
Cooperative Thinking, or:
Computational Thinking meets Agile

Marcello Missiroli
University of Bologna, Italy

Daniel Russo
University of Bologna, Italy

Paolo Ciancarini
University of Bologna, Italy

Abstract—In this paper, we propose the Computational Think-
ing concept, which is obtained by enhancing by merging the
values of Computational Thinking and Agile. We analyze four
existing teaching models for training Cooperative Thinkers,
supported by experimental data, and propose an educational
path that can promote the early development of this complex
skill.

I. INTRODUCTION

Literacy is an individual skill, needed by any citizen that

interacts with society. The individual scope of literacy has

deeply influenced teaching methodologies and especially stu-

dents’ evaluations, concentrating the educational effort on the

individuals. For instance, a consequence of this is that some

effort is spent in schools on overcoming individual differences

among students [18].

A new form of literacy is Computational Thinking (ComT),

a concept that has enjoyed much popularity during the last

decade, especially in the educational field. ComT — not to be

confused with programming ability — is usually considered

an individual skill, and trained as such. An individualistic

approach does not reflect current teaming structures of both

science and business, where problems and projects have be-

come so complex that a single individual cannot handle them

within a reasonable time frame. To handle the increasing

complexity, we need people able to act and operate as a team,

which is more that the sum of individual skills [7].

This is already happening in the industry. Several companies

rely upon teams for innovation and digital transformation,

especially to solve “wicked problems” whose solutions are

not provided by individuals but by self-organizing teams [8].

In Software Engineering (SE) a teaming concept is epit-

omized by Agile methodologies. The Agile “philosophy”

acknowledges that not all information and know-how might be

available at the beginning of a project; therefore, reaching the

goal requires several iterations, each closer to the solution. A

key factor is self-organization, meaning that any team member

contributes with her knowledge, ability and technical skills in

order to work out a solution.

We argue that Agile principles and values should enhance

the current efforts to establish Computational Thinking as a

fundamental literacy ability; we call such a combination Co-

operative Computational Thinking, or Cooperative Thinking
(CooT) in short.

This new skill requires a serious reimagining of education in

general and the teaching approach to Software Engineering in

particular, as educators should not only promote coding skills

and provide knowledge, but also foster collaboration skills and

train teams of students to cooperate on problems which are too

difficult for them to solve individually. This is something that

in our experience the current schooling model is not really

ready to handle, especially after primary school.

Generally speaking, mainstream educational models have

difficulties in handling cooperation, and especially so the

farther we move away from primary school. The quality

of education is often tied to fundamental skill expertise;

one of the most recognized indicator is the result of the

international PISA test, that evaluates effective a country has

been at deploying their prescribed math, science, and reading

curriculum. This is particularly true for the specific field of

Computer Science (CS), where programming is considered an

individualistic and personal skill.

We lack a general approach to enable group skills in this

context. Even if this idea may be widely shared by the

community, we did not find any evidence of a comprehensive

approach to it. This is probably due to the lack of explicit

awareness of such concept as enabler of Digital Transforma-

tion processes: we may use it implicitly without recognizing

it.

However, in the future, “pure” knowledge might become

less important, even to the point of becoming a commodity,

and soft skills could raise in importance. An educational sys-

tem focusing on hard, technical skills could have difficulties in

promoting the other. As Zhao [21] pointed out, there is an in-

verse correlation between PISA test scores and entrepreneurial

capacity, a measured by the Global Entrepreneurship Monitor

(GEM), the worlds largest entrepreneurship study. Specifi-

cally, the countries with the top PISA scores had an average

GEM:PISA ratio of less than half of the mid- and low-scoring

countries.

The traditional educational paradigm is not tailored to

educate people able to handle complex issues or wicked
problems [2]; PISA-like evaluations are meaningless to de-

termine the educational system’s efficiency, since the only

offers an evaluation of the individual. So, the gap between

student’s formal educational background and real life wicked

and complex problems task becomes larger as the level of

predictability decreases and uncertainties increases [15].

