
Evolving a Project-based Software Engineering Course:
A Case Study

David Delgado1, Alejandro Velasco1
1Computer Systems and Industrial Engineering

Universidad Nacional de Colombia
Bogotá, Colombia

dcdelgadoa@unal.edu.co; savelascod@unal.edu.co

Jairo Aponte1, Andrian Marcus2
2Department of Computer Science
The University of Texas at Dallas

Richardson, TX, USA
jhapontem@unal.edu.co; amarcus@utdallas.edu

Abstract—This paper presents the evolution of a project-based
course in Software Engineering for undergraduate students at
the Universidad Nacional de Colombia. We describe and
explain the changes we have done over six semesters. In
addition, we investigate the effects of the changes on the
students’ grades and their project activities, by analyzing the
software project repositories and the student feedback. Most of
the changes had positive and expected results, while some had
unexpected consequences. We distill a set of lessons regarding
the class evolution, which will guide the future improvement of
the course and which could be useful for other educators
developing a similar course.

Keywords-project-based learning, capstone project, agile
methods, software engineering education

I. INTRODUCTION
SWEBOK1 and the ACM/IEEE Curricula Guidelines23

recommend including team-based projects into the software
engineering and computer science curriculum. One of the
most common ways implemented by educators across the
globe is via a project-based course (a.k.a., capstone or senior
project). In some cases, such courses are intimately
connected with existing software engineering courses. For
example, students start projects in the software engineering
class and they finish them in the capstone course. In many
other cases, the capstone courses have a software
engineering course as pre-requisite and function in
complementary fashion.

Regardless of their place in the curriculum, capstone
courses face shared challenges, such as, selecting the process
to be followed by the teams, selecting relevant application
domains, including state of the art tools and techniques for
process and team management, etc. For example, many
capstone courses focus these days on integrating agile
development processes. The application domain often
depends on how the projects are defined. Some projects are
student-defined, others are instructor-defined, while many
more are defined by industry partners. Choosing an
application domain that is exciting for students and at the
same time relevant for industry is not always easy. For
example, web-based and mobile applications are extremely

1 https://www.computer.org/web/swebok
2 https://www.acm.org/education/se2014.pdf
3 http://www.acm.org/education/CS2013-final-report.pdf

popular with students and industry alike today, but that may
change tomorrow. Technical choices are equally important
and challenging. Some courses leave choices, such as,
programming language, frameworks, and IDE up to the
students, while requiring the use of specific repository
hosting systems, such as, GitHub. When some of these
technologies and practices are not covered by previous
courses, then the capstone course must include them as well.

This paper presents the evolution of a software
engineering capstone course (i.e., Software Engineering II)
underpinned by project-based learning [1], taught at the
Universidad Nacional de Colombia (UNAL), sede Bogotá,
within the Computer Systems Engineering curriculum. We
investigate the evolution of the course over six semesters
through the analysis of team projects, student surveys, and
instructor notes. Our experience allowed us to distil a set of
lessons learned, some of which are echoed in related
literature. We expect that they will help further refine the
course and, hopefully, will serve as guidance for those trying
to include a similar course in their curriculum.

The rest of the paper is organized as follows. Section II
describes the course in details, with emphasis on the changes
done in the past six semesters. Section III provides an
analysis of the effects of the changes, using student
evaluation data, student grades, and commit data from the
repositories. Section IV presents the lessons learned from our
course evolution experience. Section V presents the related
work, while Section VI shows our conclusions and future
work.

II. COURSE DESCRIPTION AND EVOLUTION
The Software Engineering II (SEII) course described in

this paper is required for all undergraduate majors in the
Computer Systems Engineering (CSE) program at UNAL.
As prerequisite, the students must take the previous software
engineering course (Software Engineering I), which
introduces software engineering topics, ranging from
requirements to testing. They also must have completed
traditional programming courses, such as, Introduction to
Programming, Object-Oriented Programming, and Data
Structures. The course meets formally twice a week and each
session lasts two hours. The semester has 16 weeks of
classes with a one-week break after the eighth week of
classes. Upon completing the SEII course, the CSE students
also participate in an Interdisciplinary Project course,

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.22

77

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.22

77

required for all engineering students, where they team up
with students from other engineering majors (e.g., electrical
engineering, mechanical engineering, etc.) and work on
interdisciplinary projects.

The main purpose of the course is to teach students how
to carry out a small software development project, while
following agile process models and using appropriate tool
support for effective teamwork.

