
Experimenting with Realism in Software Engineering Team Projects: An Experience
Report

Robbie Simpson and Tim Storer
School of Computing Science

University of Glasgow
18 Lilybank Gardens, Glasgow, G12 8QQ, United Kingdom

Email: r.simpson.3@research.gla.ac.uk, timothy.storer@glasgow.ac.uk

Abstract—Over Several years, we observed that our students
were sceptical of Software Engineering practices, because we
did not convey the experience and demands of production
quality software development. Assessment focused on features
delivered, rather than imposing responsibility for longer term
‘technical debt’. Academics acting as ‘uncertain’ customers
were rejected as malevolent and implausible. Student teams
composed of novices lacked the benefits of leadership provided
by more experienced engineers. To address these shortcomings,
real customers were introduced, exposing students to real
requirements uncertainty. Flipped classroom teaching was
adopted, giving teams one day each week to work on their
project in a redesigned laboratory. Software process and quality
were emphasised in the course assessment, imposing technical
debt. Finally, we introduced a leadership course for senior
students, who acted as mentors to the project team students.
This paper reports on the experience of these changes, from
the perspective of different stakeholders.

Keywords-Real world team projects; Flipped classroom; Ag-
ile methods; Mentoring

I. INTRODUCTION

Many Computing Science programmes incorporate a Soft-
ware Engineering Team Project course (TP), as this is a
requirement of degree accreditation schemes, such as the
British Computer Society [1]. At Glasgow, the course is
undertaken in the third year of the four year BSc degree
programme and runs through both semesters between Oc-
tober and March of the academic year. Students on the
course are organised into teams of six students. The TP
course itself does not incorporate taught material, but is
delivered alongside a course covering Professional Software
Development (PSD) principles, tools and methods. Over a
number of years we had observed several aspects of the
Software Engineering programme that were unsatisfactory.
These observations arose from a number of sources, includ-
ing discussions amongst staff and interview assessments of
students during summer placements. Specifically, we have
observed that:

∙ Students were unconvinced by the relevance of the ma-
terial delivered in lectures, particularly with regards to
quality assurance and change management. This scep-
ticism arose because students knew that the projects

specified for the course were largely ‘artificial’ for
which they would have no responsibility beyond the
end of the academic year. Students were therefore not
convinced of the need for a more rigorous software
process, because they were not exposed to a situation
that demanded it. Further, the document-oriented ap-
proach to software process (RUP) created substantial
overhead for the students, relative to the scale of the
project tackled. This is not a critique of the RUP itself,
but rather that it was not well suited to the short life-
cycle, small team structure of the TP. This problem was
further exacerbated by students returning from industry,
where they were increasingly likely to experience the
practice of agile methods.

∙ The typical structure of Computing Science assess-
ments means that students are unfamiliar with situations
in which requirements are uncertain and subject to
change. Good practice dictates that students are pro-
vided with very clear specifications for coursework sub-
missions, linked to intended learning outcomes (ILO).
For example, an educator who wishes to check that
students understand the mechanics of a linked list can
specify coursework in which the students implement the
data structure. Submissions are then assessed against
the precise specification. In a TP, students are deliber-
ately not presented with a precise specification of what
to implement, since understanding the complexities
of and methods for requirements elicitation, capture
and negotiation is one of the key learning outcomes.
In the TP at Glasgow, the course coordinators acted
as customers and simulated requirements uncertainty
with deliberate vagueness and contradiction. However,
the students found this behaviour unconvincing and
rejected the ILO. Students knew that the proposed
project is not ‘real’ and are not convinced by the
synthetic uncertainty of their ‘customers’. We have, for
example, found that students sometimes ascribe the
intended vagueness in the specifications for projects
to poor preparation by the course coordinators. In one
instance of infuriated exasperation a student demanded
that we ‘just tell us what you want’.

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.23

87

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.23

87

∙ Assessment focused on product features delivered,
rather than product quality, or software process. As-
sessing a team’s software process may be difficult,
without on-going monitoring of team activity, which
may be time consuming. Instead, the assessment criteria
assumes that teams which follow a rigorous software
process will deliver better quality software in the final
product. However, although assessment criteria refers to
product quality as ‘well-designed, functional, ..., main-
tainable,...’, there is no further specific guidance on how
to assess this. Consequently, assessment was based on
the features that are readily identifiable in the delivered
product. Students reasonably respond to this focus by
delivering workable prototypes, however unmaintain-
able. This is unfortunate, because developing prototype
quality software is not evidence of achievement of the
course’s ILOs. Student experiences in other courses,
where the learning outcomes focus on demonstration of
understanding of a concept within Computing Science,
rather than the delivery of longer term maintainable
code reinforces this bias. Consequently, we observed
that students leave the programme lacking a sense of
responsibility for the ‘technical debt’ in their code.

∙ There was a lack of time officially allocated to the team
project course in the students’ timetable. The TP and
PSD courses between them accounted for one third of
the credits available in the academic year, but only four
hours per week were specifically allocated to them. Stu-
dent teams were expected to arrange weekly meetings
with an academic supervisor to review progress and
agree objectives, as well as organise their own internal
meetings and develop the project. However, no time
was specifically allocated for this. In practice, many
students tended to focus on smaller items of coursework
with short term deadlines, neglecting the project itself.