To help educators find their way to promote Agile teaming

to SE and CS students, we analyzed processes and interac-

tions in four different teaching methodologies that, in most

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.37

187

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.37

187

way, mirror standard development models: solo programmer,

pair programmers, self-organized teams, and directed teams.

We report differences, practical and educational issues, their

relative strengths with respect to developing Computational

Thinking skills on one hand and how they impact Agile team-

related skills, that form the base of Cooperative Thinking, on

the other.

We recommend using a mix of teaching strategies in any

case, though self-organized teams seems to be the correct way

to enact and support CoopT, as the final step of an educational

path.

The rest of this paper is organized as follows.

• Section II provides information on current research.

• Section III presents our detailed proposal on Cooperative

Thinking.

• Section IV substantiates our proposal by comparing four

teaching models within the CS context in a Cooperative

Thinking perspective.

• Section V discusses the results and proposes a general

direction for CS teachers and outline future research.

II. RELATED WORK

Kickstarted by Wing’s popular paper [20], Computational

Thinking has generated a lot of interest in the scientific

community in general. However more and more scholars argue

whether the ComT concept is too vague to have a real effect.

Denning [6] claims that ComT is too vaguely defined and,

most important in an educational context, its evaluation is

very difficult to have practical effects. This same idea can

be found in the CS Teaching community. Hoskey [9], for

example, tries to decompose the ComT idea itself, in order

to have an operative definition.

Though Agile development is eventually going mainstream

in the professional world, teaching the Agile methodology is

still relatively uncommon education, especially at the K-12

level, though things are slowly changing.

In general, programming is considered an individual skill

and taught as such. Not many researchers challenge this idea,

an in Carter’s [3], and especially in Meier’s works. We note

however that the approach is hardly systematic, and no general

consensus exists on how to proceed along this line.

III. DEFINITION OF COOPERATIVE THINKING

More that a decade has passed since Jeannette Wing’s

paper conceptualizing Computational Thinking [20], and its

influence is still strong. Even today, governments are realizing

its importance, and update school programs worldwide (like

the US initiative “21st century skills”— a welcomed change

away from old educational policies that equated computer

literacy in schools to productivity tools.

However, current educational approaches concentrate on

coding (as an example, consider the Hour of Coding initiative),

but this it not the end to it. Computational Thinking is made

of complex, tacit knowledge, that overcomes limited resources

and requires deep learning, lots of deliberate practice, and

expert guidance. Coding is one aspect, and not necessarily

the most important one.

Tasks solved by software systems are becoming more com-

plex by the day, and many of these in the real world could be

classified as wicked problems [16].

There is no single “best solution” to many such problems,

but Pareto-optimal ones which may change over time — as is

the case in the field of Science and Business. In this situation,

satisfying expectations and requirements becomes harder and

harder as they are beyond the limit of solvability for any single

programmer.

Computational Thinking has been considered as the in-

dividual skill to solve problems, but it does not offer the

variety of points of view required to solve difficult or wicked

problems. Moreover, Computational Thinking (and its related

programming skills) has traditionally been considered an indi-

vidual skill, and taught as such. Teamwork and soft skills are

generally not factored in, and even shunned as “cheating” in

some introductory programming courses.

In our view, the general approach to ComT needs to be

updated, by joining it with a pre–existing concept: Agile

development values and practices.

The Agile Manifesto proposed a radically different perspec-

tive on software development, based on values that clashed

with the established culture of time, based on linear hierar-

chies, top-down decision making and, in general, accepting

the current system without voicing dissent or criticism. The

most significant change is the paramount importance assigned

to communication and social interaction, superseding the in-

ternal organizational rigidity, documentation, contracts, roles,

and more.

In time, this led to the formalization important concepts

(such as changing requirements, self-organizing teams, per-

sonal responsibility, . . .) and programming practices (pair pro-

gramming, test-first development, continuous integration, . . .).

