the EO category. This has been done as our projects
and the contained functions always consist of backend
and frontend implementation. Additionally, we removed
the component EIF from the scope, as the teams de-
velop an application without interfaces to other systems.
Therefore, no external data is handled, and the EIF
component is obsolete.

We introduced two new components. This is theMis-
cellaneous component to be able to measure relatively
small features or features that do not require real effort
in terms of another component. Furthermore, we decided
to exclude any non-trivial algorithmic functionality from
the other components and classify them in the Process-
ing Complexity component. It allows for a more accurate
estimation, as we can assign FPs to this component that
reflect the difficulty from the student teams’ point of
view.

Finally, we also adjusted the Function Points as-
signed to the components in order to represent the effort
within our project course and according to the skills of
the students appropriately. A complete overview of our
components mixed with the complexity levels and the
respective FPs assigned can be seen in Table 1.

TABLE 1. Comparison between the FPs of the original
FPA and the SalesPoint adjusted version of the FPA

Nr. Component with Complexity FPA Adjusted FPA
1 Low EI 3 3
2 Average EI 4 5
3 High EI 6 8
4 Low EO 4 3
5 Average EO 5 6
6 High EO 7 9
7 Low EQ 3 -
8 Average EQ 4 -
9 High EQ 6 -
10 Low ILF 7 7
11 Average ILF 10 10
12 High ILF 15 15
13 Low EIF 5 -
14 Average EIF 7 -
15 High EIF 10 -
16 Low Processing Complexity - 5
17 Average Processing Complexity - 10
18 High Processing Complexity - 15
19 Miscellaneous - 1
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Figure 2. A Snippet of the SalesPoint Feature Model.
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Legend:
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4.4. Tooling

The weighted feature model is designed to support
tutors to create a software product configuration that
is the basis for their discussions with the students in
the analysis phase. We used the widespread tool Fea-
tureIDE3 in order to visualize our feature model as a
feature diagram (cf. Figure 2). It allows for an easy
selection of features and verifies whether the selected
configuration is valid. It even offers support for the
detection of the causes of invalid configurations, which
makes it overall an appropriate tool for our cause.

We extended the FeatureIDE tool to dynamically
calculate the total number of FPs from the weights
encoded in the feature names during the configuration
process. This has proven to be a great help, as tutors get
direct feedback about whether or not the size of their
feature list conforms to a predefined weight.

5. Case Study

We have been working with the feature model in two
project courses, in the winter semester 2015 (WS15 )
and 2016 (WS16 ). The intention was to overcome the
following general problems which led to the complaints
of the students:

1) The given one-page description of the tasks was
very general and vague, but also vastly differing
in the effort.

2) The tutors had no clear guideline as to how
much functionality they should require from the
teams in order to keep the needed effort equal
for all teams.

In order to evaluate the effects and to respond to our
research questions (cf. Section 1), we collected data both

3. wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

from student and tutor questionnaires, and we required
feedback of each student to several concerns. As we have
in previous years, we regularly collected data after the
end of the project, and were able to compare student’s
data to evaluate the new approach (cf. Section 6). In
each course, all projects were archived, and each team
completed a questionnaire about the team’s experience
within the project course and their general evaluation.
Furthermore, each student had to write an individual
experience report, which is also included in the analyzed
data set. We used project data from the last winter
semester course before the application of the feature
model (WS14 ) as the foundation for the comparison in
our case study. Additionally, we designed a questionnaire
for the tutors to evaluate their experience and to ask
them for feedback.

From each student, the project course requires six
credits points which correspond to an approximate total
effort of 180 hours. The course lasts 12 weeks which
means that every student should plan about 15 hours
per week for the project work. A team consists of 5
to 6 students, which means that the project is small
compared to industrial projects, but it is a first large
and work-related project for inexperienced students. The
intended time investment is not a strict demand, as
experienced students might need considerably less time
to meet our requirements.

In Subsection 5.1 we present data we collected from
the student teams, their responses to the questionnaire
and their experience reports. Subsection 5.2 summarizes
the results from the questionnaires completed by the
tutors.