∙ There is no opportunity to learn from mistakes, or
benefit from the experience of others. We have found
that there is a commonly held belief amongst colleagues
that students learn the most from their failures; and that
the existing design of the TP reflected this assumption.
Students were given a theoretical introduction to a wide
range of Software Engineering practices and tools, but
little guidance on the practical selection and applica-
tion of these tools, or incentive and time to practice
them. Student teams were composed randomly from
a population with little collective prior experience of
Software Engineering (within a team or otherwise) and
consequently lacked leadership or direction during the
early phases of the work. We felt that this structure
exacerbated the ‘Storming’ phase of team formation
[2]. Students were in effect being set up to fail in the
expectation that they would learn from this experience.
However, we found that this meant many students
became extremely anxious for their grades and resorted

to ‘thrashing’, rather than taking the time to reflect on
their failures and adapt their behaviours accordingly.

We anticipate that the above critique of the TP is recognis-
able in many Computing Science programmes. In this paper,
we report on our experience of implementing a package of
enhancements to the Software Engineering programme over
several years to address these deficiencies. At their core,
these changes are guided by the desire to create a more re-
alistic environment for the practice of Software Engineering
methods. Specifically, we sought to create project teams that
work on real world problems with a real world customer; that
work in a realistic Software Engineering environment, where
they can benefit from the space and time to develop and
practice modern agile methods and tools; and where novice
student teams can benefit directly from the experiences of
more experienced mentors.

A number of the changes implemented may be recognis-
able in other institutions and indeed, several are inspired by
practices reported elsewhere, or from which we are aware by
anecdote. However, all the changes made required customisa-
tion to fit within the constraints operating at Glasgow and we
believe that when taken collectively, the package of measures
represent significant innovation. Further, as Bull and Whittle
[3] note, there is relatively little evidence of evaluation or
even experience reports of innovations in Software Studios
or Project Based Learning; and although we have found
relevant literature discussing some aspects of the changes
we have made, we have found little evidence of others. A
further contribution of this paper, therefore, is to place the
approach we adopted into the peer reviewed literature in a
structured form to encourage further discussion.

This paper is structured as follows. Section II describes
the changes made to the Software Engineering curriculum in
the University since 2014. Section III presents the results of
our interviews with different participants in the programme,
including team project students, student mentors, industrial
mentors and team project customers. Section IV discusses
the implications of the changes made to the programme and
reflects on links to related work. Finally, Section V assesses
the wider implications and identifies the next steps for our
programme of research and programme changes.

II. CHANGES MADE TO THE PROGRAMME AND

RATIONALE

This section summarises the changes we have made to
the delivery of the Software Engineering topics within the
Computing Science Curriculum at the University of Glasgow.
The changes comprise alterations to two courses: the Third
Year Team Projects (TP) and an associated Professional
Software Development (PSD) course; and the introduction
of a new course in the Final Year, Advanced Software
Engineering Practices (ASEP). The changes were introduced
gradually since 2014 and, as discussed later in Section V,
are part of a continuing reform of the curriculum.

8888

A. Agile Software Project Structure

Students had previously been introduced to a wide range
of software project models, including Waterfall, Rational and
agile methods. A decision was made to focus primarily on
agile software project structure and practices and encourage
this through the assessment model for the course. Teaching
materials were adjusted appropriately, emphasising topics
selected from several agile methods, including agile software
project planning, change management, user stories, test and
behaviour driven development, software inspections, contin-
uous integration and agile process improvement.

Practical alterations included structuring the projects into
six one month iterations, with progress demonstrations and
further requirements gathering from customers at the begin-
ning of each month. Student teams are required to employ
version control, issue tracking and continuous integration
systems. Further, each team is required to undertake a
retrospective at the end of each iteration to reflect on their
software process and identify opportunities for improvement.

Rationale: Agile software development methods such as
Extreme Programming (XP) and Scrum are recognised as
being suitable for small teams of between 4 and 12 develop-
ers [4]. Further, agile methods, while requiring considerable
discipline to apply well, are easier to introduce gradually into
a team’s practice [5] and are accompanied by less overhead,
such as documentation maintenance. We anticipated that
students would find these methods easier to adopt and
practice, as well as recognise the benefits more quickly.

B. Flipped Classroom Delivery

We converted all the lectures in the PSD course into online
materials, comprising short videos, slides, notes and links
to supplementary reading. Students are required to cover
this material in advance of taught contact time, which is
spent in the laboratory working on project activities and in
discussions with academic staff and demonstrators. Students
are given a weekly online quiz with a small amount of
credit each week to encourage engagement with the material.
By consolidating all the time allocated into lectures, it
was possible to allocate the whole of one working day
for team project activities. A preexisting arrangement that
allowed students 24 hour access to the laboratories was also
retained, facilitating flexible working outwith the timetabled
laboratory hours. We also re-designed the laboratory space
for the course to be more suitable for co-located team
work. Figure 1 shows the design of the new space, with
students grouped into clusters with space for 6 students in
each cluster. The space is equipped with overhead projectors
on each wall, as well as extensive whiteboard wall space
to facilitate design discussions and other project meetings.
Each team table is also equipped with its own retractable
whiteboard.

Rationale: Lectures are a time consuming and inefficient
means of delivering information, and encourage rote mem-

Figure 1: The re-designed teaching space for the Team
Project

orisation of information over understanding of concepts [6].
In our own experience of delivering the course, we have
found that a typical one hour lecture could be condensed
into approximately 15 minutes of video footage, since time
is not spent on setup problems, answering questions from the
audience and emphasising key points. Eliminating lectures
increased the amount of time that could be allocated for
in-laboratory activities and allows students dedicated time
to make progress on their software project. This reduces the
risk that students will not themselves allocate sufficient time
each week to the project, by making the time that should
be used for it explicit in the timetable. Grouping this time
together in a single day allows student teams the space to
concentrate on developing the project and making progress
with less distraction from other lectures or coursework.