Agile has proven in several contexts its usefulness, and it is

now an established development model and its adoption is

steadily growing.

Including some Agile principles and learning-as-execute

experiences in training for Computational Thinking could be

beneficial. We name this expanded definition of ComT as

Cooperative Thinking (CoopT), defined as follows:

“Cooperative Thinking is the ability to describe, recognize,
decompose problems and computationally solve them in teams
in a socially sustainable way ”.

This definition joins the basic values of both ComT and

the Agile Manifesto; all these values are central not only for

developers but also for educating individuals. As a result,

Agile and Computational Thinking can complement each

other, one providing logical reasoning, the other social skills

and solid practices. Both arguably share the idea of evolving,

incremental solutions and reflective practices based on critical

thinking.

188188

IV. PROMOTING COOPERATIVE THINKING

To recap, CoopT is a an expanded concept of CompT that

includes the social dimension, by way of . Similiarly to ComT,

CoopT is a general theoretical concept that should be both

understood and introduced as a learning goal. However, until

now in CS teaching, only individual performances are usually

evaluated in schools and colleges alike. Not the teamwork.

We need to reinvent our approach to CS education starting

from K-12 but also reinforcing it at university level if we are

to overcome our future challenges. We need thinking people
able to coordinate effort among themselves.

Since CoopT is a complex skill, it requires a series of

coordinated activities that reinforce its two basic components

(CoopT and Agile) that together build a CoopT mindframe. We

built a general teaching model that linked four Learning Styles

(as outlined by Kolb) to four established teaching models

for CS: Individual learning, Paired learning, Directed group

learning, and Self-determined group learning. We evaluated

their impact by means of a series of experiment performed

during the last few years on Italian high school programmers.

Their curriculum include 17 hours/week of CS-related classes,

thus resembling that of CS-undergraduates.

Even though research questions were not always straight-

forward, some interesting points were raised in favor of

introducing Agile elements in education as a means to em-

power Computational Thinking and steer it toward Cooperative

Thinking. We will also confirm some intuitions considering

literature and personal experience as teachers.

A. Individual learning

Individual learning (also called Direct Instruction or Trans-

missive Education) is the oldest form of teaching, practiced

everywhere in practically every subject. It is a simple, efficient

model, and we all have plentiful experience of it. Its sequential

progression is ideal for stimulating Computational Thinking.

Once a concept is mastered, it allows to tackle more complex

ones. Assessment is very easy, often automatic.

This successful model does, however, have several limi-

tations. One important limitation is the fairness of the as-

sessment, since students falling behind at the beginning of

the course rarely have the capacity to catch up, as the time

allotted for each student is the same for every student and

more information. This situation has helped to create the so

called “Ability Myth”: it states that each of us is born with a

set of abilities that hardly change during our lifetime.

Another drawback is the absence of positive social interac-

tion. Direct teacher/student communication is limited by time,

and student/student interaction, more often than not, results in

direct competition or in nonconstructive and illegal help (i.e.

cheating).

In our experiments [13], we tried to simulate a working

day in a software house. Each student was given a moderately

difficult task using a new work methodology (either TFD

or User stories) within a limited time-frame. Without much

surprise, both performance and the perceived utility of the

activity mirrored their current skill level.

To summarize, individual learning help foster Computa-

tional Thinking but it is not useful (or maybe detrimental)

to develop social skills needed for Cooperative Thinking.

According to the Kolb’s learning inventory [12], this teaching

model better suits Assimiliative learners, since they like orga-

nized and structured understanding and respect the knowledge

of experts. They also prefer to work by themselves.

B. Paired learning

Paired learning (also called Dyadic Cooperative Learning
Strategy [17]) is also a very old active teaching technique

but far less popular that the previous one. The basic principle

involves the teacher posing a question or delineate a problem,

then the students discuss in pairs and find their own way

toward the solution; pair are switched often, sometimes even

during the activity.

In the specific CS field, we find a natural transposition

of this model in Pair Programming, one of the key Agile

programming practices.