We discuss in this Section the evolution of the SEII
course over six semesters (between 2014 and 2016). The
academic year at UNAL is split into two semesters: Semester
I from February to June and Semester II from August to
December. For simplicity, we refer to Semester I in 2014 as
2014-I. So, our course evolution narrative spans the
following semesters: 2014-I, 2014-II, 2015-I, 2015-II, 2016-
I, and 2016-II. During these six semesters, several aspects of
the course have changed, such as, process followed by
students, technology choices, grading policies, etc. As we
discuss these changes, we use visual aids to express how an
aspect of the course changed over the six semesters. We use
a six-bar icon representing the six semesters in
chronological order: the left most bar corresponds to 2014-I,
whereas the right-most bar corresponds to 2016-II. The
empty (white) bars indicates that the described aspect of the
course was not covered in its corresponding semester,
whereas a filled (blue/gray) bar indicates that the course
aspect was covered in its corresponding semester. For
example, SEMAT 4 indicates that SEMAT was used
during the 2014-I, 2014-II, 2015-I, and 2015-II semesters
and discontinued after that. Also, Ruby indicates that
Ruby has been used during the 2016-II semester and it was
not used before.

A. Topics Covered
The lecture part of the course covers seven main topics.

The extent of each topic has changed slightly over the past
semesters, to support other changes in the course. This
section describes each topic and its evolution. The
approximate length of each one is in brackets.

Agile processes [2-3 weeks]. The instructor covers the
principles and core values promoted by the agile movement

. Details of the most popular agile processes are then
covered , such as XP, Kanban, Scrum, etc. Recently, only
Scrum5 is covered in details and it is the mandatory
process for the teams.

Project set up [1-2 weeks]. During this part of the class,
we perform an overview and tutorials of the main tools that
the students need to use on their projects. The content varies
from semester to semester, based on the main technology
choices, as described later in this Section.

Version control [2-3 weeks]. This part of the course
reviews the fundamental concepts of version control ranging
from setting up a repository to using branches and managing
merge conflicts. The goal is to ensure that each student can
setup a repository, contribute to it, resolve conflicts, etc. As

4 http://semat.org/
5 http://www.scrumguides.org/

version control system, we have used Mercurial6 and
Git7 . For hosting each repository, students used Google
Code , Bitbucket8 , and GitHub9 .

Development frameworks [3 weeks]. In the early
editions of the course, the teams were free to work on any
type of project , including video games, kinect apps,
mobile applications, and even desktop applications. Starting
2014-II, the projects had to be web applications , as the
instructor and TA could not effectively provide support for
all possible technologies and application types.

We have used full-stack MVC frameworks because
they have all the components pre-integrated into the
framework, which significantly simplifies the configuration
process, and additionally, they implement the MVC
architecture pattern. In this part of the course students learn
how the framework operates and how to build the
fundamental components involved in web development.
Grails 10 was the MVC framework used in the class.
Grails is based on the Groovy11 progamming language
and while it is quite similar to Java, which is part of the
students’ background, a number of assignments were give to
ensure their proficiency with Groovy. Students consistently
expressed complaints about the quality and availability of the
Grails documentation and support, so it was replaced with
Ruby on Rails12 . As Ruby is new to the students, it is
covered in class. Feedback from the students enrolled in the
last recorded semester (2016-II) indicates that the switch was
successful; Further analysis during the next semesters will
reveal any problems with the switch.

The testing framework [1-2 weeks]. While we used
Grails , students were required to use the JUnit13 and
Spock 14 testing frameworks. With the introduction of
Ruby on Rails, we started using the built-in mechanisms in
Rails for testing applications at unit, functional, and
integration levels.

Object-oriented design [2-3 weeks]. We covered basic
properties of object-oriented design (e.g., high cohesion and
low coupling), essential design principles (e.g., the
open/close principle), and object-oriented design patterns.

Software quality [2 weeks]. Students learn basic
concepts of internal software quality and how to use tools
like SonarQube 15 , a software quality management
platform, enabling them to assess various quality attributes
of their products, ranging from minor styling details to
critical design errors. As the main development framework
for the projects changed from Grails to Rails ,
SonarQube was no longer suitable and was removed from
the tools used in this section of the course.

6 https://www.mercurial-scm.org/
7 https://git-scm.com/
8 https://bitbucket.org/product
9 https://pages.github.com/
10 https://grails.org/
11 http://www.groovy-lang.org/
12 http://rubyonrails.org/
13 http://junit.org/junit4/
14 http://spockframework.org/
15 http://www.sonarqube.org/

7878

B. Team and Project Definition
Within the first two weeks of classes, the students self-

organize in teams of 4 to 6 members. Sometimes members of
a team have worked together in previous courses, while
others meet for the first time in this course. As soon as the
teams are formed, they are encouraged to discuss and make
decisions about managerial aspects, such as, deciding who
the team leader is, the frequency and type of meetings they
will have, and establishing the set of agile values, principles,
and practices they will adopt for their project. At the same
time, the teams hold brainstorming sessions in which they
explore possible projects. The proposed project by a team is
often a system in which its members are interested, and
therefore, the motivation is usually high along the entire
project lifecycle. Sometimes the selected project addresses
real needs of a private company or a public institution. In any
case, by the third week of classes every group must have an
approved project to work on.

