
Using Extreme Characters to Teach Requirements
Engineering

Claudia Iacob
University of Portsmouth

Portsmouth, UK

iacob@port.ac.uk

Shamal Faily
Bournemouth University

Poole, UK

sfaily@bournemouth.ac.uk

Abstract—One of the main challenges in teaching Software
Engineering as an undergraduate course is making the need
for software processes and documentation obvious. Armed with
some knowledge of programming, students may feel inclined to
skip any development phase not involving coding. This is most
pronounced when dealing with the Requirements Engineering
practices. In this paper, we describe a practical approach to
teaching Requirements Engineering using Extreme Characters.
The exercise aimed to achieve the following learning objectives: a)
understanding the need of including the end user in any require-
ments analysis phase, b) identifying the requirements engineering
phase as a iterative process, c) understanding the necessity of
constantly double checking the analysts interpretation of the
user requirements, d) ensuring the rigorous documentation of
both user and system requirements, and e) identifying the place
of requirements engineering in the overall development process,
and the forces and challenges around this phase of development.

Index Terms—requirements elicitation, specification, verifica-
tion

I. INTRODUCTION

Software Engineering entails the application of engineering

practices to the development of software. However, to un-

dergraduate students, the relevance of these practices might

seem lost. Many of the software tools they might use to

develop software implicitly assume agile practices where the

code is the design. Because many students learn to write

software on their own, and this software does not scale to

the size of the poorly designed and hard to maintain software

systems found too often in practice, they can fail to see

the value that software engineering can bring. Case studies

[1] can be effective at describing the human implications of

poor software engineering practices, but can feel removed

from the specification exemplars that students work with in

the classroom. It is, therefore, important for students to have

visceral experience of software engineering practices and why,

although often difficult to apply, their benefits outweigh their

costs. Requirements Engineering is an important element in

Software Engineering, but the elicitation, analysis, specifi-

cation, and validation of requirements requires an array of

technical and non-technical skills that, at times, can seem

remote from the practice of writing software. However, given

the impact that poorly specified requirements can have, there

is a need for students to not only gain visceral experience

of key requirements engineering practices, but for this to be

put into context with other software engineering practices they

also learn.

In this paper, we present a practical approach for teaching

Requirements Engineering through the vehicle of Extreme

Characters; these were introduced by [2] to display exagger-

ated emotional attitudes. These exhibit character traits that

otherwise might remain hidden, and add an extra dimension

to the challenge of eliciting requirements that meet their

expectations. We describe the related work in Requirements

Engineering education in Section II, before describing the

design of a teaching session using our approach in Section III.

We evaluate the results of applying our approach in Section

IV, before concluding and discussing the implications and

limitations of our work in Section V.

II. RELATED WORK

The need to apply requirements engineering techniques

to real world problems has been a consistent theme in the

Requirements Engineering education literature [3]. However,

exposing students to such problems allows them to apply

elicitation, analysis, specification, and validation techniques to

non-trivial problems. This can be challenging given that solv-

ing real-world problems takes time, and any teaching needs to

be completed within reasonable time and resource constraints

[4]. Software engineering modules typically include some ele-

ment of teamwork, which introduces students to non-technical

issues associated with Requirements Engineering. However,

some of the issues relating to Requirements Engineering are

not so easy to impart. For example, Gnatz et al. [5] found that

requirements produced by student teams were poor quality

due to difficulties understanding requirements templates, and

it was hard to teach students to write good documentation,

or impart the implications their work might have on software

maintenance.

Zowghi et al. [6] suggests the key elements of Requirements

Engineering education are interview skills for requirements

elicitation, analysis and modeling skills for problem solving,

and writing skills for requirements specifications. They illus-

trated how the use of role-playing can impart these skills,

by breaking students into teams simultaneously playing two

roles. The team acted as a development team responsible for

eliciting, analyzing, and specifying requirements; they also

acted as a customer team providing information about their

needs to a different development team. Role-playing developed

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.25

107

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.25

107



empathy within students as it allowed them to view the same

situation from different perspectives. However, as this exercise

ran through the teaching of an entire unit, coordinating and

monitoring communications between teams was a burden.

