
On a Pursuit for Perfecting an Undergraduate
Requirements Engineering Course

Chandan R. Rupakheti, Mark Hays, Sriram Mohan, Stephen Chenoweth, and Amanda Stouder
Department of Computer Science and Software Engineering

Rose-Hulman Institute of Technology

Terre Haute, Indiana 47803

{rupakhet,hays,mohan,chenowet,stouder}@rose-hulman.edu

Abstract—Requirements Engineering (RE) is an essential com-
ponent of any software development cycle. Understanding and
satisfying stakeholder needs and wants is the difference between
the success and failure of a product. However, RE is often
perceived as a “soft” skill by our students and is often ignored
by students who prioritize the learning of coding, testing, and
algorithmic thinking. This view contrasts with the industry, where
“soft” skills are instead valued equal to any other engineering
ability. A key challenge in teaching RE is that students who
are accustomed to technical work have a hard time relating to
something that is non-technical. Furthermore, students are rarely
afforded the opportunity to practice requirements elicitation
and management skills in a meaningful way while learning the
RE concepts as an adjunct to other content. At Rose-Hulman,
we have experimented with several project-based approaches to
teaching RE, which have evolved over time. In this paper, we
document the progress of our teaching methodologies, capture
the pros and cons of these varied approaches, and reflect on
what worked and what did not in teaching RE to undergraduate
engineering students.

Index Terms—Requirements Engineering; Project-Based
Learning; Course Evolution

I. INTRODUCTION

It is well known that engineering requirements is not a

simple task. To prepare our students for a successful soft-

ware engineering career, we strongly emphasize requirements

engineering in our curriculum at Rose-Hulman Institute of

Technology. In this paper, we describe the development of

a junior year course in Requirements Engineering, which

is required for both Computer Science (CS) and Software

Engineering (SE) majors.
The need of such a course is supported by the philosophy

of impedance matching undergraduate student learning with

their entry and exit points. We generally agree that incoming

students do better if they recognize college as an extension

of their learning in high school. Similarly, most of us offer a

capstone course in the senior year to ease students’ entry into

professional life after graduation. For the more specifically

targeted engineering schools, both first-year attrition and job fit

at graduation are special concerns. While we have additional

program goals like inspiring students to pursue engineering

work, and improving professional practices via delivering stu-

dents with new capabilities, the systems concept of matching

students as inputs and outputs continues to have face validity

in curriculum decisions. At Rose-Hulman, 90% of our CS

and SE majors go straight into software development work,

so preparation for this career is our prime mission.
Leaders in the software industry sport slogans like, “We hire

for technical skills but promote for people skills.” Indeed, re-

cruiting organizations may hire for the former largely because

differences there are easier to detect in interviews. Computer

science departments, in contrast, are clearly prejudiced against

the value of “soft skills,” often relegating all teaching of

these to humanities departments. This bias is passed along

to students, who tend to acquire a sense that only technical

abilities have inherent significance.
At Rose-Hulman, courses in our CS and SE majors are

experiential, and our students believe they “know something”

when they can do it. Thus, when we invented a course in

Requirements Engineering, we felt students had to do work

which simulated real world settings. This course has been

updated, from 2003 onward, to reflect both our own experience

teaching the subject and the research support for courses of

this type. For example, we emphasize the recommendations

of Macaulay and Mylopoulos that requirements be seen to be

conflicting and changeable, and that justification and traceabil-

ity be insisted upon as arbiters [9]. In Section II, we summarize

current research in requirements education.
Table I highlights the stages of our course development.

The reader can see that, during different eras, we alternated

between having students tackle larger or smaller requirements

elicitation projects. The crucial dimension of “where the client

came from” also varied over time. For example, in 2015

we allowed students to form their own companies and be

entrepreneurs, quite a distance from having instructors or

actors role-play the client, or from using real clients who

wanted a real project done. In 2011-2014 our “Integrated”

team formation had entire classes of 20 or more working on

the same project, divided into sub-teams.
In Section III, we explain the thought that went into each of

these varying approaches, the basic pedagogical mechanisms

used, and the pros and cons of the outcomes. Section IV

does a comparison using data collected at the time the classes

were taught. Section V revisits the validity of our results, and

Section VI concludes the paper.

II. RELATED WORK

In this section, we describe studies backing both the current

format of our course and in support of earlier versions of the

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.24

97

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.24

97

TABLE I Overview of Course Projects.

Year Feature Size Client Status Team Formation
2003-2006 Reduced # of features, 3-6 Role Play All Students - Same Project

2007-2011 Reduced # of features, 6-8 Real Client Varied

2011-2014 Large # of features, 20 Real Client Integrated

2015 Reduced # of features, 3-6 Entrepreneurial Minded Learning Varied

2016 - Present Large # of Features, 20-30 Instructor Controlled Role Play Varied

course. Many resources now exist for case studies emphasizing

requirements issues [5], [7], [8], [15], [20].
Leffingwell and Widrig present a framework for elicit-

ing software requirements. They provided a template titled

“Context-Free Interview” for constructing a 1-1 interview with

any stakeholder. Each section in the template has an iterative

exploration of the client’s problems with set stopping criteria.

We use this Context-Free Interview to frame elicitation as an

algorithm, not an ad-hoc conversation [8].
Woolcock described his peer-pressure tactic for building a

course with a required reading and discussion component.

At the start of each class, he breaks up the students into

randomly assigned small discussion groups. When he solicits

whole-group discussion, he asks each group sequentially to

provide commentary. Each group is expected to contribute a

new insight beyond what the previous group said. He claims

that this tactic pressures students into having something to

contribute to discussion and discourages “free-riders” [11].