C. Project Management
Each team was responsible for determining the length of

each iteration and establish their own release schedule .
We observed that long iterations (i.e., three or more weeks)
led to students contributing unequally through the iteration.
At the same time, short iterations (i.e., one week or less)
posed significant challenges to the instructor and TAs to
keep track of each team in a timely fashion. Starting 2015-II,
iterations are fixed to two weeks for all teams, starting
the fifth week of the semester. All teams have identical
release schedules .

The teams can plan and execute each iteration as they see
fit, but they had to register and update the progress of each
iteration using an appropriate tool. We used Murally16
and Trello 17 , general purpose tools, to perform this
iteration control. In the last analyzed semester, we used
Taiga18 , an open source project management system for
agile projects, which offers Scrum templates and manages
backlogs of user stories.

The applications are deployed in a PaaS system .
OpenShift19 , Heroku20 and IBM Bluemix21 () are
PaaS services that provide web hosting and allow users to
deploy web applications developed in several languages like
Java, PHP, Python, and frameworks like Grails, Rails,
Django etc. The teams deploy their application to test it in a
production environment, with some architectural limitations.

Teams have the liberty of choosing their favorite
communication tool support, in addition to the
communication mechanisms offered by the version control
system, issue tracker, and project management tools. The
TAs and the instructor are involved in the communication
channels. Skype, Teamspeak22 , and Slack 23 are the most
popular among students.

16 https://mural.co/
17 https://trello.com/
18 https://taiga.io/
19 https://hub.openshift.com/
20 https://www.heroku.com/
21 https://www.ibm.com/cloud-computing/bluemix/
22 http://www.teamspeak.com/

Likewise, the teams have the freedom to choose their
favorite IDE. Eclipse24 , GGTS25 , and IntelliJ IDEA26

 are the most commonly chosen.
In addition, teams are allowed to exchange information

between the teams regarding their experience and technical
choices. For example, if a team successfully uses a particular
library in their project, they are encouraged to share their
experience with the other teams, such that they can also use
it.

Each project has a product owner , who meets with
the team once a week, and as such, influences the order in
which the project requirements are met, and eventually,
creates, modifies or removes requirements from the project
backlog. This role is played by one of the two TAs, when the
project does not have an external client.

D. Deliverables and Grading
Initially, the grade for the project accounted for 55%

of the final grade. The course included assignments, quizzes,
exams, lectures, and lab practices, which accounted for the
remainder of the grade. With the shift on project-based
learning, the weight of the project in the final grade
increased gradually to 60% , 70% , and 80% . In the
last semesters , the final course grade was computed as
follows:

• Assignments 20%
• Project (80%)

o First project evaluation (week 11) 10%
o Final project evaluation (week 16) 30%
o Individual contributions 40%

The assignments are based on the course topics (e.g.,

creating and managing repositories, etc.) and are performed
in class or at home. The assignments related to the MVC
frameworks have evolved the most during the six semesters.
During 2014-I and 2014-II, each team had to study several
aspects of the framework (i.e., Grails) and then make a
presentation in the class . During 2015-I and 2015-II these
assignments and presentations were replaced by a set of
lectures given by the instructor and TAs and a large
assignment aimed to learn how to use Grails in a
practical way. The assignment took several weeks to be
finished, which impacted the teams’ ability to focus on the
project definitions. Starting 2016-I, the large assignments
were replaced by a set of smaller assignment , which were
finished in the class by the students - with few exceptions,
when they finished before the next class.

After the teams have been created and projects chose,
each team must deliver a project definition document (PDD).
Figure 1 shows the structure of the PDD, which follows the
organization of the SEMAT () alphas. The PDD is
reviewed and approved by the instructor and the TAs. With
the adoption of Scrum , as the unique process to be
followed by the teams, user stories have been introduced

23 https://slack.com/
24 http://www.eclipse.org/
25 https://spring.io/tools/ggts
26 https://www.jetbrains.com/idea/

7979

to describe the Requirements alpha, as SEMAT () was
phased out due to immature tool support.

At the end of each iteration, each team member receives
a grade for their individual work , per the tasks assigned
to her in the iteration plan and her contributions to the
project repository (i.e., commits). This is a laborious activity
for the graders, which inspect every commit. The
introduction of two TAs in 2016-I greatly facilitated this
practice and allowed the transition to the 80% grade
weight for the project.

Each team makes two formal presentations of their
project, during week 11 and week 16, respectively. Each
team has about 25 minutes to show the work performed so
far. One way of doing that is showing the plan and outcomes
of each of the iterations performed and describing the
produced software artifacts. Each presentation ends with a
demo of the latest stable version of the system to show the
implemented functionality.

In addition, at the end of the semester all groups
participate in an open exhibition where they present their
projects to the public and the School community. This
presentation is not graded.