5.1. Data from the Student Projects

We collected and analyzed student project data from
the three named courses WS14, WS15, and WS16. The
WS14 data is mainly used as the reference to assess
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TABLE 2. Data from student projects

# Evaluated Data WS14 WS15 WS16
S1 Number of teams 34 31 27
S2 Mean time per student per week invested 15,6 hours 14,1 hours 13,8 hours
S3 Standard deviation of #S2 3,7 3,0 3,2
S4 Number of teams that deviated >= 5 hours from the target effort 9 (26,5%) 4 (12,9%) 6 (22,2%)
S5 Number of teams that named differences in effort between teams, or criticized that the effort

needed to complete the course exceeds the scheduled time 11 (32,3%) 4 (12,9%) 2 (7,4%)
Mean team’s evaluation of...

S6 the completion of the task 2,6 2,8 3,1
S7 Standard deviation of #S6 0,8 0,6 0,6
S8 the quality of the implementation 2,4 2,6 2,9
S9 Standard deviation of #S8 0,8 0,7 0,8
S10 Number of teams that thought their task was of comparable effort to most other teams No Data No Data 22 (81,5%)

the applied feature model based approach in WS15
and WS16. Table 2 lists consolidated data from these
three courses. Each row represents one evaluated statis-
tic while the respective column represents the project
course year the data is from.

Our questionnaire asked each team (total of cf. #S1)
to note the mean time per week per student invested in
the project (#S2). The time was tracked by the students
during the whole course on a day-by-day basis. We see
a continuous decline in the mean time, even below the
scheduled time of 15 hours per week per student. The
standard deviation of the mean time (#S3) decreases as
does the mean time.

Looking at each team’s individual answer to the
question regarding the mean time invested, we also took
into account how many teams deviated at least 5 hours
from our target commitment of 15 hours (meaning 10
and below, as well as 20 and above) which would account
for a discrepancy of at least 33% (#S4).

Each team member had to write an experience re-
port, in which they could freely write about how they
liked the course or what problems they had (#S5). Even
if this is only related to our approach indirectly, we
decided to include these results in our evaluation. In
particular, we looked for hints that showed that the
students felt either (a) an imbalance between teams and
their tasks (especially regarding the required effort), or
(b) complained that the effort required to finish the
course exceeded the scheduled project time. With (a)
we targeted the communication between the students
and teams, as it was very likely that friends of different
teams would communicate about their tasks and how
their project was going. Therefore, we hoped to get any -
even if highly subjective - feedback regarding the fairness
of the course. With (b) we assumed that only students
who are confident in their ability would write such a
statement. We excluded any general complaints about
the course being too demanding, as students tend to
complain too often. However, we counted any justified
critique and checked it against the time invested by the
respective student or team. Additionally, we attributed
the critique in a single report to the whole team, as
students mostly tended to avoid reporting the same

problems another team member already submitted.
Within the questionnaire, each team had to state,

how they assess their completion of the task (#S6) and
how they rate the quality of their implementation (#S8).
For both questions, we evaluated the standard deviation
(#S7 and #S9). The scale for both was as follows:

• with major deficiencies (1 point)
• with minor deficiencies (2 points)
• fulfilled (3 points)
• overfulfilled (4 points)

The target value is 3 points (fulfilled), as a mean close
to this denotes that the tasks we handed out were
appropriate for the course.

In the questionnaire handed out in WS16, we in-
troduced a question which asked for an evaluation of
the students regarding the comparability of the project
tasks (#S10). In that course, the tasks were already
balanced, so hopefully of comparable effort, which is why
we wanted to see if this held true in the team members’
eyes.

5.2. Data from the Tutors

With the goal to evaluate and improve our approach,
we also designed a questionnaire for the tutors. It was
first handed out at then end of WS15 and with minor
adjustments also in WS16. As the tutors are mostly
former project course participants, they tend to know
both sides, which is why they are an important asset in
evaluating their answers.

InWS15, we had 17 (resp. 18) tutors who supervised
at least one team, and we reached a response rate of
100%. In WS16, however, we had 14 (resp. 15) tutors
but only managed to get a response from 10 due to
organizational problems. In both courses, one author of
this paper was excluded from the evaluation to prevent
potential biases.

Table 3 summarizes the data we collected.
Question #T1 targets the state of the course before

our approach was used and was therefore only asked in
WS15 to compare the before and the after directly. As
each tutor either participated as a student in the course
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TABLE 3. Data from tutors

# Question WS15 WS16
T1 Do you think that the basic demands on the teams varied strongly in the course before? 14x Yes, (...)