C. Real world project customer for every team

The School of Computing Science has extensive links
with external organisations. We advertised the opportunity
for organisations to participate in the TP as customers,
prioritising responses in order from charities, startup and
SME businesses, the public sector, other university business
units and lastly larger private organisations. Each customer
was asked to create an initial project specification, with
the advice that projects should address a real concern or
challenge for their organisation. We advised that a good
project specification should be relatively self-contained and
not directly affect day-to-day operations at the organisation
(i.e. project failure should not have critical consequences
for the organisation). In the last iteration of the course, we
selected 13 customers, with each customer working with two
student teams.

Each customer was required to meet with the student team
for six whole days during the course of the project. These
Customer Days combined formal assessments of the teams’

8989

progress demonstrations and further requirements gathering
with opportunities to informally discuss requirements with
customers. Beyond this, customers were free to structure
their interactions with the project teams as they wished and
we encouraged teams and customers to decide their own
communication arrangements. Customers could also contact
student teams more frequently or make arrangements for
other activities such as site visits, if they wished.

Rationale: We anticipated that interaction with real world
customers would enhance student team motivation to par-
ticipate in the project. We have found in assessments of
placements, that students often note the additional incentive
of working on real world projects with real customers as
a factor in ensuring project success. While we are unable
to offer compensation to student teams for their project
work, the real world customer ensures that student teams
work on software where there is real demand. Further,
by working with real world customers, students would be
forced to recognise the necessity of engaging in negotiations
over requirements, rather than depending on the course
coordinators to eventually reveal them. This also means
that students would need to monitor project costs and make
adjustments to project schedules to ensure that the intended
goals for the project remained realistic.

D. Emphasise technical debt in assessment

Several changes were made to the assessment model. First,
every team received formative assessment of their software
process at the end of each iteration, focusing on change
management, quality assurance, project planning and process
improvement. The assessment was informed by evidence
gathered from their software project tools. Assessments were
directed by practical questions concerning the maturity of the
team’s software process. For example, commit messages in
the team’s version control tool and tickets in the issue track-
ing tool were inspected for usefulness against a checklist.
Only the final assessment of software process was included
in the grade in the course, providing the student teams
with the opportunity to improve gradually over the course
of the project. Second, the team’s interactions with their
project customer were assessed, with marks available for the
organisation and delivery of a progress demonstration and
the negotiation of further requirements and priorities for the
subsequent iteration. Each team was allocated 30 minutes to
hold a formal meeting with their customer during a Customer
Day. Marks were assigned for the professionalism of the
demonstration, requiring the teams to describe progress
against agreed objectives. Teams could be equally credited if
they described a successful iteration or if they explained de-
lays encountered and their causes. Credit was also available
for negotiating and documenting new requirements. Third,
the mark scheme for the final dissertation was redesigned
as an experience report, requiring the team to reflect on the
impact of the course on their thinking.

Rationale: Previous iterations of the course did not em-
phasise long term responsibility for the delivered software.
By transferring the weight of the assessment to the demon-
stration of Software Engineering practices and reflection on
this activity, we believed that we could compensate for the
product centric thinking adopted by our students in their
approach to coursework. As a consequence of these changes,
only 20% of the total credit for the course was concerned
with the final delivered software product and this included
an assessment of software quality. Assessment of the teams’
software process (25%), performance when demonstrating
their progress and gathering requirements (30%), and for
the final reflective dissertation (25%) accounted for the rest,
incentivising students to practice more disciplined software
development throughout the project.

E. Final Year Mentors for Student Teams

One challenge we have encountered in flipped classroom
teaching with large classes is being able to deploy sufficient
numbers of trained tutors to support students during the
laboratory sessions. This is particularly challenging when
laboratories extend across a full day. To address this, we
began employing final year (FY) undergraduate students as
tutors. One risk of this approach is that the FY students
lacked the mentoring skills and confidence to engage with
the third year teams and would be reluctant to intervene with
teams or make recommendations, even when asked directly
for advice.

To address this, we developed a FY mentoring and
leadership course, Advanced Software Engineering Practices
(ASEP). The course was developed in collaboration with
an industry partner, the JP Morgan Glasgow Technology
Centre. The course has two broad themes: an introduction
to mentoring and leadership theory and skills, including,
team psychology, process control theory and its application
to agile project management; and a selection of current
and advanced topics in Software Engineering, including
Design Studios; Test Driven Development and Continuous
Integration. Although some of these topics are delivered in
the Third Year PSD course, there was a desire to spend
more time revisiting them and extending the depth to which
the topics are covered. The course is delivered in a series
of focused workshops in which mentors from JP Morgan
participated.

The coursework for the ASEP course is also designed to
encourage the FY students to have the confidence to inter-
vene with project teams. Mentors were required to monitor
the student teams during their demonstrating hours in the
laboratory, in order to identify emerging problems in the
team software process. To facilitate this, the mentors were
also tasked with providing the formative feedback discussed
in Section II-D. The mentors then designed and implemented
a software process improvement activity (PIA) to address the
problem, in collaboration with the project team. Assessment

9090

focused on the students’ planning, preparation, monitoring
and critical assessment of the process improvement, rather
than whether it fundamentally succeeded or failed.

Rationale: The FY students had completed the TP course
the previous year and undertaken summer or full year
internships before starting their final year. Our intention
was that the FY students would ‘evangelise’ the third years
on the relevance of the Software Engineering practices that
we taught, as well as deliver other topics based on their
own experience, and be a more convincing emissary than
academic staff. Providing the FY mentors with the skills
and confidence needed to act as a mentors would enhance
this experience and prepare the students for leadership roles
in their future careers.