III. REQUIREMENTS ENGINEERING SESSION DESIGN

We designed a practical session around Requirements En-

gineering to address the main misconception students have

about requirements. As they had little exposure to real-

world development processes, students interpretation of this

phase of development was reduced to a limited, minimal

form of documenting the overall aim of the system under

development, specifying its core features in broad terms, and

possibly hinting to elements of the systems user interface.

The lectures take on requirements – software engineers do not

write requirements based on their own understanding of the

problem, but they elicit, specify, and validate them based on

feedback from the target end-users of the systems developed

– led most students to believe that requirements elicitation

can be done by means of remote surveys. Although familiar

with the theory behind more in-depth requirements elicitation

techniques, such as interviews and focus groups, students

failed to see their applicability in the software development

process. The practical session was designed to address this

misconception and help the students achieve a number of

goals: 1) Understand the need of including the end user in

any requirements analysis phase, 2) Identifying the require-

ments engineering as a iterative process, 3) Understanding

the necessity of constantly double checking the analysts in-

terpretation of the user requirements, 4) Ensuring the rigorous

documentation of both user and system requirements, and 5)

Identifying the place of requirements engineering in the overall

development process and the forces and challenges around this

phase of development. Students were asked to pretend they

are part of a mobile app start-up company. Their investors

see an opportunity for developing a diary and scheduling app

for a very influential, but very secretive group of users: the

extreme characters. As part of the development team, they

were given access to representative users. The exercise was

further organised into four steps: familiarisation, elicitation,

specification, and validation.

A. Familiarisation

Students were split into two groups (maximum 10 students

in each group), A and B. Each group was given a brief

description of the target end-user they represented, namely

the queen and a double agent. The descriptions provided for

each extreme character are available in Table 1. Acting as their

respective target end-users, the groups were asked to agree on

the functionality they expected from the app. They were all

reminded that they are playing a role and that they are not

allowed to reveal who they act as. By doing this, we wanted

to avoid issues with bias, i.e. students thinking they understand

what their extreme character’s user requirements are.

B. Elicitation
Each group was further divided into 2 sub-groups: A1 and

B2 were the interviewers, and A2 and B1 were the inter-

viewees. Interviewers acted as requirements analysts, while

interviewees acted as the user they represented. Group A1

interviewed group B1, while group B2 interviewed group A2.

Instructions on interviewing were provided to all groups.

C. Specification
Students returned to their initial A and B groups. Each

group had to specify the requirements elicited at the previous

step. Students were free to use any requirements specification

technique they felt was best suited, but they had to make sure

the entire team agrees on the specifications.

D. Validation
Students returned to the groups formed for the Elicita-

tion step, namely A1, A2, B1, B2. This time, A2 and B1

acted as interviewers, and A1 and B2 acted as interviewees.

Interviewers acted as requirements analysts validating the

requirements specified, while interviewees acted as the user

they represented. Group A2 interviewed group B2, while group

B1 interviewed group A1.

IV. EVALUATION

We evaluated the session design over 10 one-hour tutorial

sessions scheduled as part of an undergraduate Introduction
to Software Engineering unit. The total number of students

involved in all the sessions was 86, and each student par-

ticipated in a single session. An instructor was present at

each session. At the end of each session, students answered a

set of questions designed to evaluate the effectiveness of the

exercise. These questions were: (1) What have you learned

about requirements engineering as a result of this exercise?,

(2) What aspects of the exercise did you most appreciate?, (3)

What aspects of the exercise did you find challenging?, (4)

What suggestions would you make for improving this exercise.

In this section, we discuss the main findings of the evaluation

based on the answers provided by the participating students.