We take Woolcock’s approach to ensuring compliance with

the reading assignments several steps further:

• We assign online reading quizzes to be completed prior to

class. Most questions are multiple choice with immediate

feedback, but there are always six open-ended “discussion

questions” at the end. These quizzes are ungraded, but to

earn *any* grade in the course, we state that students must

make a “good-faith effort” on every quiz.

• In class, we randomly assign six small discussion groups:

one group per discussion question.

• We assign each group a “discussion leader” and assign a

grade to the discussion leader based on their response.

• We do not repeat the assigned reading in lecture.

Preece et. al. described software requirements engineering

through the lens of interaction design. They describe a “user-

centric” approach to gathering requirements for building any

GUI. They demonstrate the interplay between human psy-

chology, elicitation techniques, prototyping techniques, and

evolutionary design [14]. We assign their book as required

reading before each class session and introduce Woolcock’s

peer-pressure techniques to promote compliance with the

reading [11]. Our intent is to frame elicitation and GUI

construction as a principled design field, not an ad-hoc field.

For example, when students build their GUI prototypes, we

require that students build multiple prototypes and describe the

tradeoff’s they make between Preece’s dimensions of human

perception and learning. Students later test the alternatives in

our school’s usability lab. They use the data to empirically

decide which prototype to accept. As with Leffingwell’s in-

terview template, we emphasize to students that requirements

engineering follows well-defined processes that are not ad-hoc.
Macaulay and Mylopoulos reflected on the ideal RE cur-

riculum [9]. They surveyed the pedagogical practice of the

time and compared it to expectations of practitioners. They

suggested five themes for a good RE learning experience: i) RE

is not an isolated activity, but needed at all stages of software

development, ii) Requirements can and will change; design

software so it can be changed, iii) Requirements come from

multiple sources, iv) All aspects of software must be justifiable

and traceable, and v) Requirements can and will conflict. We

made these themes central to the student experience.
Gabrysiak et al. offer an experience report on using ac-

tors to serve as stakeholders for a requirements engineering

term project [6]. They recruited graduate students with non-

software expertise, introducing a “semantic gap” between

the RE students and the actor. Gabrysiak et al name three

key goals of a good RE learning experience that informed

our work: G1: “the students should experience a semantic

gap during elicitation;” G2: “the students should experience

consistency issues when synthesizing information gathered

during an interview;” G3: “the students should experience the

usual problems when validating requirements specified in a

way that does not support a suitable view for stakeholders.”
Gabrysiak et al’s conceptual model of elicitation informed

our understanding of how to grade student work when there are

actors. In a given elicitation, they expect students to learn some

set of facts about the project. The actor’s preparation (ability

to memorize the facts) caps the set of facts that can be actually

recovered. On the other hand, the actor’s familiarity with the

problem domain (i.e. from their major or internship) allows

them to answer questions that they didn’t formally prepare

for [6]. Based on this model, we graded project work with

an emphasis on the quality of the elicitation and analysis,

deemphasizing the completeness of the recovered facts.
Callele et al. offer an experience report on introducing stu-

dents to the consequences of failing to apply RE [2]. They gave

2nd year students typical programming assignments modified

to include contradictory and ambiguous requirements. Students

initially felt betrayed that the assignments were not “set in

stone,” but by the end of the term, expressed appreciation for

RE. We drew on their work to construct similar assignments.
Delatorre et al. explained the advantages of using client

role-playing to generate realism in learning RE [4]. Research

on negotiating requirements goes back to Barry Boehm’s

work in the 1990’s [1]. Research recommending specific

requirements processes continues to compete with the Agile

9898

movement’s emphasis on process reduction, in dictating “what

should be taught” in an RE course. For instance, Röder

identifies a pattern-based approach for specifying usability

requirements [17].
The complexity of requirements elicitation involves not only

negotiation skills but also creativity. Maiden et al. identified

this need based in clients’ inability to understand what they

want “till they see it” [10]. So, teaching RE to students in-

cludes teaching them to help customers visualize requirements.
Significant research and industry practices are seen in dif-

ferent vocational areas. Palomares et al. provide a catalog of

requirements for content management systems [13], Shaban-

Nejad et al. propose how to manage requirements changes in

healthcare apps [19] and Chanin [3] discuss teaching RE in the

context of “startup” projects. These body of works emphasize

the varying nature of RE based on project contexts.

III. TEACHING APPROACHES

In this section, we will discuss the evolution of the course

and different teaching approaches taken in teaching the course:

A. Internal Clients Similar Projects Model
This is the approach shown for 2003-2006 in Table I. Our

intent was to make a realistic experience in gathering and

managing requirements, in a required, 10-week course for ju-

nior year Computer Science and Software Engineering majors.

Reports from industry have shown that software engineers in

their first jobs often make assumptions that result in serious

project rework. Given a choice, future employers would prefer

for students to learn hard lessons about this in school.
The notion of doing something because “a client wants

it that way” conflicts with the college ethos that the best

ideas spring from your own head. We knew the course would

be a hard sell to rationalist CS majors. Toward this end

of converting students to empiricists, at the 2003 course

inception, we used the following tactics: 1) Team teaching,

having two instructors in the room at all times. 2) Each class

was a mixture of discussion and application. 3) Team projects

with outside clients. 4) Support from visiting industry people,

and from case studies demonstrating the value of requirements.

5) Self-validation, via verification testing and prototyping. 6)

Client-validation, via feedback in meetings and student pre-

sentations. 7) Multiple representations, capturing requirements

via problem statements, use cases, supplementary specs etc.