III. INTERVIEWS

Semi-structured interviews were conducted (Ethics Ap-
proval Number 300160104) with participants in all the
different roles in the courses. This method was selected
because we wanted to assess the qualitative impact of the
changes implemented in the courses from the perspective
of the participants. We decided against a quantitative pre-
and post- assessment because the restructuring had occurred
gradually over a number of years, and because the assess-
ment model itself had been changed significantly. Open
invitations were distributed via email requesting participa-
tion in the study in May 2017, approximately one month
after the end of teaching in the 2016 academic year. Four
categories of participants were interviewed: three Third Year
TP students; five final year student mentors; five project
customers and all the industry mentors from JP Morgan. We
also considered interviewing the lecturers who coordinated
the course. However, as two are co-authors of this paper
and the others are close colleagues we felt this would be
artificial. An initial set of questions were developed for
each category of participant [7]. The questions focused on
the perceived benefits and limitations of the course from
the perspectives of the different participants, but also on
how they perceived other participants. Students and project
customers were all interviewed individually. The industry
mentors from JP Morgan were interviewed collectively, as
this was the most convenient arrangement. Summaries of the
discussions with each category of interviewee are presented
below.

A. Third Year Students

Three Third Year students were interviewed (L3A, L3B
and L3C). L3A liked the structure of the course overall,
describing the project as ‘very realistic’, and the style of
development matched their expectations of commercial soft-
ware. L3A remarked on the fast pace of the course, saying
‘there was always something coming up’ and referring to it
as a ‘permanent hackathon’. They stated that they found the
combined workload of the PSD and TP courses burdensome

and as a consequence prioritised the project. L3B observed
that the part time nature of the project did reduce the realism.
L3C stated that they learned about the practice of change
management in larger teams and the importance of team
communication and division/estimation of tasks.

Students reported spending a variable amount of time in
the laboratory. L3A and L3C’s teams met and worked collec-
tively for most of the allocated laboratory day. L3A’s team
would also work sporadically on the project at other times
during the week. L3C also reported using pair programming
and standups in their team. L3B’s team spent only 1-2 hours
in the laboratory per week initially, but this increased in the
second semester. L3B’s team also worked more individually,
often only meeting for 15 minutes a week as a team. They
adopted a flexible team structure with interchangeable roles,
and did work together on an ad-hoc basis. L3A and L3C
reported that the laboratory space was busy, but that the
layout and facilities were good for teamwork, when available.
This meant that L3C’s team often ended up working from
home.

All three interviewed students said they developed a
close working relationship with their customer. L3A’s team
had weekly customer meetings and used Slack at other
times. L3B reported making visits to the customer’s office
and communicating via email. L3C’s team used Google
Hangouts for weekly meetings. L3A’s project is now live
with their customer. Both L3B and L3C reported that their
customer was happy with the result of their project as a
‘proof of concept’, but it is not certain whether it will be
used in production.

L3B and L3C stated that they enjoyed the flipped class-
room model and made use of the videos to prepare for
exams. However, L3B also liked conventional lectures as
they provide an opportunity to ask questions, but would
have also like more tailored guidance on how to apply the
online material to the specifics of their project. All three
liked the quizzes, but one (L3C) thought they were too easy.
L3A noted that they would have preferred more information
on team dynamics, such as people management or conflict
resolution, rather purely on the technical side of project
management. Also, some of the advanced topics covered
in semester 2, such as aspect oriented engineering, were not
obviously useful. L3A also noted that the explicit assessment
model influenced their behaviour.

All three L3 students stated that their team did not make
much use of the FY mentors, as they didn’t feel the need
for help. However, L3A did find the formative feedback
provided by the mentors useful for identifying areas of
improvement. L3C reported taking part in a PIA and felt
that was a ‘good experience’. The mentors lead them through
a ‘richer’ retrospective adopting particular structures, which
the team then used later.

9191

B. Final Year Mentors

Five final year students were interviewed (FYA - FYE).
All five FY students liked the course and particularly enjoyed
the mentoring coursework aspects and the emphasis on
coursework in the assessment. FYB reported liking the
lightweight nature of the assessment and found the diaries
useful. FYD and FYE stated that it was interesting to see a
software development project from a different point of view:
as observers not participants.

All five students agreed that an internship was a useful
experience before acting as a mentor. FYC believed that the
internship was useful because they understood why good
Software Engineering practices were needed and could better
explain this to the students. FYC reported that students
asked about his experience in industry and about internships.
FYD and FYE learned a lot about team dynamics and agile
methods during their internship, which was especially useful
when designing PIA exercises.

FYA and FYB, FYD and FYE reported feeling of mixed
use, whereas FYC felt that students generally accepted
his advice. Sometimes it was difficult to tell if students
needed help, so they felt like they might be intruding on
their work. FYB noted that sometimes they couldn’t help
the teams with the particular technologies they were using.
FYB, FYD and FYE reported feeling most useful during
the middle of the course when the teams began asking
questions concerning project management. FYD and FYE
suggested that briefing sessions on PSD material would be
useful each week to make them aware of key issues in
the laboratory and likely questions. FYA stated that some
students struggled to assimilate the advice they provided and
sometimes wanted the mentors to solve the problem for them.
FYB also reported difficulty in convincing L3 students of the
merits of their advice, observing that the students often just
wanted to start coding and ‘hack it all together’. However,
this improved gradually during the year. FYB, FYD and
FYE suggested that the mentors should have more training
and guidance upfront before they start working with the
teams. FYA, FYD and FYE stated that the formative process
assessment with a specific team was useful in helping to
develop team-mentor relations. FYC suggested that being
allocated to mentor a specific team throughout the course
would have been preferable for this reason.