A. What have you learned from this exercise?
1) The process is harder than it looks: Most students

concluded that Requirements Engineering is a lot more than

sitting down and deciding what user want from the system

being developed – “A lot more complicated than you first
assume” or “I have learned that requirements elicitation is a
much deeper process than first thought, including multiple user
meetings”. They understood that Requirements Engineering is

a process, and that the user is a central part of this process –

“Requirements elicitation is very difficult and requires multiple
and varied interactions with end users”. Most importantly,

though, students realised that Requirements Engineering, and

requirements elicitation in particular, is a considered, iterative

process as opposed to a one-off meeting with a user – “It is
an ongoing process not a single step process and it will take
at least a few iterations to be able to have a clear idea of
what is needed”.

108108



TABLE I: Extreme characters used in the Requirements Engineering exercise

Queen Double agent
Profile The Queen is a person who is very powerful in theory, though

in many ways her actions and emotions are prescribed. She is
very much restricted by protocol. The Queen sees her formal
appointments as tedious, and values her leisure time very highly.
She enjoys a stroll in the Hampshire gardens and the conversations
with her favourite cousin, Anne. When it comes to her formal tasks,
the Queen needs a little encouragement from time to time. The
Queen knows that she would fall under media scrutiny if she did
not fulfil her formal duties. In a sense, she views her negotiations
with the appointment manager to gain leisure time as a kind of
game.

The double agent is a powerful person who acts as a spy for both
MI5 and KGB. He is highly aware of his place in the MI5 and
the KGB hierarchies. Above him in rank are big players who help
him coordinate and execute operations. It is a rough world, and in
response the double agent has adopted an opportunistic attitude.

Attitude
towards
appointments

The Queens life is full of compulsory, repeating appointments. In
the time slots that remain, the Queen likes to enter as many personal
appointments as possible, so that she cannot be hassled for other
tasks. While she needs to share the information in her agenda with
others who organise her public life, there are some appointments,
which she would rather not disclose to others.

The double agent has two agendas, one for the MI5 and one for
the KGB. The information in both is very sensitive. It should not
fall into the wrong hands, be it colleagues or superiors. Clearly,
he is very careful with whom he makes appointments and where.
Meeting places are specified by their characteristics. Roads that
will allow a quick get-away and buildings that will provide cover
are important considerations. The double agent doesnt plan very far
ahead. Operations come and go; the scene may look very different
next week. The double agent is ambivalent about exposing his
appointments. On the one hand, they contain sensitive information.
On the other hand, exposing them means enforcing his position in
the hierarchy, a kind of power play, which draws new information.
In his appointments he needs to express his respect for his superiors,
without mistaking them or getting confused about their motives.

2) Users don’t always know what they want: One of the

most frustrating lessons learned by students revolved around

their understanding of the vague nature of users – “Users
are usually vague in particular in specifying details about
functionalities of the software”. They felt that users don’t

always know exactly what they want from the systems they

need and, even if they have a clear idea of what they want,

they might not always express it in a straightforward way –

“It is difficult to get requirements from the user and sometimes
users dont know exactly what they want”. Some of the words

users use to specify their goals with respect to the system are

too vague to be meaningful, making it difficult to assess the

exact interpretation users give to these words – “Sometimes
users don’t know exactly the functions of the system they want
and use words like ‘simple’, ‘intuitive’, but they dont specify
how to reach these objectives”. This, they felt, is the reason

why requirements can be easily misunderstood.

3) Communication is key: Students realised that, when

developing software for a target audience, talking to one

user does not provide enough data to support a Requirements

Engineering process. It is, therefore, paramount to discuss with

a representative number of users. However, this introduced

a challenge that the students quickly discovered – “each
user has different requirements and they can change at any
time”. Students noted that even when users have similar

requirements, they put different weights on these requirements

– “Similar user bases could have similar requirements but
with different priorities”. The solution, they seemed to agree,

comes from better and continuous communication between

the user and the analyst – “Clear communication is key” or

“Need key communication between client/user and analyst”
or “It involves a lot of interaction between client/user and the

development team”. It is a process that cannot be rushed, so

sufficient resources need to be allocated to it – “you need to
take time with users to discuss their requirements so you have
a clearer understanding of what the system requires.”