III. PROJECTS AND STUDENT FEEDBACK ANALYSIS
The Computer Systems Engineering program at UNAL is

not accredited by any independent accreditation board, such
as, ABET27 . The Department collects student evaluations
every semester, geared primarily to support faculty and TA
evaluations. There is no formal, department-level, course
improvement process. As such, individual faculty who teach
classes over a longer period, often undertake ad-hoc
processes to improve the courses, based on student feedback,
personal observations, and less frequently based on
measurements of student outcomes. This case study is an
example of opportunistic course evolution, with positive
results.

Many of the changes from the last six semesters, reported
in Section II, are motivated by observations of the instructor
and the TAs and student feedback. The main goal of the

27 http://www.abet.org/

changes is to focus the course more on project-based
learning than in its earlier incarnations. An important sub-
goal was to improve the ability of the instructor and TA to
get involved more in each project and provide better and
more frequent feedback. As such, many of the changes
resulted in restricting student choices.

We investigate in this Section data about the student
projects and their work, as well as formal student surveys we
conducted.

A. Project Data Analysis
While many of the course changes were implemented

starting 2014-I, we have detailed project and effort data
available for three semesters: 2015-I, 2015-II, and 2016-I.
We will focus our analysis on the data collected during these
semesters from 19 teams, totaling 88 students. In the last
analyzed semester (2016-II), six more teams participated in
the course (30 students). We omit the data from the last
semester (2016-II) because we made two major changes in
that semester (i.e., the web framework and the language) and
we need data from more semesters before we can properly
analyze that change.

1) Student grades
An important goal throughout the course evolution was

to make sure the students’ success rate in the class improves,
especially as the weight of the project increased from
semester to semester. Figure 2 shows box plots of the
students’ grades over three semesters, when the project grade
weight increased from 60% to 70% and then to 80%

.

Figure 2. Grades per semester. The 2015-I semester does not have the
individual contribution component in the project grade.

1. : The set of circumstances that makes it
appropriate to develop or change a software system

2. The people, groups, or organizations that
affect or are affected by a software system.

3. A preliminary list of functionalities the
system must offer to address the opportunity and satisfy
the stakeholders

4. A high level description of the system
architecture

5. The tailored set of practices and tools
used by a team to guide and support their work

6. Optionally, the team could describe a plan for the
first iteration of the project

7. brief descriptions of the group of people engaged in
the development of the proposed software system

Figure 1. The structure of the PDD document.

8080

We analyze the grades in more details. Figure 2 reveals

that the introduction of the individual contribution grade
in 2015-II had a negative effect on the grades of the students.
Many of the changes in the course (e.g., uniform use of
GitHub and iterations) were introduced primarily to
allow us to account for individual project contributions.
Historically, every semester several students complained that
some of their team members contribute less than others. The
grades in 2015-II reflect that fact. The change in grading
policy spread quickly from word to mouth among the UNAL
students (a common phenomenon) and the next semester saw
an increased effort from the students, as highlighted by the
individual contribution grade in 2016-I. Collected data from
the last analyzed semester (i.e., 2016-II) confirms that the
students continue to improve their individual contributions.

Another interesting fact is the sharp increase in the First
project presentation grade. We attribute this change to the
fact that we replaced the large Grails assignment , which
students worked on at home, with the smaller assignments

 that they typically finished in class, giving them more
time at home to work on the project proposal and early
iterations. We attribute the increase in the assignment grade
to the same change. We also think that the change in the
assignment structure and how the MVC framework material
was covered led to a better understanding of the technology
by most students and, consequently, in better projects, as
reflected by the grades and the complexity we discuss in the
following subsection.

2) Project complexity and deployment
Starting 2014-II the students were asked to define

projects that were web applications only . The material
covered in class on the relevant frameworks and the
corresponding assignments changed and we noticed a
much better use of the frameworks by the students. In
consequence, the size of their code, in terms of SLOC

(Source Lines of Code) – measured with CLOC28, decreased
over time. Figure 3 reflects the trend.

The data also indicates that the amount of coding effort
in the projects is significant. More importantly, the instructor
and TAs note that the projects involved more complex
features from semester to semester and that the final version
of each project was more mature from semester to semester.
We believe that this trend is in part due to the focus of the
class on a reduced number of technologies and more time
dedicate mastering them by the students. We did not track
the time the students spend on the assignment outside the
project, but we plan to track it in the future.

Table 1 indicates that more demonstrable projects were
deployed in the last two semesters than before, in fact
achieving 100% deployment rate in 2016-I. Furthermore,
during the last semester (i.e., 2016-II – not included), all
teams deployed on Heroku by the 11th week of classes,
which confirms that the trend continues.