This model [5] has positive effects on retention, understand-

ing, recall and elaborate skills at the cognitive and level and

especially on mood and social skills; in the CS field, it also

introduces the idea of software being an iterative, evolutionary

and social process. Assessment is a more difficult than in the

previous case (automatic evaluation is still possible, though).

We tested firsthand this effect in our experiments. We

proposed the same methodology and problems stated in

Sect. IV-A, but in this case we paired students according to

the same performance classes described in Sect. IV-A. We

had six possible pair types, homogeneous skill level pairs and

non-homogeneous ones.

According to our results, homogeneous pairs performed

generally equal or worse than their solo counterparts, but non-

homogeneous pairs had statistically better results. In the latter

case a form of epistemic curiosity [11] appeared, possibly

unconsciously, and was a key motivating factor for the pair;

the resulting interaction helped both to solve the task at hand

and to develop social skills. Computational Thinking was also

stimulated, but a little less than with the previous model, since

the “effort” was split and each single task was not really

challenging, requiring expertise more than logical reasoning.

To summarize, paired learning has beneficial effects on

social skills related to Agile development, and generally is

useful in leveling skills upwards. Knowledge building will

however be much slower than in the traditional approach.

This teaching model better suits Convergent learner types,

since they want to learn by understanding how things work

in practice, like practical activities and seek to make things

efficient by making small and careful changes.

C. Directed group learning

Group learning is one of the many facets of Cooperative

Learning, which is becoming fairly common in modern,

constructivist-influenced education. In CS it is often paired

with Project-Based Learning, proposing a complex task taken

189189

from real-life with authentic evaluation, comprehensive of all

phases of development [10].

Directed group models enforce linear hierarchies, top-down

decision making, accepting the assumptions, acquiring all

information in order to prepare a detailed plan and then

following it — values that have also forged the way traditional

education was conceived and in most cases is still carried

out. In school projects, teachers assume the role similar to

that of a Senior project leader, assigning tasks and roles to

students according to their skill, knowledge, and ability and

applying a certain degree of control. Assessing a group project

is considerably more complex that both previous model, since

it involves not only the final product, but also the process

used and the interaction among the student and their relative

contributions.

In a different experiment [14], we decided to give students

a very challenging task, almost impossible to solve. They had

to build from scratch a complete dynamic website, a task we

estimated in about 30 man-hours to complete when handled by

professionals. We only gave them 6 hours. This forced teams

to make hard decision as to what was the most suitable course

of action in order to make the best use of the allotted time and

resources.To comply to the Waterfall development model, we

provided the students with plenty of information (36 pages),

roles, tight schedules.

From an educational viewpoint, the goal was definitely

outside a single student’s zone of proxymal development, but

was theoretically doable as a team effort. From a different

viewpoint, it resembles a wicked problem, since students

lack all the knowledge and skills to complete the task, and

should acquire them along the way [19]. The great amount

of information and in general the directive role of the teacher

gives the opportunity to put the accent on whatever learning

goal is deemed important.

Results show that under these conditions, groups tend to

concentrate on functional requirements and process-related

goals instead of pursuing the real goal: delivering a working

product to the “client”. The products, on average, had very

few working features, but they were hidden under a pleasant

user interface, very close to the one proposed by the “man-

agement”. Roles were followed rather closely (barring a few

cases of internal dissent), timing was impeccable and even

documentation was acceptable.

To summarize, this teaching model promotes the use social

skills, while leaving the steering wheel in the hand of the

teacher. This power can be used to provide a meaningful

learning path, though slower that Individual Learning and

with a non-trivial evaluation method. It also does not seem

to stimulate enough other interesting skills, such as decision

making. It better suits Divergent learner types, since they and

will start from detail to logically work up to the big picture.

They like working with others but like things to remain calm.