4) Interviewing is an art: After establishing that com-

munication and continuous interaction with the users is key

in Requirements Engineering, students also discussed aspects

related to the effectiveness and efficiency of various require-

ments elicitation techniques. They felt that for best results,

one needs to be specific in the questions asked, and know

exactly what areas to cover during interviews – “Asking
specific questions can improve the results of the requirements
elicitation process” or “questions need to be very specific to
get accurate information”. Students also stressed the impor-

tance of clarifying and double-checking the information they

receive from their users due to the challenging character of

the elicitation process – “It is difficult to find out what the
user wants so questions will need to be relatively detailed,
and clarification with users is extremely important”.

With no chance to prepare in advance for the exercise, the

students felt the necessity of planning for interviews with

users; they felt that the preparation required prior to the

interviews should include learning as much as possible about

the target users – “Learn as much about the target audience as
possible: their needs, things they like/dislike”. Students also

felt that having the chance to prepare a prototype to show

their users, and use it as a basis for the discussion would have

helped enormously.

5) Requirement specifications cannot be vague: Specifying

requirements was found to be a time-consuming activity, and

students felt it required several peer-reviewing sessions to

ensure the specification was of acceptable quality. Students

109109



discussed the importance of the requirement specifications

being testable – “requirements need to be testable, they cant
be vague”. Students felt that this is a criterion for ensuring

the overall final quality of the specification document.

6) Requirements change: A recurring theme in the stu-

dents’ answers was an appreciation that requirements change

all the time. They change depending on the user interviews, but

also on the iteration of the elicitation process – “Requirements
change based on who is being interviewed”. As a result,

students felt that validating requirements over several iterations

is the only way to ensure their consistency – “Requirements
need to be validated more than once to understand what and
how the system needs to be designed”.

7) Requirements are not features: In addition to learning

about the Requirements Engineering process, students also

reported learning theory they felt they had not previously

encountered. For example, students noted the exercise taught

them to differentiate between actual requirements and types

of information sometimes mistaken for requirements, such as

notes on system functionality or features – I’ve learned the dif-
ferences between requirements and other types of information
we get from users”.

B. What aspects of the exercise did you mostly appreciate?

1) Trying out the process top to bottom: Students appre-

ciated the opportunity of putting in practice some of the

theory taught about requirements and the engineering process

around them – “having a practical activity to try the process
ourselves”. Far from the abstraction of the lecture notes and

closer to the nitty-gritty of the process as a whole, students

found the exercise helpful in teaching the “the importance of
speaking to your users more than once in order to get a clearer
idea of how they want their user requirements turned into
system requirements”. Students were also able to differentiate

the various phases in requirements engineering, appreciating

the role and importance of each phase – “I liked the validation
part as you may misunderstand the user and make wrong
assumptions about what they ask for”.

2) Group work element: One of the things students en-

joyed about the exercise was the opportunity for group work.

They felt that working with others helped them glean a new

perspective on the concept of requirements – “knowing other
peoples’ views of requirements”. It also helped learning about

the requirements engineering process from their own peers

– “communicating with other groups, collectively gaining
knowledge”. They felt that the activity was more fun due

to working together with other peers, and that the hands-on

approach gave the concept of requirements otherwise abstract

a concrete and easy to understand definition. Identifying their

own requirements, as a group, was another aspect students

enjoyed – “I liked having to talk with others trying to act
and imitate the given persona”. Also, communicating with

other teams and trying to understand their requirements was

perceived as helpful – “The chance to speak to others and see
what they need”.