8) Competing interpretations, all teams worked on the same

project goal, via different stakeholders, yielding variations due

to client preferences.
To us, the clients, and the industry observers, this class was

a crucial launch of students into the real world of software

development. To our students, the class turned their self-

contained world upside down, and they didn’t necessarily like

it. Teaching it became difficult for instructors, in that they were

asking students to grow in unexpected ways, and the loss of

autonomy was not appreciated.
Over the next three years, a succession of professors with

guidance from our industry sponsors tried to convey the value

of the requirements experience to students in this course.

The projects moved toward agile, and we began to introduce

interaction design and user studies to maximize their exposure

to the outside forces which drive software projects. However,

one year students responded by reporting their learning as 2.75

out of 5, on the course evaluations. Aside from their rejection

of the outside-in knowledge direction, other factors reported

by students included the fact that they did not do significant

coding in the course, and they felt that their project artifacts,

a set of requirements, were incomplete. For our CS courses,

accomplishment of a running software project synthesizing the

topics is the student measure of having learned something.
Pros: The approach emulated a real-world software engi-

neering project, and it prepared students for a similar but less

guided capstone course.
Cons: It was abrupt – The course felt unlike our CS

fundamentals courses and called on different skills. We found

R = .21 with the data structures course prerequisite, but R = .43

with the technical communications course (N = 359 and 419,

respectively). It broke students’ long-standing expectation that

their CS instructor had the knowledge or deductive powers to

solve all the problems presented in the class.

B. External Clients Distinct Projects Model
This was our model for 2007-2011, as noted in Table I. In

2007, our department asked a new, young professor to teach

this class. He valued requirements and had a background in

interaction design. Students also found him more relatable,

which provided an opportunity to strengthen and toughen the

course, making our students focus on getting their project

work right as a course objective. Previous offerings of the

course had focused more on the learning experience and less

on ensuring the final product was “right’,” or rather, what the

client needed and wanted. A tiered learning model was also

introduced [12], which enabled students to achieve process

goals in their complex projects:

1) Tier 1 – In-class elicitation via mock projects and personas.

2) Tier 2 – Elicitation in homework using simple scenarios.

3) Tier 3 – Elicitation through a team-based design project.

The Junior Design Projects, also using outside clients,

mixed learning the material for the first time, in this course,

with actually delivering the results to those clients, in a later

course. The scaffolding of the three tiers helped overcome

the problem of students learning new material and applying it

simultaneously to a real project.
After teaching from this model for several years, we felt

the requirements course had achieved its main mission for

our industry stakeholders. We also believed we had overcome

student resistance to learning about requirements – not by

watering down that message, but by making it more difficult,

while providing paths to success and lots of encouragement.
During this era we tweaked the model to see what additional

software development realities could be rolled-in. In fall of

2008-2009, we tied the requirements gathering strongly to

project management (PM), teaching a required course on this

subject at the same time as our requirements course, and using

the PM course to develop plans for the team projects common

to both courses. That endeavor was short lived partly because

9999

of a curriculum change – to making a course other than PM

be required for CS-only majors in the department.
Pros: The choice of professor and scaffolding of material

eased students into the rocky world of eliciting requirements.

Having the project started in this class and continue through

another provided students with the expected feel that the work

will go to completion. Over these years, the good requirements

developed by students in this course specifically on that

subject did lead to successful deliveries of projects, an activity

integrated into follow-up courses in the junior year.
Cons The projects selected for teams of 3-4 students could

not reliably produce similar levels of difficulty in requirements

gathering. Even more, they could not be guaranteed to stage

problems which provided challenges in design and construc-

tion, which were taught in the follow-up classes. Another

major drawback for this project style was the use of outside

clients. As their projects, needs, and understanding of the

software process could not be controlled, students did not

achieve consistent learning experiences across projects.

C. Single Client Single Project Model

This is the approach shown for 2011-2014 in Table I; its

first year overlapped with the prior model. The tier-focused

learning in that approach provided reinforcement of important

RE concepts throughout the course for students. Nevertheless,

feedback from alumni and from the graduating seniors indi-

cated that a successful learning experience to a certain extent

depended on the quality of the course project, the complexity

of the project, and the amount of time the client was willing

to spend with the team. The success we had enjoyed, with the

previous approach, emboldened us to push the boundaries even

further. We wanted our students to have a more meaningful

and realistic project experience, one that required collaboration

among multiple development teams. Requirements engineering

is part art and part science and teams can learn from each other.

In order to handle previous students’ feedback and introduce

an aspect of cooperative learning, we introduced significant

changes to the course project and materials as follows:
Nature of the Project: A typical project in the past was

smaller in scope, had features that were mostly canned to

help with understanding RE concepts, and had no functional

products as deliverables. Even with external clients, the scope

of projects were limited to gathering requirements and cre-

ating user-interface prototypes. We continued the model of

collaboration with colleagues who taught the Software Design

course in the Winter quarter and Software Maintenance in

the Spring quarter to carry the project forward throughout

a full academic year. With the popularity of agile software

development methodologies, the waterfall-like requirements

phase in the requirements course felt incomplete. Therefore,

we introduced the following changes to the course:

1) The overhead of running several projects and manging

several clients was a major concern, on top of developing

and teaching the course materials for the instructors of

these courses. Instead of having multiple clients, one for

each project group, we used one client per section.

2) A typical class at Rose-Hulman has on average 25 students

in it. A key challenge in selecting projects was that each

project must have enough features to make it a meaningful

learning experience for all 25 students. We solicited project

proposals from our alumni and industry partners. We

selected projects that had enough features for the entire

class as well as required students to learn and use modern

software frameworks. The key idea was to treat the class as

a software development company that worked for a client

with different sub-teams handling different feature sets.