FYA conducted a PIA focused on change management.
They felt that the student team was receptive to this, even
though they had concerns that the L3 team wouldn’t en-
gage. They felt the coursework was ‘well balanced’ and
‘open enough’ to be interesting. FYB focused their PIA
on mini-retrospectives, encouraging the team to perform a
retrospective every week. This worked well at first, but the
team eventually became bored by it. They learned that the
retrospective should be done, but less frequently. In contrast,
FYC did not implement a successful PIA (on using Kanban

for project management), reporting that the student team
were not motivated to engage. FYC noted that the team were
all joint honours students and so were doing a proportionally
smaller scale project compared to single honours teams.
FYD and FYE found the process of writing a plan and
getting feedback for a PIA helpful as it gave them the
opportunity to improve. However, they would prefer more
time before implementing the warm up exercise to identify
problems more clearly.

C. Project Customers

Five customers were interviewed, CA, CB, CC from the
2016 iteration of the course, CD from the 2015 iteration and
CE who participated in both iterations. Only CD and CE
had prior experience of working with students on projects
and all customers reported considerable uncertainty at the
outset regarding the likely capabilities of the students, the
expectations of themselves as customers and the likely
outcomes of the collaboration. However, all the customers
spoke positively about the experience.

CA now has a usable working application for managing
lone workers, which they believe distinguishes them from
other charities and described the experience as ‘enlightening’
and ‘worthwhile’. CB did not adopt their projects into
production, but have achieved a useful proof of concept.
CB did, however, use the course to give their more junior
staff some experience of project management. CB stated
that they ‘would have loved to’ take some students on for
internships, but were not able to do so because of timing.
CC also used the projects to prototype ideas and were
able to explore ‘important research ideas’ with one team
that completely exceeded their expectations and could be
quickly re-implemented. CC stated that they were keen to
take part in the team projects again. Two of CD’s teams
delivered workable systems. One for data visualisation and
the other various physical devices for monitoring engage-
ment in exhibits. Both these projects are still in use, and
have been updated with new data. CD reported that seeing
other customer presentations was enjoyable and that the
course had also initiated a collaboration with another of the
customers. CE stated that they chose projects that were non-
critical for the first iteration they participated in, in order to
determine what the students were capable of. CE said they
were ‘pretty happy’ with the experience, and had obtained
‘two very useful products’.

All five customers spoke positively about the performance
of the students overall, although they did recognise differ-
ences between the teams that were allocated to them. CA
stated that they were impressed by the knowledge, ability
and work ethic of the students and felt that the students were
better than some professional tech companies, particularly in
their ability to ‘empathise’ with the customers’ requirements.
Both CA and CD reported that one of their teams deviated
from the requirements to focus on aspects of the project

9292

which interested them. CB stated that one of their teams
was very good, while the other was less so. CB were
surprised that students had no specific knowledge of Apple
technologies and had also not been exposed to protocol
concepts (this is taught during another third year course).

CA, CB and CC felt the students benefited from working
with less technical clients, which required them to work on
their communication, project management and requirements
gathering skills. CB also noted that students initially lacked
project management skills and learned about prioritisation
and managing the customers expectations. CB suggested
that there should be more focus in the taught course on
communication skills and team dynamics, as this would help
the team manage customer expectations. CC found that all of
their students struggled with designing in the abstract. They
felt they needed actual data to look at before system design
could proceed. CE stated that due to the nature of his project,
students learnt a lot about information governance and data
protection, given the importance of data confidentiality.

All the customers reported that the commitment was
found to be quite lightweight. CA and CC engaged in
relatively little interaction with the students beyond the core
requirements. CA had one extra meeting a small number of
exchanges via email and reported that this was felt to be a
very minimal commitment. CC also stated that interactions
with the student teams was quite undemanding, having only
two extra meetings at their offices and using slack and
email at other times. CD felt that the monthly meetings
were about right and stated that one of their teams stuck
to the set meetings, whilst the other was far more engaged,
making several trips to the customer’s site. CB held meetings
with teams every two weeks, stating ‘we created our own
structure’. CE tried using video-conferencing, but this never
worked effectively due to technical problems.

Several customers would have liked more guidance on
how to interact with the students and how to arrange
projects. Some customers ran the same project with all their
teams, while others had different projects. Both CC and
CD reported that making the initial ‘pitch’ to the students
intimidating. CD stated it was ‘difficult but valuable’. This
was not something they were used to and was not particularly
enjoyable to do, but it forced them to think and express
clearly the aims of their company. CC also asked for more
guidance on intellectual property sharing. CD stated that
one of their teams lacked confidence and was ‘terrified” by
meetings with them. Both CC and CD suggested that this
might be improved if there had been more time at the start
of the course for them to get to know the customer and
build a rapport. CE stated that the formal customer meetings
could feel a little rushed. They would prefer to have longer
meetings (45 minutes to 1 hour) in a quieter and more private
venue. CB and CE found the end of the project lacked
organisation and subject to time constraints, meaning that
handovers of projects were haphazard. CB suggested that

it would be useful to have a final customer meeting after
the presentations to wrap up or handover the project. CE
suggested ending the development aspects of the projects
slightly earlier to allow time for a handover. CD had acquired
funding to take on one student over the summer to carry the
project on, but this came through too late to take the student
on.