3) Practicing interviewing skills: The practical aspect of

helping them improve their interviewing skills was one of the

aspects mostly liked about this exercise – “The interview gave
an idea about the right questions to be asking”. The fact that

students weren’t given much time to prepare their questions

forced them to be spontaneous and come up with questions on

the fly – “Thinking questions on the fly was a good practice”.

In addition to interviewing other peers, students had the chance

to experience the role of interviewee, which they found helpful

– “getting a view of what it is like being interviewed rather
than just interviewing”.

4) The confusion of it all: Students did not expect the

Requirements Engineering process to be so confusing and

the theoretical description of this Software Engineering phase

did not strike them as difficult. It was only after they have

experienced the process themselves that they realised just how

much confusion it can generate – “the exercise demonstrated
the confusion that can arise”.

5) Interactive, engaging, and fun: Students enjoyed the

concept as a whole, and found the exercise interactive, en-

gaging, and fun. They particularly liked the game-like aspect

of having to guess the extreme character represented by the

other group – “the game-like approach, felt like ‘guess who”’
or “the mystery of the personas”. Not knowing the user they

are eliciting requirements for made the whole exercise feel

different. As one student noted – “not knowing who the other
group represents made it more interesting”. Eventually finding

out who were the extreme characters each group represented

helped them understand how misleading the process can be,

and emphasised the need for multiple iterations for the elic-

itation process – “guessing the persona and how misleading
their requirements can be”.

C. What aspects of the exercise did you find challenging?

1) Eliciting user requirements: The requirements elicitation

part of the exercise proved to be the most challenging. Students

found it difficult to multi-task, and both think of questions

to ask while identifying the requirements provided by their

peers, and taking notes of them as they went along – “listing
the requirements when you can’t think of what to ask”.

They also felt that this elicitation exercise asks them to be

precise when identifying their users requirements and meeting

their expectations. Translating user requirements into system

requirements was perceived as challenging due to both the

complexity of the exercise, and the limited time available. The

starting point of the exercise was, perhaps, the most difficult;

students noted that getting the initial set of requirements was

the most difficult step. Once an initial set of requirements was

gathered, the discussion around them led to more data being

collected, and the process running a lot smoother. However,

eliciting a larger number of requirements eventually led to

conversations around the priorities of each, and agreeing their

criticality was difficult.

2) The right questions to ask: For some students, this was

the first time they practiced their interviewing skills, which

posed a few challenges. They found it difficult to find the right

110110



questions to ask or how to phrase the questions they wanted

to ask – “Not knowing what sort of questions to ask” or “Not
knowing how to phrase questions in order to get an answer
that is useful in determining user requirements”. Not having

time to prepare their questions and having to come up with

questions on the fly only added to the difficulty.

3) Not knowing who the user is: While not revealing the

extreme character they represented brought a game-like feel

to the exercise, it also represented one of the aspects students

most struggled with. On one hand, answering their peers’

questions without revealing too much information about the

character they represent (making it easier for their peers to

guess it) was perceived as a challenge – “coming up with
requirements without giving away the job”. On the other hand,

guessing who is the user they are eliciting requirements from

and using that information in guiding their interview process

was also perceived as an additional difficulty – “finding
requirements when you dont know the individual”.

4) Understanding the concept of requirements: Using the

concept of requirements in a rather intensive exercise proved

to be time consuming. Students reported struggling with

differentiating between types of requirements, i.e. user, system,

functional, and non-functional requirements – “it was con-
fusing because of the varieties of requirements”. Some types

of requirements proved to be more difficult to comprehend

than others – “the difficult thing was writing about non-
functional requirements”. Moving from user requirements to

detailed system requirements specification was an additional

challenge – “defining the different requirements further”. The

starting point of the exercise felt daunting with students feeling

overwhelmed by the number of phases the exercise had, and by

the dynamics of the groups – “understanding what we needed
to do at the start, it took a few minutes to understand what
was required of us.”