Requirements Elicitation: Requirements were gathered

through client meetings. Client meetings happened on Fridays

during class time. Each week, teams took turns to lead the

client meeting sessions. This gave a chance for each team to

observe how other teams were eliciting requirements and learn

from each other. Irrespective of which team was leading the

meeting a given week, all teams had a chance to contribute

to the agenda and questions to be addressed with the client

during the meeting. Each team had to prepare a list of agenda

items/questions/descriptions and email it to the coordinating

team by 5:30 PM on Wednesday of that week. The coordinat-

ing team prepared the final agenda and made it available to

the instructor and the client by 3:30 PM on Thursday of that

week. The coordinating team conducted the meeting and gave

time to the rest of the teams to handle any unanswered client

questions. If there were more questions, those were posted to

a private GoogleGroups forum, which served as a message

board for the class. The client and/or teams answered those

questions by the end of the weekend on GoogleGroups.
Product Development Process: We wanted to adopt an agile

software development methodology for the course project. In

particular, we chose Scrum as it had facilities to manage

development cycles of multiple teams using Scrum of Scrums.

The details of Scrum can be found in the Essential Scrum

textbook that we adopted for the course [18]. In what follows,

we present our adoption of Scrum for the course project.
After students self-selected themselves into teams, we

formed a Scrum of Scrums (SoS) team, which was composed

of a representative from each team. The job of the SoS team

was to oversee product backlog grooming (periodic updating

of product backlog and effort estimation for user stories using

story points unit [18]) and to keep teams up-to-date with the

needs and demands of the client. The SoS representatives, thus,

served the Product Owner role in their corresponding team

advocating for the client. Each team also had a Scrum Master

who oversaw daily scrums. Those were short progress update

meetings; if a team required an engineering discussion or more

detailed discussion, they scheduled a separate meeting to do

so with only the members who were relevant to the topic.
A sprint ran for two weeks. At the end of each sprint, the

class did a retrospective meeting where they reflected on what

worked and what did not in terms of both product and process.

The SoS team then recommended changes, which got adopted

after reaching consensus among all teams. A sample product

backlog taken from a class section is shown in Figure 1.a. The

figure also shows the story point estimation for each user story,

100100

Fig. 1: Scrum methodology applied to the project.

as well as the total points for the sprint. Figure 1.b shows the

details of a user story. Each user story specified “conditions

of satisfaction” (CoS) [18] for each affected team. As a team

member made progress on the user story, she also checked

off the CoS entry for her team. This way, we were able to

consolidate and monitor the overall progress of a particular

user story for all teams. Furthermore, the user stories were

often backed up by mockups, wireframes, and other relevant

document/diagrams to capture the client’s intent.

Pros: The students liked the overall real-life project experi-

ence and self-learning that happened through the project. They

were realistically dealing with complexity of scale. The course

model simulated the feel of a real software company. They

also had to collaborate and coordinate development cycles

among teams. For instance, all front-end teams (Android,

iOS, and Web) depended on the backend team to complete

their tasks, and the quality assurance (QA) team depended on

front-end teams to complete their tasks. There was a lot of

learning about requirements but also about the larger context

of managing a software product involving several development

teams. Furthermore, students gained realistic design and cod-

ing experience in this class and were not limited to RE only

experiences.
Cons: There are several challenges to teaching this model

of the course. First, the varying nature of projects in the

multiple sections made it hard to tailor homework assignments

to a specific class to help with the project work. Also,

certain projects were inherently harder than others and the

instructors had to manage the expectation of students, clients,

and themselves when things did not get done in time. To

make this model of course better, we recommend establishing

three deadlines: one for the backend team, another for front-

end teams, and yet another for the QA team. However, the

logistics of managing such schedules with the overhead of

creating and teaching course materials can be overwhelming.

Not all teams can be graded using the same rubrics in this

setting. To make matters worse, students got better at playing

the blame game - teams blaming other teams for not getting

their features done. Sometimes they did have a real issue,

while other times, they were not proactive in reaching out

to other teams to find out about the progress of the dependent

features. This was a strong indicator of their lack of motivation

to work on someone else’s idea without getting paid for

the work they put in. Furthermore, the teaching load on

the instructor was substantial, as he/she had to work as the

front-line project manager, coordinating meetings with clients,

coordinating student groups, and facilitating development.
Grading students’ work had a challenge of its own in this

model. There were a lot of unanswered questions. How would

you judge students who got blocked by the other project

teams and could not make progress towards their features?

When students make a mistake, how do we handle it? Is it a

teachable moment from which students learn, or should there

be a stronger penalty than a reduced grade, perhaps something

that would be practiced in industry. With the realistic nature

of the course also came realistic problems of administering it.

D. Entrepreneurship-Based Model

In an experiment, we tried a much-different approach for

2015, as noted in Table I. The previous section explained

that the large projects, while realistically simulating industry,

tended to suffer because of insufficient student motivation.

101101

Evaluations revealed that student’s did not feel excited about

working on somebody else’s idea. Students also pointed out

that the coordination between several teams imposed too much

process even in the presence of agile methodologies.
We decided to adopt a process that had minimum rituals and

was flexible enough to work under uncertain and changing

circumstances, yet simple enough to be understood by all

stakeholders of the project. Our experiences with RE also in-

dicated that students would learn better if they can experiment

with ideas, receive validity on their ideas quickly, and iterate

to refine their projects. These together suggested a process that

had three parts:

1) Learn fast through customer interviews, customer develop-

ment, root cause analysis, and customer acceptance.

2) Build fast using open source components, incremental

deployment, continuous integration, unit testing, etc.