TABLE 1. NUMBER OF DEPLOYED PROJECTS

Semester Heroku Openshift Groups Deployment
Percentage

2015-I 2 1 6 50.0%
2015-II 4 0 7 57.1%
2016-I 6 0 6 100.0%
Total 13 3 31 51.6%

3) Commit data
We analyze the commit activities of the students to

determine if the changes related to the length of the iteration
affected significantly the commit behavior. We focus the
analysis on the time of the commits and investigate fine
grained time intervals, such as, time of the day (see Figure
5), and day of the week (see Figure 4). We also analyze
commits per iteration (see Figure 7) and per week of iteration
(see Figure 6 and Figure 8).

28 http://cloc.sourceforge.net/

Figure 3. Average project size in SLOC

Figure 4. Average commits per day, per project.

8181

During these three semesters (i.e., 2015-I, 2015-II, and
2016-I) the classes were held on Tuesdays and Thursdays
between 2 pm and 4 pm. During 2015-I, the iteration length
and deadline was not uniform across teams. During 2015-II
and 2016-I, each iteration was two weeks long, starting on
Mondays and ending on Sundays. We expected that the days
prior to the deadlines to see many commits, compared to the
other days of the weeks. As Figure 4 shows, our expectations
were not met, the data indicates that the students tend to
make more commits on Sundays, Saturdays, Mondays, and
Tuesdays, than on Wednesday, Thursdays, and Fridays.
Given the data we have we conclude that the recent changes
did not impact the weekly work habits of students.

We also analyze the times of the day when the students
performed the commits (see Figure 5). As the data shows, we
found that students perform commits at all hours of the day.
However, the most ‘productive’ hours are from 7 pm until 1
am. It indicates that the UNAL student population prefers to
work on such projects in the evenings. With that in mind, we
plan to have all assignment and iteration deadlines set for
morning times.

The more important analysis is focused on the
introduction of the fixed two-week iteration in 2015-II.

The rationale, as explained in the previous section, was
based on the fact that in previous semesters, when the
iterations were longer, the students had the tendency to
postpone work to the end of the iteration and/or shift the
iteration length. Short iterations caused delay in feedback
from the instructor and the TAs.

Figure 6, Figure 7, and Figure 8 show commit data
related to the two-week iterations. Figure 7 indicates that the
number of commits increases with each iteration through the
semester.

To assess whether the students still tend to postpone the
commits to the end of the iteration we compared the commits
between the two weeks of the iterations.

Figure 6 shows that the numbers of commits in the
second (i.e., the last) week of the iterations is not
substantially larger (in average) than in the first week of the
iterations. We analyze in more details the aggregate data
from Figure 6. Figure 7 shows the average number of
commits per project for each week of every iteration, during
the two semesters. The detailed analysis shows that the
number of commits are sometimes higher in the first week of
the iterations, whereas in other iterations the students commit
more in the second week. All in all, we conclude that the two

Figure 5. Average commits per hour, per project.

Figure 6. Average number of commits per week of iterations, per
project. Iterations are set to two weeks in these semesters.

Figure 7. Average number of commits per iterations, per project.
Iterations are fixed to two weeks in these semesters.

8282

week iteration length allows students to distribute the work
evenly between iterations, and in that way, keep a
sustainable pace throughout the entire project span.

Figure 7 and Figure 8 also show that in 2016-I, the
students made more commits in the first few iterations than
in 2015-II. We attribute this change to the weekly meetings
held between the team and the product owner , in which
the participants review the planned tasks’ advance and the
team and technical difficulties that may have appeared.

4) Software quality
SonarQube , was used by the teams for several

semesters to evaluate the quality of their Groovy code. It was
mostly used to assess the quality of the final releases of the
projects, and to address the most critical issues reported by
this tool. As more and more of the code produced by the
teams was no longer in Java or Groovy, we stopped using
SonarQube in 2016-II. We also used SonarQube to analyze
the final projects from the last semesters (see Figure 9). The
high number of minor issues is not entirely surprising. Minor
issues are defined as “quality flaws which can slightly
impact the developer productivity”, such as, lines should not
be too long, switch statements should have at least three
cases, etc. As a rule, students were less inclined to fix these
types of issues, especially at the end of the semester.

Unexpected was the sharp increase of the major issues.
Major issues are defined as “quality flaws which can highly
impact the developer productivity”, such as, uncovered piece
of code, duplicated blocks, unused parameters, etc. Despite
the SonarQube terminology, many of the major issues do not
have a major impact on the developer productivity; hence,
they are often perfect candidates for technical debt
generation. Note that these issues do not correlate with
external quality attributes. In fact, we observed that the
projects in the later semesters had fewer functional errors
and the feature sets were more complete (see also the
deployment analysis discussed before). We believe that the
use of SonarQube through the semester lead to less technical
debt. Conversely, less time spent on removing technical debt
issues, meant potentially more times spent on adding new
features or fixing bugs. As the focus of the projects was on
producing complete applications, we accepted the internal

quality price (as revealed by SonarQube). It is hard to
balance both aspects, given all the constraints. We need to
consider a better trade-off between external and internal
quality in the future.