D. Industry Mentors

The industry mentors had relatively little past experience
in teaching before the course. A number of their expectations
about the course were challenged. In particular, they were
surprised by the decline in attendance in the lectures and
workshops and discovered the students didn’t know each
other as well as they had expected. This made establishing
a rapport with the students more difficult. The mentors also
found that the students were familiar with the mechanics
of agile methods and that this caused some overlap with
material taught in the PSD course. However, they found they
were not aware of the deeper reasons why agile methods
are practised in industry. Overall, the mentors were positive
about their personal benefits from taking part in the course.
It was described as ‘rewarding’, and they felt that experience
would benefit them in their future careers. They noted that
students were prepared to challenge them about the content
they were teaching, focusing them to think deeply about the
techniques they were teaching.

There was some discussion of the ‘cultural’ issues regard-
ing the course. For example, the industry mentors believed
some students were deterred by the corporate background of
the mentors, and did not like the idea of working in financial
services. This meant that the students may not have been
convinced by the experience of the mentors if they did not
believe it was representative of the software industry. For
example, the industry mentors reported that students were
surprised by how little greenfield development work actually
occurred in business and attributed this to the nature of the
organisation’s work, rather than the nature of the industry as
a whole. Similarly, it was perceived that that the content of
the course (focusing on techniques for large-scale teams)
might not appeal to students hoping to work in smaller
organisations. However, students eventually understood the
motivation for these techniques, and hence engaged more
effectively with the mentors.

The industry mentors reported on a number of practical
problems with the structure of the ASEP course. The men-
tors had difficulty communicating with students outside of
lectures due to corporate IT security policies. The mentors
also recommended swapping the ordering of the week, so
that the lecture happened first to prepare students, followed
by the practical workshop. Like some of the FY students, the
industry mentors were not sure that the skills and techniques
taught in ASEP were linked to the students’ roles as mentors
. Further, the FY students did not have opportunities to apply

9393

all of the methods and practices shown to them during the
ASEP course. One suggestion was to implement additional
coursework to demonstrate these advanced concepts, such
as a team project running for the length of the course.

IV. DISCUSSION AND COMPARISON WITH RELATED

WORK

The challenge of providing realistic experiences of Soft-
ware Engineering has been addressed by a number of differ-
ent authors. Dawson [8] explored the challenge of introduc-
ing realism through playing ‘dirty tricks’ on students. While
we have independently experimented with these techniques,
we have found that a limiting factor is plausibility. In our
experience students simply find this behaviour unconvincing,
believing it to be unrealistically malevolent, and are there-
fore resistant to the intended learning.

Many of the initial changes to the courses at Glasgow
were inspired by the work on Software Engineering Studios
by Bull et al. [9], which itself is based on older work
on Design Studios in software development [10]. The size
of the TP class at Glasgow (approximately 150 versus
20) and the need to use the allocated space for other
laboratory work was a constraining factor in implementing
a number of desirable aspects of the approach adopted at
Lancaster. Desktop PCs were provided for each desk with
large monitors, which hinders collaborative activities. The
size of the class meant it was also not possible to allocate
dedicated space to each team that they could reconfigure
as desired. Students were encouraged to make use of other
spaces around the University to conduct work, if desired,
and several teams used other laboratories, or meeting rooms
in the library and elsewhere, rather than spending all their
time in the dedicated laboratory. Some student teams also
grouped themselves into bays to facilitate collaboration
between desks. Carter and Hundhausen [11] presented a
review of several experiences of implementing studio based
learning in Computing Science. Of the small sample studied,
Carter and Hundhausen noted that like our own work, the
principle motivation was to enhance student exposure to
realistic industrial circumstances and practices.

Garlan et al. [12], Boehm et al. [13], Hayes [14],Buckley
et al. [15] and Suri [16] all reported on their experiences
running project courses with real world customers. Unlike
in our own course, in most cases, students in the same cohort
worked on the same project [12, 15, 16, 13]. However, the
similarities with our own experiences are striking. All the au-
thors found that students were motivated by the opportunity
to work on projects that had real world impact and reported
examples of projects providing substantial benefits to the
customer. Boehm et al. [13] reported scalability as a signifi-
cant challenge for the provision of continuous assessment.
Our experience suggests that employing senior students
as mentors can be useful in scaling formative assessment
activities. Buckley et al. [15] also found that students left

the course more convinced by the difficulties of requirements
elicitation. Hayes [14] reported that their project led to the
exploration of further development opportunities and grant
applications.

Other experiments with Software Team Projects have been
reported. Favela and Peña Mora [17] reported their expe-
rience in teaching global, distributed Software Engineering
practices in a team project. Students from two different coun-
tries were organised into a project which required collabo-
ration throughout the software life-cycle and were provided
with coordination tools to assist with this process. Favela
and Peña Mora found that team distribution exacerbated
the challenges during team formation, with causes including
language and cultural differences between the institutions.
Coppit and Haddox-Schatz [18] took an alternative approach
to increasing the realism of a Team Project, with all 30
students in a class working in a single project organisation.
Coppit and Haddox-Schatz imposed some structure on the
project by formally allocating roles such as project managers
and technical leads, but otherwise allowed the students to
self organise. As in our own experience, Coppit and Haddox-
Schatz used more experienced students for leadership roles.
Overall, the authors suggest the experiment was a success,
with the scale of the project imposing little additional
workload and enhancing the student’s understanding of
communication challenges across large distributed teams.