3) Measure fast using split-tests, usability tests, and traffic

monitoring.

The process aligned closely with the core principles of

the Lean Startup methodology [16]. Thus, we adopted lean

methodology in the course and required students to propose

their own startup idea. Each student would pitch their idea to

the class, and recruit classmates to work on the idea for the rest

of the quarter. Students were taught to use various tools and

techniques to assist in the evaluation of prototypes, performing

feasibility analysis, and managing risks with the stated goal

of providing incremental value to the project’s stakeholders.

Each student proposal was vetted for viability and approved

by the instructor. Students then performed an initial feasibility

analysis of their ideas including: i) determining existing needs

ii) assessing strengths and weaknesses of existing approaches,

and iii) identification of stakeholders and the benefit provided

by the project to said stakeholders.
The feasibility analysis documents were reviewed by the

faculty and student project managers. The accepted proposals

were then made available to all the students. Students with

accepted proposals were then allowed to recruit their col-

leagues to work in their project using an approach similar

to the popular TV show “Shark Tank” by offering ownership

stakes in the startup. Student feedback on these proposals were

gathered using surveys on the class website.
The rest of the term was divided into several milestones.

Students were required to develop a Minimum Viable Product

(MVP) at the end of each milestone as follows:

• Milestone 1: The main purpose of this milestone was to

start documenting requirements for the startup. Student

teams were required to interact with identified stakeholders

through direct observations and interviews. The results of

the interactions were captured using an affinity diagram and

user stories. They were further required to identify epic-

level user stories and use them to drive the feature-level

user stories. For each feature-level user story, the student

teams captured storyboard diagrams as the first MVP.

• Milestone 2: The main purpose of this milestone was to

introduce students to prototyping and evaluation. Student

teams were instructed to create two separate low fidelity

designs of their system. Each of these designs were to be

evaluated by four different users. Feedbacks from the users

were captured and findings and changes to the prototypes

were documented. Based on the feedback, students coa-

lesced the designs into one final low-fidelity prototype as

the second MVP.

• Milestone 3: The main purpose of this milestone was to

create high-fidelity prototypes building on the low-fidelity

prototypes. The teams had to create user interface screens

using the actual programming languages that were targeted

by the system. We also required teams to start developing

the backend and to plan rest of the project. All software de-

velopment was done using a continuous integration pipeline

that teams setup using an in-house Git server.

• Milestone 4, 5: In Milestones 4 and 5, teams continued cod-

ing the product. Each milestone functioned as a week long

sprint. They used standard software engineering practices

such as automated testing and continuous integration (CI)

and delivery (CD).

• Milestone 6: In this milestone teams conducted a usability

study of the MVP developed in the previous milestone. The

final deliverable for this milestone was a Usability Report

that included the following:

1) Process (Informed Consent, Pre- and Post-Test Question-

naires, Tasks and Goals, and User Demographics)

2) Findings with evidence in the form of video observation

3) Recommendations

4) Analysis (Quantitative analysis of task completion times

and other counters from usability reporting software,

Qualitative analysis of pre and post-test questionnaire)

5) Revised High Fidelity Prototype based on usability study.

Each screen included a summary of changes made.

Pros: This approach solved a key problem of the past

approaches - “the lack of student motivation”. Students consis-

tently pointed out that they cared about the project and were

invested to work harder. The use of lean methodology also

struck a positive note with them. They pointed out that the

process created a realistic environment that aligned closely

with a startup venture, which made the course interesting.

Cons: The use of CI and CD created several problems

that got in the way of learning RE. Teams spent several

hours trying to setup their CI/CD pipelines that delayed the

observation of user’s interaction with products and thereby the

refinement of requirements. Also, the project selection process

required that several project ideas had to be pruned, which

meant that some students had to work on somebody else’s

idea. This reduced the overall motivation of some students.

The learning associated with requirements happened be-

cause of the process that was used and wasn’t direct. While the

end goal of teaching students about requirements engineering

was achieved, it does lead to the question - is there a better

model that directly achieves the goal? Furthermore, while

students noted that the lean startup process created a realistic

environment for a startup and students felt they learned about

RE, it’s important to note that many of our students do not

102102

go into lean startups. A large portion of our students end

up in regulated fields such as aerospace, medical technology,

or at large, established companies. The dynamics between

stakeholders and developers in these environments is much

different than what is seen in a lean startup. In this model,

students interviewed the stakeholders they identified, but held

most of the power to make decisions about the final product.

While students found this version the most motivating, this

decision process likely does not reflect the work they will do

in the industry. Learning that choices are often not solely in

the developer’s hands is an important lesson that can be missed

in this version of the course.

E. Intentional Learning Model
This approach was taken in 2016, and continues as our

current model, as shown in Table I. Learning from previous

experiences, we asked: What learning experiences do we want

to expose students to during their term project? We synthesized

the related work into five desired learning experiences: i) Work

on a project in an unfamiliar problem domain [6]. ii) Elicit

requirements from a non-CS stakeholder [6]. iii) Experience

changing understanding of existing requirements [9]. iv) Ex-

perience and resolve conflicts between stakeholders [6]. v)

Experience the consequences of failing to apply RE [2].
The experience of “writing code” did not make our list.

The related work never claimed that students need to make

the connection between code and requirements through a
huge project - only that the connection needs to be made. We

assigned a few early motivational coding assignments to get

student buy-in, after which, students stopped coding entirely.
Project setup: Unimpeded by code as the end-deliverable,

we created a term project intentionally focused on the above

five learning experiences. Our process was: 1) Find a problem

domain that few students know about, like medicine. 2)

Draw on our industry experience and find a model industry

project within the desired problem domain, like blood test-

ing. 3) Build an “oracle” set of final business requirements.