B. Students’ Feedback
At the end of each of the last three Grails-based semesters

(i.e., 2015-I, 2015-II, and 2016-I), the students were asked to
participate in a survey to assess their perception of the agile
practices they used through the semester. The participation
was optional and 62 of the 90 students responded.

As mentioned before, in the early semesters, XP+SEMAT
 was the dominant process used by the teams, whereas

later, Scrum was used by all teams. In all cases, the
teams did not follow the processes strictly, but rather they
chose the principles and rules they prefer to follow. The
rationale is that some of the principles cannot be monitored
or enforced, such as, daily scrum meeting, customer on site,
etc.

The survey has 13 questions aimed to capture the
students’ opinion on the agile practices. For each practice,
the students could indicate whether they used that practice
during the semester or not. In case they have used it, they
were asked to assess on a 5-point Likert scale whether the
practice had a positive or negative impact on their work:
strongly negative impact, negative impact, no impact,
positive impact, strongly positive impact. Table 2
summarizes the answer of the students.

The highlighted cells (green) indicate that more than a half
of students reported a (strongly) positive impact in using the
corresponding practices in their project: incremental and
iterative development, collective ownership, fixed length
iterations, continuous delivery, continuous integration and
periodic meetings, simple design, and pair programming.
The least common practices turned out to be: planning game,
unit testing, and code refactoring. The most polarizing
practices proved to be: pair programming and periodic
meetings.

Students were also requested to indicate the main
problems they had to face during the course. The more

Figure 8. Average number of commits per iteration week, per project.
Iterations are fixed to two weeks in these semesters.

Figure 9. Average number of issues flagged by SonarQube per project.

8383

significant problems they reported were associated with the
task estimation times, work distribution, communication
between team members, and task planning.

In the last part of the survey, students were requested to
list aspects of the course they did not like. The large
assignments were listed as a major negative aspect of the
course, as the students felt their time was better spent on the
main projects. Later changes (as described above) confirmed
this hypothesis.

TABLE 2. STUDENT ANSWERS TO THE SURVEY ON AGILE PRACTICES.
62 OF 90 STUDENTS RESPONDED.

Question Not
used S. neg. Neg. Neutr. Pos. S. pos.

Incremental
Development 9 0 0 13 37 3

Iterative
Development 4 0 0 8 42 8

Collective
Ownership 9 0 2 13 33 5

Code Refactoring 20 1 2 14 21 4
Fixed Length

Iterations 10 0 1 13 29 9

Unit Testing 20 0 0 20 19 3
Continuous

Delivery 12 0 1 13 27 9

Continuous
Integration 10 1 4 7 28 12

Periodic Meetings 2 2 0 4 33 21
Pair Programming 13 4 2 7 21 15

Simple Design 14 1 0 11 29 7
User Stories 12 0 3 6 24 17

Planning Game 45 0 0 8 8 1

Students also pointed out that currently Ruby on Rails is

more popular than Groovy and Grails. Their comments were
the main reason of the switch to Ruby on Rails in 2016-II.

IV. LESSONS LEARNED
We distill in this Section a set of lessons we learned from

our experience. Some of them are supported by the data we
collected and the analyses presented in the previous Section.
Others reflect informal observations of the instructor and
TAs, based on their interactions with the students through the
semesters. At the same time, some of these lessons may be
applicable in other similar settings, whereas others may not.
We do not intend for these lessons to be prescriptive, but
rather descriptive of our experience.

1) Use of agile processes
The academic environment does not allow a strict

implementation of specific agile processes (e.g., Scrum or
XP). The instructors, in consultations with the teams, should
be determining which practices and principles to follow.
While students prefer some agile practices and principles to
others, we found the following to be most helpful:

• Working software is the principal measure of
progress. Applying this principle in a strict way
allowed more projects to be deployed, resulting in
demonstrable applications at the end of the semester.

In 2014-II only one team implemented enough
functionality to consider the system as demonstrable
for the clients. In 2015-II two groups reached that
status. In 2016-I four projects reached that status. In
2016-II all projects implemented key functionality
and user interfaces were good enough to consider the
systems as usable. However, investigation of student
code indicates that the pressure to obtain more
usable applications comes at the expense of lower
internal code quality. Thus, continuous quality
assessment practices should be included in the
software processes followed by the teams.

• Deliver working software frequently. We found a
fixed length iteration of two weeks, imposed on all
teams offers the best balance between student and
grading effort. The commitment to implement new
functionality every two weeks and the feedback
received on each delivery promote a more
sustainable development effort among the teams, so
they are prevented from making heroic efforts at the
end of the semester to try to save the project. The
behavior of the commits per iteration supports this
observation, as in the last semester the commits are
more evenly distributed per iteration than before.

• The instructor and/or the TAs should play a key role
in each team (in our case as product owner) and
participate in weekly meetings. We credit this
change with the fact that most recent teams managed
to produce more complete applications by the end of
the semester.