Several authors have emphasised the importance of re-
flection as an effective enhancement of learning during the
practice of Software Engineering, based on Schon [19]’s
ideas. Moore and Potts [20] observed that the goal of
educators is not just to produce software professionals who
know about techniques, but also ‘have good judgement about
when to apply them’. Many of the practices advocated by
Bull and Whittle [21] were also implemented in our own
approach, including the use of staff as mentors rather than
teachers, continuous presentations and facilitation of group
discussions and peer critique. We also went further, by
explicitly introducing a formal team retrospective at the
end of each iteration of the project. Many of our students
found the conduct of the retrospective difficult, preferring
to use it for project planning rather than identifying and
remedying fundamental process problems. It was therefore
encouraging that so many of the FY mentors recognised this
and chose to guide the software teams through the conduct
of a retrospective as their process improvement coursework.

Hazzan [22] discussed the application of reflective prac-
tice to software design and architecture reviews, relating this
to the physical architecture studios. Several of the students
in the ASEP course experimented with applying coaching
techniques to design processes with student teams and these
were often successful in solving the team’s design problems.
The case study dissertation was also designed to encourage
students to reflect on their experience in designing and imple-
menting software, although in hindsight, this reflection may

9494

come too late in the course process and could be enhanced
through discussion of content with course coordinators and
student mentors.

V. CONCLUSIONS

This paper has presented our experiences of implementing
a substantial collection of changes in the Software Engineer-
ing programme at the University of Glasgow. The changes
have resulted in a number of demonstrable successes. Team
project students are motivated by the opportunity to engage
in a project with real world customers and impact in a
more realistic environment. Student mentors welcome the
opportunity to pass on their experience to their more junior
colleagues. Industry mentors enjoyed engaging with the final
year students and passing on their own expertise. Customers
reported that the projects delivered considerable value for rel-
atively little cost. Finally, the course coordinators (ourselves
and our colleagues) have enjoyed delivering the programme
in its revised form and feel that our teaching is more effective
because of it. Informally, the structure is also believed to
reduce workload, since we are not committed to lecturing
throughout the week and formative assessment load is shared
with the student mentors.

The results of the interviews identified several areas where
the programme requires improvement. The size of the cohort
at Glasgow means that scalability of teaching methods
remains a challenge. Bull et al. [9] identified the importance
of inter-personal relationships and culture in creating an
effective studio based learning environment, so to a certain
extent, it is inevitable that the size of the class will inhibit
this. However, there are a number of further steps that could
be taken, for example, by assigning a set number of teams
to each of the course coordinators and student mentors,
as suggested by the interview participants. Explicit team
building exercises may also be useful in building rapport
between the different participants.

Fostering a sense of collective ownership of the laboratory
space, even with the constraints of the cohort size, would
also be desirable. For example, Bull et al. [9] noted that
some advocates of studios discourage the presence of digital
technology because it inhibits collaboration. In our own
experience, the presence of desktop PCs in the laboratory
inhibits conversations ‘across the table’ and discourages
student interaction. Many of our students work predomi-
nantly on their own laptops, so removing desktop PCs could
increase the room capacity. This could also encourage the
use of the laboratory as a social space in which students are
permitted to eat and drink [23].

Now that the course is established there is a need to
implement mechanisms that develop longer term relation-
ships with the external organisations who act as customers.
Further research is needed to understand how the different
customers structured their relationships with the student
teams and how these approaches worked in practice. It

would be desirable to be able to supply new customers with
guidance and best practices for engaging with student teams
without constraining the ‘naturalness’ of the relationship.
Further, the handover process at the end of the project needs
to be more formal and incorporated into the assessment
model. As well as instilling the sense of responsibility for the
project in students, this would also ensuring that customers
properly receive the benefit of their engagement in the
course. Alongside the meetings with students, time should
also be allocated to raising awareness amongst the customers
of mechanisms for continuing projects in the longer term,
through student summer internships, follow on final year
dissertation projects and collaborative funding applications.

We are also considering adopting the introduction of
distributed Global Software Engineering experiences into the
course, as described by Favela and Peña Mora [17]. The
School of Computing Science has a cohort of students based
at the Singapore Institute of Technology. These students fol-
low an identical curriculum to the cohort based on Glasgow,
but are taught by locally recruited staff. Creating larger,
distributed Software Engineering teams of students across
these two sites could have a number of potential benefits.
Customers could present larger scale challenges for the
teams to tackle. Students would experience the complexity
of managing software projects across time zones and semi-
autonomous organisational units. Working collaboratively on
projects would also foster a greater sense of a single cohort
between the Glasgow and Singapore students.

These new directions raise the question as to how far
realism should go in Software Engineering education. If
more realistic development projects are better for students,
then why not dispense with the university environment
entirely? There are a number of steps in this direction in the
UK at least, such as the increasing emphasis and availability
of paid summer and full year internships as part of degree
programmes. The growing Graduate Level Apprenticeships
scheme will also dramatically increase students’ real world
experience. It might be argued that universities should
dispense with project based learning and instead develop
programmes which allow students to spend more time
in the software industry. However, our project customers
welcomed the fact that students were familiar with the
theory of Software Engineering methods, if not their practice.
University environments also provide students with a ‘safe’
space in which they can experiment with different practices
and experience failure without significant consequences. Fur-
ther, university programmes provide the space and time for
students to develop as reflective practitioners, and adopt
mechanisms in coursework which encourage this reflection.
The challenge then, for Software Engineering educators, is to
develop environments in universities that are sufficiently real
to be convincing to students, whilst also providing the space
to learn and experiment with the principles and practices they
will need in their careers.