4) Identify stakeholders typical to the problem domain. 5)

Distribute the business requirements among these stakehold-

ers. 6) Intentionally introduce overlap and conflict between

stakeholders’ understanding of the requirements. 7) From the

perspective of each stakeholder, plan responses in advance to

Leffingwell’s interview questions. 8) Organize these responses

into scripts/FAQs. 9) Find actors (industry volunteers, drama

students, and TAs) and give them the scripts/FAQs.
For example, this year’s project involved discovering the

business requirements for a software upgrade to a blood testing

lab. We identified seven stakeholders:

• Assay Development: This group is constantly doing research

to determine new ways to test blood samples.

• Stability: The company produces test kits that are provided

to doctors offices for day-to-day tests such as strep and

mono. The Stability group’s goal is to measure the Stability

of these kits over time under different storage conditions.

They must keep detailed records under specific conditions

to ensure proper results over time in the hopes of detecting

possible issues with kits before they fail in customer use.

• Production Testing: The Production Testing group does the

day-to-day sample testing of blood samples from patients.

They must follow strict procedures and documented pro-

cesses. The software system must provide checkpoints and

information along the way that keeps the user on track, while

not bogging down their job with unnecessary steps. This

group faces strict FDA regulation.

• Patients: The labs would like to offer test result to patients

online. This data must be secured so that only the patient

and the doctor who ordered the test(s) have access to it.

• Doctors: The doctors who order tests should be able to

retrieve the results of their patients as soon as they are

available. Preferably, this can be done online, but some

doctors may still prefer a PDF that can be printed or faxed.

• Lab Managers: Lab Managers unlike others would just like

to see efficiency of their personnel.

• Analysis Personnel: As new labs are being created, or labs

are being run over time, analysis personnel will periodically

check the data to look for trends.

Each actor had their own view of the data and their own

corner of the overall business process. For example, we

provide a portion of the scripts we gave to two different

stakeholders regarding sample states in lab testing:

Sample States: Lab Technician If they ask you about sam-

ple states (something the production lead likely mentioned):

• Samples start as ordered, which means that the doctor has

requested a sample be taken.

• Then, once a phlebotomist has drawn the sample, it moves

to collected. If the sample needs to be shipped (so it wasnt

collected here) then it stays collected until it gets to our

lab, then it moves to the arrived state.

• If the sample was collected here, it moves to arrived once

its passed to the lab. Once its been organized into an assay,

its noted as scheduled.

• Once the assay has been started it moves into the “In Test”

phase, then once we record results it becomes “Tested.”

• Once the report is compiled and sent / made available to

the doctor, its moved to “Reported.”

• Eventually, samples will be disposed of an then they get

moved to ”Disposed.”

Sample States: Assay Developer
If they ask you about the states a sample goes through (this

is something that the production lead may have mentioned):

Tracking this isn’t all that important to it, and if we have

to go through the same sample states as production wed

probably lose our minds.

Notice the lab technician placed significant emphasis on

the business process of moving samples through the different

states. Compare that emphasis with this contradictory excerpt

from the technician’s colleague, an assay developer. Each pair

of roles had similar contradictions in scope and priority. We

gave the actors these scripts in printed and tablet form, then

set them loose on the students. We found the use of tablets to

be much easier, as the script was divided into sections and the

103103

actor could click to the desired section based on the question

asked, making the flow more like a regular business meeting.
Student learning experience: Unlike previous years, stu-

dents learned about RE through a flipped format, where they

answered preclass quizzes from their reading of Interaction

Design [14]. RE can be a dry subject to teach through lecture,

so the intent of the assigned reading was to allow students to

absorb the material at their own pace. Students came to lab

to discuss the quiz’s open-ended “discussion questions.” They

ended each lab with an exercise. The early lab assignments

based on [2] were designed to motivate the need for RE. Later

lab exercises explored the principles of interaction design as

applied to high-fidelity prototyping.
Outside of lab, students worked in teams of four on their

term project. Similar to past iterations, we have several mile-

stones that led students from elicitation of the business require-

ments, into prototyping the UI, and ultimately having students

build a release schedule reflecting the stakeholders’ priorities.

Each milestone had an accompanying rubric mandating that

students apply the best-practices from the reading.
Students were given little information about this project up-

front. This includes domain information, as it is common to

enter a project in industry with no knowledge of the client’s

domain. The students’ objective was to interview the actors to

determine the true nature of the project. Students transcribed

their interviews and explicitly traced the requirements they

discovered back to the raw text of the transcript. As students

encountered the seeded conflicts and unintentional ambiguity,

they used their RE artifacts as a means to an end: they sent

clarification emails to the client’s “official” business email,

explaining the situation and asking the clients for feedback

on their RE artifacts. These email accounts were monitored

and responded to by the course professors. We attempted to

maintain consistent responses based on the scripts provided to

the actors. Scripts were expanded if a student asked a question

that exposed missing information in the script.
We used the clarification emails to expound on the re-

quirements and correct actors’ errors, but most importantly, to

introduce conflict in stakeholders’ priorities. For example, one

team established that it was a low priority for lab technicians to

describe the expected values of positive blood tests. When the

assay developer was asked to review the students’ priorities,

we gave this response:

Team,
Adding expected results to assays is of paramount impor-

tance to the science. I can’t believe you would list it last.

How is the humble production lab technician supposed to

know whether they did the right thing if we don’t specify at

least the expected value and acceptable bounds? We have a

higher calling that starts with informing the production lab

technician what to expect.