In earlier work, Zorzo et al. [2] also observed that there is

a need to use a modified version of Scrum in academic
settings. Muller and Tichy [3] pointed out that it is unclear
how to reap the potential benefits of pair programming,
although pair programming produces high quality code. The
use of pair programming in our course was polarizing among
students and its benefits unclear.

2) Use of management tools
The use of common project management tools across all

teams allow for better monitoring and grading, which in term
improves student activities. We found Trello and GitHub to
be especially helpful in allowing us to monitor and grade
individual student effort, which lead to better student
performance. Problems in teams were detected and corrected
early. Rajlich [4] also noted in previous work that defining a
mechanism to provide individual grades in team projects is
essential to maintain fairness.

3) Student team size and interactions
Given the profile of our students (i.e., academic

background, other courses they enroll in in parallel, etc.), we
found that groups of five students (no less than four and no
more than six) help achieve best the goals of the course.
Teams with fewer than four members are unlikely to
generate the dynamics and issues that are common on
collaborative software endeavors. Also, smaller groups were
unable to complete substantial projects in the allotted time.
Larger groups faced other kind of problems, such as,

8484

inability to meet all together and many other coordination
issues. Two large groups in the past performed poorly,
whereas another, more recent one, was split earlier in the
semester and the new smaller groups performed better.

All teams should have identical timelines and iteration
schedules. This practice improves monitoring and grading
and allow the definition of projects of similar complexity.
From the students' point of view, this practice is positive
because all teams are better informed about the progress of
the other projects, which promotes a sense of competence
throughout the iterations, and encourages the sharing of
technical knowledge among teams. On the other hand, we
have noticed that when a team has control over the start, end,
and duration of the iteration, they tend not to be strict with
those limits, such that the iteration length often is shifted,
breaking a fundamental rule of agile management.

4) Technology choices
There are many technology choices to be made. We

advocate dividing them in two categories: mandatory –
students must use these technologies/tools (in our case these
include now Ruby on Rails, GitHub, Taiga); optional –
students can choose from a list of options (in our case the
IDEs options include IntelliJ IDEA, Eclipse, and Netbeans;
and the PaaS alternatives include Heroku, OpenShift, and
IBM BlueMix). The mandatory technologies should be
covered in class as early as possible, to allow teams to start
the project developments as soon as possible. The Instructor
and TAs should be able to provide support with the optional
technologies. Students can choose additional technologies at
their own risk, considering they may not be able to get
support from the instructor and TAs.

5) Project topics
We have learned that is better to allow teams to select

their own project than giving them a list of possible projects
or impose a specific one. This lesson is based on our
observations of the students’ attitude through the semester.
We have noticed that when the team selects and defines the
projects, their level of commitment and excitement to the
project rises as the software system grows. At the end of the
semester the students have a strong sense of ownership
towards the project, rather than feeling that they have just
done one additional assignment. Most of them are proud of
the software product they built, and in some cases, they
continue working on the system after they finish the
semester, or they consider the system as a product that is
worth putting in their professional portfolios. We noticed
that, in such situations, the students are more willing to learn
technical topics on their own and search for specific tools
and frameworks that may help them to build the software
system. The obvious side effect of such a strategy is that it
may be more difficult to ensure that the projects are of
similar complexity. However, previously mentioned
practices should allow adjusting more frequently through the
semester. We need formal surveys with students in the future
to confirm our informal observations regarding this last
lesson.

6) Course organization

While our collected data did not allow for a fine-grained
analysis of the effect of all aspects of the course on student
performance and satisfaction, we distill some aspects of the
course organization that were informally appreciated by the
students and TAs. The project should have the highest
weight in the final course grade, and part of that grade should
evaluate the individual contributions of each student. Thus,
the students must know from the beginning that working on
the project is the key factor to success in the course.

The technical topics included in the syllabus should
support the development of the project directly and be
covered early in the semester.

When it is not possible to have an industry client, the role
of the product owner should be performed by someone
external to the team, ideally a TA or the course instructor.
The product owner should meet the team periodically and
help them to plan the iteration tasks and solve organizational
problems.

V. RELATED WORK
Educators have proposed different approaches to improve

the teaching methodology in software engineering courses.
For example, Francese et al. [5] applied a related
methodology to the one presented in this paper during the
evolution of the mobile application development course at
the University of Salerno. The authors implemented a
teaching strategy founded on the principles of project-based
learning, where software projects are developed by students
organized in teams. Lee et al. [6] adopted a course
methodology which is supported by using a software design
studios. In their approach, the practice and hands-on work
are emphasized over other aspects.