3x No Not asked

T2 Do you think that the basic demands on the teams varied less strongly in this course? 15x Yes
2x No Not asked

T3 Do you think that the basic demands on the teams were equal at the beginning of this course? Not asked 6x Yes
4x No

T4 Do you think that the software product configurations and the added weights
are appropriate to compare the tasks and the corresponding required effort?

4x Yes
11x Yes, (but...)
2x No, (...)

4x Yes
5x Yes, (but...)
1x No, (...)

T5 Did you have the impression that the complexity of the application(s), which your team(s)
had to implement (based on the product configuration), was comparable to those of other teams?

15x Yes, (...)
2x No, (...)

10x Yes, (...)
0x No, (...)

T6 Do you consider the creation of a product configuration as being useful? 14x Yes
3x No

10x Yes
0x No

T7 Is the predefined total task weight (currently 250 FPs) for mandatory requirements
appropriate for a team of five students?

11x Yes
6x No, (...)

8x Yes
2x No, (...)

T8 Did the feature model contain all features you wanted to select? 13x Yes
4x No Not asked

T9 Was the provided manual sufficient and helpful? 17x Yes
0x No

9x Yes
1x Cannot judge

T10 Are the included feature descriptions sufficient? 16x Yes
1x Cannot judge Not asked

or was already a tutor in WS14, we see every tutor as
fully qualified to answer this question.

As a direct follow-up to the prior discussed question,
we asked (#T2) whether or not the tutors perceived that
the basic demands varied less strongly inWS15. Our tar-
get was to evaluate, whether the feature model approach
was appropriate in order to (at least subjectively) match
the requirements each team has to fulfill.

In WS16, we adjusted the question (#T3), as some
tutors did not experienceWS14, and therefore no direct
comparison was possible. However, the question is now
more general and does not only demand an assessment
about a comparison to a past state. On an abstract
level, we wanted to figure out whether or not all teams
started from the same level of complexity and extent, or
if even the starting conditions were unequal (regarding
the requirements of the course).

Question #T4 checks whether or not the tutors see
our approach as an appropriate solution to the referred
problem.

While we already asked if the tutors see that each
team had equal starting conditions, we wanted to eval-
uate whether this was also the case during the course,
especially regarding the complexity of the application to
develop, which stems from the initially created product
configuration (#T5).

We also wanted to know if the tutors see the cre-
ation of the product configuration as useful (#T6). This
allows us to determine whether the effort it takes to
(a) complete the setup (includes reading the feature
model manual), (b) learn how to handle the tool, (c)
get familiar with the feature model and read the descrip-
tions of the features, and (d) finally create the product
configuration is worthwhile.

In order to determine whether or not we need to
adjust the predefined total weight for the tasks, we asked

the tutors if they see the given value as sufficient (#T7).
Besides a target weight for a task, we also allowed a
variance (currently 30 FPs) to give the tutors more
freedom in their feature choices.

As we used the extractive approach to design a
feature model from a subset of existing applications from
one course, we wanted to evaluate if we were able to
represent the whole application domain appropriately
(#T8). This question was only asked in WS15, as in
WS16 we wanted to gather more data about missing
features that will not be discussed in this paper.

In order to support the tutors during the first steps as
described above (#T6), we wrote an extensive manual to
guide the installation, usage, and even provide necessary
information about SPLs in one comprehensive document
(#T9).

Finally, we asked the tutors to evaluate if the
provided descriptions for each feature were sufficient
(#T10). Almost all tutors in WS15 found this to be
true, so we removed the question in WS16.

6. Evaluation

In this section, we evaluate the collected data pre-
sented in Section 5 and answer our research questions
(RQ) (cf. Section 1). In Subsection 6.1, we address RQ1
and RQ2 by discussing the implications of the data col-
lected from the teams and the respective students. Sub-
section 6.2 addresses RQ3 by evaluating the responses
of the tutors.