Additionally, responding to client emails opened up an

opportunity for us to see how students managed written

communication with a client. Some students would blame the

client for miscommunication by quoting what was said in a

previous meeting, referring to lines in transcripts, etc. While

this may prove that the client did contradict themselves, we

were able to introduce an important point to our students:

Clients often do not understand what developers need to know,

as developers do not understand what the client does all day.

We were also able to provide coaching on better ways to

communicate in an email.
Pros: The course’s subtle pressures to make students read

the textbook succeeded. Students expressed that motivational

assignments helped illustrate the need for RE. Removal of

coding portion of the project gave students time to see the

necessity of eliciting requirements to navigate conflict and

ambiguity. Conflicts between stakeholders’ needs forced stu-

dents to realize that different people have different needs. This

realization manifested in the students’ UI prototypes, which

gravitated to different views for different users.
Cons: We had no way to evaluate students’ elicitations, only

their deliverables. Our students felt tricked by the motivational

assignments. We would like to reduce the “trick-question” feel

of the initial assignments. The project was more instructor-

intensive than the entrepreneurial model because the instruc-

tors had to set up the actors and respond to client email.

The entrepreneurial model scaled better in this respect. The

actors were often overwhelmed by the novelty of the problem

domain, particularly during their first few elicitations. Our

actors had their scripts in tablet form, yet navigating them

during the interview was tedious, though not as much as paper.

Students felt that further practice and organizational assistance

would help the actors convey their material. Transcribing the

numerous elicitation interviews was a major pain point. We

insisted on students transcribing the raw audio to help provide

traceability. Students would benefit from a transcribing service.

IV. EVALUATION

To open this discussion, we point out that one must be

bold enough to try different flavors of a course, which might

have different advantages and disadvantages, in order to have

alternatives whose results one can compare. One also must

persist in including assessment material, so that each progres-

sive change can serve as a baseline for the next.
We conducted two forms of assessment of the various

versions of our requirements engineering course. The first

form of assessment was conducted during the delivery of the

course. Each course version included an anonymous in-class

assessment. We conducted a survey at the 3.5 week mark and

7 week mark of a 10 week class. The survey included the

following questions:

• What do you like about the class?

• What would you like to see change about the class?

• What do you like about the way this class is taught?

• What would you like to see change about the way this class

is taught?

Students were instructed to limit the answers to these ques-

tions to the day-to-day delivery of the class and any changes

that could be made mid-stream. As such, feedback from these

immediate impact surveys are not reported here. Students

were instructed to maintain a journal of their feedback and to

104104

Fig. 2: CSSE 371 Overall Learning by Version

Fig. 3: CSSE 371 Course Evaluation Comparison of Lab

Material and Teaching Tools by Version

recommend changes/suggestions in a summative assessment

that was carried out at the end of the class.
The end of term summative assessment is comprised of the

following questions:

1) Please rate the quality of your learning in the class

2) The laboratory assignments and the course material rein-

forced one another

3) The work load for this course in relation to other courses

was

4) Overall, how would you rate this class

5) The professor was well prepared for this class

6) The professor used teaching techniques that helped me

learn

7) The professor was available for help outside of class

8) The professor was genuinely interested in teaching the class

9) Please rate the professor’s overall performance in the class.

The number of students completing the course evaluations

for the various versions is as follows:

Fig. 4: CSSE 371 Course Evaluation Comparison of Overall

Course Rating by Version

Fig. 5: CSSE 371 Course Evaluation by Version

Fig. 6: CSSE 371 Course Evaluation by Version

1) V1 - Internal Clients Model (III-A) - 100 Students

2) V2 - External Clients Model (III-B) - 148 Students

3) V3 - Single Client Single Project Model (III-C) - 170

Students

4) V3 - Entrepreneurship Model (III-D) - 92 Students

5) V4 - Intentional Learning Model (III-E) - 98 Students

Q1, Q2, Q4, Q5, Q6, Q7, Q8, Q9 were evaluated using a

5 point Likert scale with the following options: a) strongly

agree - 5, b) agree - 4, C) neither agree nor disagree - 3 , d)

disagree - 2, and e) strongly disagree - 1.
The results from the student survey are provided to the

instructor in the form of a mean and standard deviation.

Figures 2, 3, and 4 provide the means obtained from Q1, Q2,

and Q4, respectively, for the various versions of the class. The

earliest version of the class (internal clients) III-A had the

weakest performance for overall learning and had the weakest

overall course rating. The poor learning quality led us to the

development of the external clients model described in III-B.

This version of the class had the best performance across

the board. Some of the higher performance can be directly

attributed to the instructor as noted by the better performance

of the instructor in questions 6, 7, 8, 9 as shown in Figures 5

and 6. The problems with the external clients model directly

led to the development of the next two versions of the class.

While learning and overall course rating dipped a little, the

class and the topics in question were still rated highly by the

students. The latest version of the class with an emphasis on

intentional learning has helped raise student’s perception of

learning and overall class ratings.
Q3 is a measure of workload and is evaluated using a 5

point Likert scale with the following options: a) much lighter

- 5 , b) lighter - 4, c) about the same - 3, d) heavier - 2 and e)

much heavier - 1. Lower the rating, heavier the workload in

105105

that version of the class and as shown in Figures 5 and 6, we

have been able to consistently maintain a comparable workload

(rated by the students as heavier than the average course at the

institution) across the various versions of the class.
In addition to these questions, students also had the option

to provide free form responses to the following questions:
1) Explain why your learning was at this level

2) Describe one or more strengths of this course

3) Describe one or more ways this course can be improved

4) Explain why you gave the instructor this rating.