5) Communication breaks: In some cases, students found

communicating with each other without revealing the extreme

character they represent problematic– “conveying information
between people”. This, however, was a problem for very few

students.

D. Suggestions for improving this exercise

Several students suggested replicating similar exercises for

other software engineering topics, appreciating the interactiv-

ity of the session – “Sessions like this should be done more
often.” Given the struggle they experienced with identifying

questions to ask during the interviewing process, students

suggested being provided with a sample of example questions,

or guidelines on coming up with questions – “maybe some
sort of question asking framework or suggested questions”.
Students also asked for more details on the brief provided and

more guidelines on the overall process followed for future

sessions – “provide an explanation or example at the start to
make it clearer what we need to do” or “the brief laid out a
minor problem but more details would have been appreciated.”

Because the exercise was over a single session, some

students felt pressed for time, and suggested extending the

sessions, or splitting them into two – “It needs to be in a
longer session as I felt it was rushed”. The distribution of

students in sessions was not even, with the smallest number

of students in a session being 4 and the largest being 20. This

led to comments on the number of students in each group, and

the number of groups in general, and the time spent moving

around for the Elicitation and Validation steps; this added to

the pressure students were already under.

V. CONCLUSIONS

This paper presented an approach for teaching Requirements

Engineering through a role-playing exercise using Extreme

Characters. In doing so, we have made two contributions.

First, we have contributed an exercise design that fuses ideas

from Requirements Engineering education (role-playing) and

Interaction Design (extreme characters). This exercise design

has recently been extended to support the teaching of Security

Requirements Engineering at Bournemouth University; the

results of this study will be presented in future work. Second,

we have presented and discussed results that cast light on

the challenges teaching practical Requirement Engineering.

The results of the evaluation reflected a significant change in

the students perception of requirements and the processes of

eliciting, specifying, and validating such artifacts. Based on

the lessons learned, we are considering incorporating a few

changes in the Requirements Engineering session described in

this paper. We will provide a set of guiding questions to get the

exercise started. We acknowledge that the lack of notice, and

the limited amount of time students were provided with made

the exercise challenging. It forced students to focus more on

the questions to ask and completing the exercise rather than the

core concepts and the process in general. This, however, can

be addressed by enhancing the session with critical reflection

on the process followed. Also, in future iterations, we will

dedicate more time to the session. Splitting the exercise into

two sessions might not have the same effect, as the interruption

might distract students.

REFERENCES

[1] N. G. Leveson and C. S. Turner, “An investigation of the therac-25
accidents,” Computer, vol. 26, no. 7, pp. 18–41, July 1993.

[2] J. P. Djajadiningrat, W. W. Gaver, and J. W. Fres, “Interaction relabelling
and extreme characters: methods for exploring aesthetic interactions,”
in Proceedings of the 3rd conference on Designing Interactive Systems.
ACM, 2000, pp. 66–71.

[3] S. Ouhbi, A. Idri, J. L. Fernández-Alemán, and A. Toval, “Requirements
engineering education: a systematic mapping study,” Requirements Engi-
neering, vol. 20, no. 2, pp. 119–138, Jun 2015.

[4] R. J. Barnes, D. C. Gause, and E. C. Way, “Teaching the unknown and
the unknowable in requirements engineering education,” in Proceedings
of the 2008 Requirements Engineering Education and Training, 2008, pp.
30–37.

[5] M. Gnatz, L. Kof, F. Prilmeier, and T. Seifert, “A practical approach of
teaching software engineering,” in Proceedings of the 16th Conference on
Software Engineering Education and Training. IEEE, 2003, pp. 120–
128.

[6] D. Zowghi and S. Paryani, “Teaching requirements engineering through
role playing: lessons learnt,” in Proceedings. 11th IEEE International
Requirements Engineering Conference, 2003., 2003, pp. 233–241.

111111