6.1. Evaluation of the Data from the Student
Projects

We asked if the approach of a Weighted Feature
Model-based derivation of related project task is ap-
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Figure 3. Percentage of teams that named differences in effort
between teams, or critized that the effort needed to complete the
course exceeds the scheduled time (#S5)

propriate to approximate the project tasks in a large-
scale software project course relating to (1) the average
effort measured in hours and (2) comparable effort for
each project task (RQ1). The collected data #S2, #S3,
and #S4 in Table 2 show that the project time invested
has decreased in the courses WS15 and WS16 (here-
inafter referred to Weighted Feature Model approach
based courses (WFMs)). The standard deviation (#S3)
and the deviation in hours from the target effort (#S4)
have also decreased which indicates that the effort for
the different tasks are becoming equal overall. Teams
evaluated in WFMs the completion of tasks (#S6) and
the quality of their implementation (#S8) better than
in WS14. We take these data and the corresponding
mostly reduced standard deviations (#S7 and #S9) as
an indication that the quality of the student projects
could be increased with a balanced task complexity.
Overall, we, therefore, answer RQ1 positively.

Research question RQ2 addresses the non-balanced
effort in the project course for all teams as a reason
for student complaints. In comparison to WS14, fewer
teams named differences in effort between teams or
criticized that the effort needed to complete the course
exceeds the scheduled time in WMFs (#S5 graphically
depicted in Figure 3).

Furthermore, the majority of teams (81,48%) in
WS16 explicitly confirmed (#S10) that they saw their
own task as compared to the tasks of other groups. So
we see question RQ2 negated which means that we have
basically no complaints from the students anymore.

6.2. Evaluation of the Data from the Tutors

The responses to the tutor questionnaire allow an
evaluation of the research question RQ3, and they are
mostly positive (cf. Table 3).

Research question R3.1 asks if the approach is appro-
priate to approximate the project tasks in a large-scale
software project course. Data regarding #T1 and #T2

compare the situation before and after our approach
has been applied. While the tutors see that the basic
demands varied less strongly inWS15, we can only guess
that this is due to the effectiveness of our approach.
However, as our work was the only change in the course
that targeted this variation, we assume that the assump-
tion is justified. On the other hand, #T3 data shows that
we only reached a slight improvement in comparison to
the state of the course in WS14. Even though 60% of
the tutors think that the demands are equal, we still see
room for improvement. #T4 and #T5 data show that an
overwhelming majority of tutors feel that the approach
is appropriate to achieve the desired goal, though they
still would like to improve either the feature model, the
assigned weights, or even both. All in all, we come to
the same conclusion as in the evaluation of the student
data that the approach helps to approximate the project
tasks (cf. Subsection 6.1).

The data set consisting of #T6, #T7, #T8. #T9
and #T10 essentially address research question RQ3.2.
Tutors see the initial creation of a product configuration
at the beginning of the course as useful (#T6). This
indicates that the costs (i.e. their invested time) are
outweighed by the benefits, and therefore the approach
must be an asset to their role as a customer. Tutors
generally think that our predefined weight for a task,
or the variance we allowed for it, is adequate, but a
notable number also disagrees. This can most likely be
seen as related to data #T4 and should be looked into
in the future. However, we can perhaps agree that the
predefined weight is too low, as the mean time spent
for the project (#S2) has dropped compared to WS14.
#T8, #T9, and #T10 data give a positive answer to the
question whether the tutors are sufficiently supported
by the feature model in their work. Thus, the question
RQ3.2 can also be regarded as essentially positive.

7. Threats to Validity

According to Wohlin et.al. [12], we consider the fol-
lowing validity threats to empirical studies in software
engineering that basically refer in our research to (1) the
design of artifacts collecting data in the case study (con-
struct validity), (2) the comparative survey of collected
data (internal validity), and (3) the generalization of the
results outside the scope of the SalesPoint framework
and our didactic course concept (external validity).

In terms of construct validity, we need to take into
account threats arising from the design of the question-
naires. As students did not know about our approach,
they would neither be able to infer benefits, nor draw-
backs, which is why we assume that the answers col-
lected by student questionnaire to be real. Moreover, the
teams were required to fill out the student questionnaire
in a closing and feedback session. Unfortunately, we
found hints of false data occasionally being submitted,
which might influence our evaluation of this data.
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A further threat to validity is the time spent of
the students that they had to record. We made sure
that students make an accurate record of the times.
But this is difficult because the students often discuss
project issues between the lectures and therefore do not
always work continuously on the project. In addition,
the different motivation, the teamwork and the technical
skills of the students influence the time spent. This
would explain the increased variance of the number of
teams that deviated >= 5 hours from the target project
effort (#S4) in WS16.