The use of agile methodologies in software engineering
course has also been widely adopted. Zorzo et al. [2] suggest
to use agile methodologies like Scrum in order to teach
students how to effectively manage software projects,
keeping a balance between the theory and the industry needs.
During the course conducted by the authors, students had to
work in a project applying the Scrum practices that were
explained by the instructors, following an iterative model of
eight sprints with three months each. Shukla and Williams
[7] adopted practices of extreme programming as main
methodology to teach a software engineering course. In this
course, the students’ perceptions of each principle of extreme
programming were evaluated by the authors. During the
course, the students worked on four projects and were
organized in teams of four people without supervision.
Muller and Tichy [3] also adopted extreme programming as
software development methodology. As in previous work,
the authors evaluated the student opinions for each principle
of the methodology.

Rajlich [4] describes a set of “Deadly sins” that were
tried to avoid during the evolution of a software engineering
course. Razmov [8] emphasizes the relevance of feedback as
a fundamental part in every software development process.
The author proposed a teaching model following the process
of “Doing”, “Reflecting”, and “Feedback”. In a similar way,
Roach [9] defends the notion retrospective processes
obtained during the course execution and the project

8585

development. Jarzabek [10] presents a particular
methodology based on APIs, which takes advantage of the
interoperability properties.

Our paper adds to this body of knowledge, while
reinforcing some of the conclusions of previous experiences.

VI. CONCLUSIONS AND FUTURE WORK
We have been developing a software engineering project-

based course at the Universidad Nacional de Colombia, over
the past six semesters. The development process is somewhat
ad-hoc and opportunistic, in the absence of institutionally
sanctioned course improvement methodology.

Over the six semesters, the course underwent many
changes, with the main goal of making the project the main
component of the course. Changes ranged from the topics
covered in class and grading, to the process and technologies
used by the teams. The most successful changes were those
that allowed the instructor and TAs to take a more active role
in each team and better monitor and grade the student
activities. Specifically, imposing common iterations
schedules and technology choices on the teams and
designating the instructor or the TAs as project owners the
teams. Among the benefits, students improved their grades
and the functionalities of their applications. Some changes
led to uneasy trade-offs. For example, allocating more time
for improving the features of the applications, at the expense
of close monitoring of internal code quality, resulted in an
increase in technical debt.

Our experience allowed us to distil a set of lessons
learned, some of which are echoed in related literature. We
expect that at least some of them will be useful for anyone
implementing a similar course.

Looking forward, we need to conduct future student
surveys to confirm some of our lessons that are derived from
informal observations. In addition, we plan to formalize the
course improvement process by defining specific student
outcomes and measurements, akin to courses that are part of
accredited programs.

REFERENCES
[1] P. C. Blumenfeld, E. Soloway, R. W. Marx, J. S. Krajcik, M.

Guzdial, and A. Palincsar, “Motivating Project-Based Learning:
Sustaining the Doing, Supporting the Learning,” Educ. Psychol.,
vol. 26, no. 3–4, pp. 369–398, Jun. 1991.

[2] S. D. Zorzo, L. de Ponte and D. Lucrédio, "Using scrum to teach
software engineering: A case study," 2013 IEEE Frontiers in
Education Conference (FIE), Oklahoma City, OK, 2013, pp. 455-
461.

[3] M. M. Müller and W. F. Tichy, “Case Study: Extreme
Programming in a University Environment,” in Proceedings of the
23rd International Conference on Software Engineering,
Washington, DC, USA, 2001, pp. 537–544.

[4] V. Rajlich, “Teaching Developer Skills in the First Software
Engineering Course,” in Proceedings of the 2013 International
Conference on Software Engineering, Piscataway, NJ, USA, 2013,
pp. 1109–1116.

[5] R. Francese, C. Gravino, M. Risi, G. Scanniello, and G. Tortora,
“On the Experience of Using Git-Hub in the Context of an
Academic Course for the Development of Apps for Smart
Devices,” presented at the The 21st International Conference on
Distributed Multimedia Systems, 2015, pp. 292–299.

[6] J. Lee, G. Kotonya, J. Whittle, and C. Bull, “Software Design
Studio: A Practical Example,” presented at the Proceedings of the
37th International Conference on Software Engineering - Volume 2
Pages 389-397, 2015, pp. 389–397.

[7] A. Shukla and L. Williams, “Adapting extreme programming for a
core software engineering course,” presented at the Proceedings of
the 15th Conference on Software Engineering Education and
Training (CSEET’02), 2002, pp. 184–191.

[8] V. Razmov, “Effective pedagogical principles and practices in
teaching software engineering through projects,” presented at the
Proc. 37th FIE, 2007, p. S4E–21–S4E–26.

[9] S. Roach, “Retrospectives in a software engineering project course:
Getting students to get the most from a project experience,”
presented at the 2011 24th IEEE-CS Conference on Software
Engineering Education and Training (CSEE&T), 2011, pp. 467–
471.

[10] S. Jarzabek, “Teaching advanced software design in team-based
project course,” presented at the Software Engineering Education
and Training (CSEE&T), 2013 IEEE 26th Conference, 2013, pp.
31–40.

8686