9595

REFERENCES

[1] Guidelines on course accreditation. Information for
universities and colleges, British Computer Society,
June 2015.

[2] B. W. Tuckman, “Developmental sequences in small
groups,” Psychological Bulletin, vol. 63, no. 6, pp. 384–
399, 1965.

[3] C. N. Bull and J. Whittle, “Observations of a soft-
ware engineering studio: Reflecting with the studio
framework,” in 27th IEEE Conference on Software
Engineering Education and Training, CSEE&T 2014,
Klagenfurt, Austria, April 23-25, 2014, A. Bollin,
E. Hochmüller, R. T. Mittermeir, T. Cowling, and
R. LeBlanc, Eds. IEEE, 2014, pp. 74–83.

[4] K. Beck and C. Andres, Extreme Programming Ex-
plained, 2nd ed., ser. XP Series. Addison Wes-
ley/Pearson Education, February 2005.

[5] K. Schwaber and M. Beedle, Agile Software Develop-
ment with SCRUM. Prentice Hall, 2001.

[6] S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith,
N. Okoroafor, H. Jordt, and M. P. Wenderoth, “Active
learning increases student performance in science, engi-
neering, and mathematics,” Proceedings of the National
Academy of Sciences, vol. 111, no. 23, pp. 8410–8415,
2014.

[7] R. Simpson, “Survey instrument,” Available on GitHub
https://github.com/twsswt/Simpson 2017 Team
Based Software Engineering Teaching/releases/tag/
survey-instrument-v1.0, June 2017.

[8] R. Dawson, “Twenty dirty tricks to train software engi-
neers,” in Proceedings of the 20th International Confer-
ence on Software Engineering, ICSE 2000, C. Ghezzi,
M. Jazayeri, and A. L. Wolf, Eds. Limerick, Ireland:
ACM Press, 2000, pp. 209–218.

[9] C. N. Bull, J. Whittle, and L. Cruickshank, “Studios in
software engineering education: Towards an evaluable
model,” in Proceedings of the 2013 International Con-
ference on Software Engineering, San Francisco, CA,
USA. Piscataway, NJ, USA: IEEE Press, 2013, pp.
1063–1072.

[10] J. E. Tomayko, “Teaching software development in
a studio environment,” in Proceedings of the Twenty-
second SIGCSE Technical Symposium on Computer
Science Education, San Antonio, Texas, USA. New
York, NY, USA: ACM, 1991, pp. 300–303.

[11] A. S. Carter and C. D. Hundhausen, “A review of
studio-based learning in computer science,” Journal of
Computer Science in Colleges, vol. 27, no. 1, pp. 105–
111, October 2011.

[12] D. Garlan, D. P. Gluch, and J. E. Tomayko, “Agents of
change: Educating software engineering leaders,” IEEE
Computer, vol. 30, no. 11, pp. 59–65, November 1997.

[13] B. Boehm, A. Egyed, D. Port, A. Shah, J. Kwan,

and R. Madachy, “A stakeholder win-win approach to
software engineering education,” Annals of Software
Engineering, vol. 6, pp. 295–321, 1998.

[14] J. H. Hayes, “Energizing software engineering ed-
ucation through real-world projects as experimental
studies,” in 15th Conference on Software Engineering
Education and Training (CSEET’02), 25-27 February
2002, Covington, Kentucky, USA. IEEE Computer
Society, 2002, pp. 192–206.

[15] M. Buckley, H. Kershner, K. Schindler, C. Alphonce,
and J. Braswell, “Benefits of using socially-relevant
projects in computer science and engineering educa-
tion,” in Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, Norfolk,
Virginia, USA. New York, NY, USA: ACM, 2004, pp.
482–486.

[16] D. Suri, “Providing “real-world” software engineering
experience in an academic setting,” in 37th Annual
Frontiers In Education Conference - Global Engineer-
ing: Knowledge Without Borders, Opportunities With-
out Passports, Oct 2007, pp. S4E–15–20.

[17] J. Favela and F. Peña Mora, “An experience in collabo-
rative software engineering education,” IEEE Software,
vol. 18, no. 2, pp. 47–53, March/April 2001.

[18] D. Coppit and J. M. Haddox-Schatz, “Large team
projects in software engineering courses,” in Proceed-
ings of the 36th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE 2005, St. Louis,
Missouri, USA, February 23-27, 2005, W. Dann, T. L.
Naps, P. T. Tymann, and D. Baldwin, Eds. ACM,
2005, pp. 137–141.

[19] D. Schon, The Reflective Practitioner: How Profession-
als Think In Action. Basic Books, September 1984.

[20] M. M. Moore and C. Potts, “Learning by doing: Goals
& experience of two software engineering project
courses,” in Software Engineering Education, 7th SEI
CSEE Conference, San Antonio, Texas, USA, January
5-7, 1994, Proceedings, ser. Lecture Notes in Computer
Science, J. L. Dı́az-Herrera, Ed., vol. 750. Springer,
1994, pp. 151–164.

[21] C. N. Bull and J. Whittle, “Supporting reflective prac-
tice in software engineering education through a studio-
based approach,” IEEE Software, vol. 31, no. 4, pp.
44–50, 2014.

[22] O. Hazzan, “The reflective practitioner perspective
in software engineering education,” The Journal of
Systems and Software, vol. 63, no. 3, pp. 161–171,
September 2002.

[23] D. R. Herrick, “Food and drink in computer labs:
Why not?” in Proceedings of the 40th Annual ACM
SIGUCCS Conference on User Services, Memphis, Ten-
nessee, USA. New York, NY, USA: ACM, 2012, pp.
161–164.

9696