All tutors were handed an extensive document (tu-
tor questionnaire) with all aspects regarding the usage
of our approach. Additionally, we gave to every ques-
tion asked a detailed description and selected examples,
wherever misunderstandings could happen or different
tutor experience might play a role. Unfortunately, the
tutors might have had the desire to rate their own work
positively But as the tutors knew that their answers
would influence whether or not our approach will be used
in future courses again, we assume that their answers
are unbiased. Otherwise, they would harm themselves if
they will decide to supervise teams again in the future.

Besides the questionnaires, we evaluated student ex-
perience reports. These were not anonymous, which has
been remarked by several students as a hindrance for
a truly objective feedback. However, as the aspects we
researched in this work are not harmful to the students
if they gave us their personal feedback, we conclude that
the answers regarding the goals of our approach repre-
sent unbiased results. One possible threat to construct
validity is the format of the experience report. While
it was freely written in WS14, we changed the format
afterward to include general questions, but nothing re-
lated to the evaluation of this work. The students could
still freely write their opinion.

Our project course changed considerably between
WS14 and WS15, not just for the feature model ap-
proach. We introduced several technological changes like
version management on GitHub, Continuous Integration
of student applications, and also putting more focus on
code quality (potential threats to internal validity). But
these changes do not influence the analysis phase in
which the features to be implemented are defined, and
thus not the answers to the corresponding questions.
One author of this research was also tutor in all three
evaluated courses. We excluded his answers on all tutor
questionnaires to avoid biased data. The results of his
supervised teams are still part of the analyzed data, as
we found no abnormalities compared to other teams.

Threats to external validity, which refer to the gen-
eralization of our results, arise by the application of the
feature model approach applied to a concrete framework
and by the concrete organization and rules in our project
course. We performed the presented approach by exam-
ple. We are aware that this only applies initially to our
special scenario. One crucial problem lies in the weight
of each feature. First evaluations have shown that our

approach with fixed weights for each feature might only
be applicable in small domains with relatively simple
functionality, like ours. With rising complexity, we as-
sume that features start influencing each other more
considerably, therefore increasing the required effort and
actually also increasing the Function Point Count of
the whole application. However, we see the potential
of generalizing the approach and adjusting it to the
different needs of comparable project courses. As long
as a general domain for the SPL is defined and a fine-
grained feature model can be created in accordance with
the components of the Function Point Analysis, our
approach can be adopted.

8. Conclusions
We presented an approach to approximate project

tasks for a family of similar applications in an every-
day application domain. The aim of the approximation
of project tasks is the result of the requirement to
balance the effort for many teams in a large software
project course. We use the SalesPoint framework in
our course to enable students to implement point-of-
sale applications. The solution for achieving our goal is
to consider the family of SalesPoint applications as a
software product line, and we create a feature model for
this SPL. Then, a rough description of a project task
can be refined by derivation of a product configuration
of the SalesPoint feature model. The idea behind this
method is that each feature has an assigned weight in
terms of function points. By summing up the FP of
the product configuration, the effort to implement the
individual applications can be compared and balanced.
The challenge to the application of this approach is a
well-designed feature model and the calculation of a
realistic number of function points for all features. We
master this challenge by a comprehensive analysis of
existing SalesPoint applications and additional project
data to extract features and to calculate corresponding
function points.

We applied our approach in the recent two courses
and collected extensive data. In this case study, we com-
pared these data with data of a former course to evaluate
the effects of our approach. Our research question was
if the use of a Weighted Feature Model-based derivation
of related project task is appropriate to approximate the
project tasks in a large-scale software project course.
Based on the evaluation of the collected student project
data, we are sure that the feature model will help to ap-
proximate the student project task, which will eliminate
student complaints about unequal requirements on their
projects. At the same time, we were able to validate this
observation by the survey of the tutors, who evaluated
the concept, including the tooling provided, as helpful.

Our conclusion is that we see the potential of gen-
eralizing the presented approach for other large-scale
software project courses. As long as a family of software
applications is the subject of a project course with many
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student teams our approach can be adopted. In our next
courses, we will refine the feature model including the
weights for the features based on the analysis of the
recent course and the experience of the tutors.
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