The responses to these free form questions have been

captured in the Pro’s and Con’s discussions in the previous

subsections. Response from the students and alumni on free-

form questions is filled with positive feedback about the

quality of learning, material and the course in general. A

similar sentiment has been observed by the senior capstone

instructors. They have noted the increased competency of the

students in eliciting and managing requirements and change.

More details are not included due to space constraints, but we

will be happy to share the results upon request.

V. THREATS TO VALIDITY

One of the threats to validity is the viability of student jour-

naling, the process we used as a setup for student evaluations

at the end of the course. In theory, recording at the time is

much preferred to relying on recollections. However, in our

world today, any blogging-type activity also puts students into

the same “set” in which they do social media commentary.

This cannot be ignored as a cause of what we see in our

results. Even if we provide them with guidance and training,

we are competing with an influence which they may interact

with 100 times a day.
In using Student Evaluations of Teaching (SET’s) as an

assessment tool, we also assume that students can self-report

their degree or quality of learning. For convenience, we often

pretend that all teaching situations can be leveled, so as to

compare these reports. But, in fact, people unfamiliar with

subjects cannot be expected to provide expert reports, and the

more unfamiliar they are, the farther off the reports are likely

to be, probably in ways that do not average-out. For most of the

computer science students taking a course in requirements, this

is the first time they have been challenged to think in a Gestalt

way, to see things from other people’s perspectives in order to

succeed, to deal with ambiguous assignments, and to question

their own judgment. We cannot rule out the possibility that

students learned more in this class than they think they learned,

and that they will become aware of this gain only when they

take on serious projects in the future. We see this effect in the

same students’ senior projects.

VI. CONCLUSION

At this point in the evolution of the course, we are tempted

to conclude that realistic, problem-based learning approaches

for a first course in requirements, present difficult situations

for both students and instructors. We have opted, instead, for

a scripted course for which the challenges can be still strong

but better controlled.

We are pleased with the recent adoption of a flipped

classroom in this course. Here, the format motivates students

to study material on their own, and it makes maximum use of

class time to do problem-solving.
Providing a sufficiently convoluted project, which empha-

sizes the right requirements lessons, remains dicey. The prob-

lem is that a “canned” project is already familiar to the

instructors and some instructors may not choose to portray

the searching thought processes, which lies at the heart of

requirements analysis. On the other hand, inventing a new

problem for each class, and implementing all of its aspects,

like role-play situations, is a large amount of work. These

issues were listed in the “cons” for our current course model.
We invite others to consider any or all the flavors of this

course that we have tried. As noted, each had unique pros

and cons. Variables as fundamental as the nature of your CS

students, or the amount of prep time you have available, could

make one of these alternatives preferable.

REFERENCES

[1] B. Boehm and A. Egyed, “Software requirements negotiation: Some
lessons learned,” in ICSE, 1998, pp. 503–506.

[2] D. Callele and D. Makaroff, “Teaching requirements engineering to an
unsuspecting audience,” SIGCSE Bull., vol. 38, no. 1, pp. 433–437, 2006.

[3] R. Chanin, L. Pompermaier, K. Fraga, A. Sales, and R. Prikladnicki,
“Applying customer development for software requirements in a startup
development program,” in SoftStart, 2017, pp. 2–5.

[4] P. Delatorre and A. Salguero, “Training to capture software requirements
by role playing,” in TEEM, 2016, pp. 811–818.

[5] H. Femmer, D. M. Fernández, E. Juergens, M. Klose, I. Zimmer, and
J. Zimmer, “Rapid requirements checks with requirements smells: Two
case studies,” in RCoSE, 2014, pp. 10–19.

[6] G. Gabrysiak, H. Giese, A. Seibel, and S. Neumann, “Teaching require-
ments engineering with virtual stakeholders without software engineer-
ing knowledge,” in REET, 2010, pp. 36–45.

[7] R. L. Glass, Software Runaways: Monumental Software Disasters.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1998.

[8] D. Leffingwell and D. Widrig, Managing software requirements: a use
case approach. Addison-Wesley, 2003.

[9] L. Macaulay and J. Mylopoulos, “Requirements engineering: An edu-
cational dilemma,” vol. 2, no. 4, pp. 343–351.

[10] N. Maiden, S. Robertson, and J. Robertson, “Creative requirements:
Invention and its role in requirements engineering,” in ICSE, 2006.

[11] Michael J. V. Woolcock, “Constructing a syllabus.” [Online]. Available:
https://tinyurl.com/hvx7qbv

[12] S. Mohan and S. Chenoweth, “Teaching requirements engineering to
undergraduate students,” in SIGCSE, 2011, pp. 141–146.

[13] C. Palomares, C. Quer, X. Franch, S. Renault, and C. Guerlain, “A
catalogue of functional software requirement patterns for the domain of
content management systems,” in SAC, 2013, pp. 1260–1265.

[14] J. Preece, Y. Rogers, and H. Sharp, Interaction design: beyond human-
computer interaction, fourth edition ed. Wiley.

[15] G. Rempel, “Defining standards for web page performance in business
applications,” in ICPE, 2015, pp. 245–252.

[16] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses. Crown Business,
2011.

[17] H. Röder, “A pattern approach to specifying usability features in use
cases,” in PEICS, 2011, pp. 12–15.

[18] K. S. Rubin, Essential Scrum: A Practical Guide to the Most Popular
Agile Process, 1st ed. Addison-Wesley Professional, 2012.

[19] A. Shaban-Nejad and V. Haarslev, “Towards a framework for re-
quirement change management in healthcare software applications,” in
OOPSLA, 2007, pp. 807–808.

[20] Y. Yu and H. Sharp, “Analysing requirements in a case study of pairing,”
in AREW, 2011, pp. 4:1–4:6.

106106