D. Self-directed group learning

This model is a different version of Group Learning, rad-

ically different than the previous one in that students have a

strong degree of autonomy.In this case, the teacher becomes

more of a guide and a facilitator, and invests a large amount

of trust on the learners. This means that the teacher must

become part of the team in order to maintain a high

level of communication — making traditional assessment very

difficult. Grades should therefore come from reflections, group

and/or personal and peer evaluation, and must include an

evaluation of teacher work, as any other team member. In CS

terms, most of what has been said on Project-Based Learning

in the previous subsection holds. In this case, the granted

freedom can be a powerful weapon in the hands of the group,

but it might also backfire.

In another experiment [14], we kept the same general

structure outlined in IV-C, but we chose a simplified Scrum

approach. The teams were given much less information and

limitations; they only included the sprint length and a list of

user stories. Everything else was to be decided by the team.

Results show that Agile teams performed generally better

than their Waterfall counterpart in the same class with re-

spect to overall product completions and number of featured

delivered. This is not surprising, since Agile privileges the

functional dimension over the non-functional ones. It is in-

teresting to note that many chose challenging but interesting

tasks, possibly failing along the way.

In general Scrum teams spent their effort to reach even

difficult goals, whereas Waterfall teams ”played safe”, working

on what they most comfortable with. Our interpretation is

that the self-directed group model greatly promotes the use

of social skills and other qualities relevant to Cooperative

Thinking.It better suits Accomodative learner types, since they

display a strong preference for doing rather than thinking.

They do not like routine and will take creative risks to see

what happens.

V. CONCLUSIONS

In this paper, we proposed a novel idea, Cooperative Think-

ing, that expands Computational Thinking in order to embrace

the social qualities typical of Agile development. The proposal

is graphically presented in Fig. 1.

We also outlined how four teaching models can be linked

to four different Learning Styles that collectively, according to

our experience, can help our students to build and reinforce

all the basic skills that form the basis of CoopT.

However, effectively introducing introducing all these strate-

gies in practical education is not easy. We assume that most

CS courses are strongly oriented toward individual learning,

the goal being to introduce and grasp the basic elements of

CS and, specifically, programming; a short to medium-length

programming project of average difficulty is usually included.

As soon as possible, elements of Pair Learning should

also be presented. Specifically, Pair Programming should be

introduced first and actively enforced as one of the main

characteristics of class exercises throughout the course. Other

elements of Agile-style programming could be introduced

(such as Test-First Development, Continuous integration, ...)

along with the necessary software tools (git, for example).

190190

A project that verifies that students have indeed grasped such

element should be simple in terms of programming complexity

but balanced by process requirements, in that elements of

Agile programming must be used and its use verified.

Fig. 1. Cooperative Thinking, Computational Thinking and Agile values
breakdown (according to Computing at School [4] and Kent Beck [1])

Next, the group should become an important factor. We

know that simply putting together people and telling them to

work on a project is not enough to have an even decently

efficient team. Preparation is in order, requiring some group-

dynamic exercises, careful people selection, and some short

project to test how the group works. Finally, a directed-team

project of moderate to high difficulty and length should be

realized by students.

The final step is, of course, that of proposing a demanding

project to student teams and give them ample freedom. At this

point student should have a solid programming knowledge and

program development methodologies, a grasp of basic Agile

practices, working experience with all necessary tools, and a

team that knows its strength and weaknesses. This activity can

actually be a course capstone project and should contribute

significantly to the students’ grade.

Our proposal requires formalization, testing and formal

validation. Though every step is nothing new or complicated,

the overall process is. Our research group is currently working

on a comprehensive proposal and its field testing in both K-12

and university students for the next school and academic year.

It is our belief that Cooperative Thinkers will enjoy an edge

on the job marketplace, making them more flexible, socially

aware, and more able to handle future challenges, be they

related to Computer Science or not.

ACKNOWLEDGMENTS

This work was partially funded under contract by the MIUR

PRIN GAUSS project, the Institute of Cognitive Sciences

and Technologies (ISTC) of the Italian National Research

Council(CNR), and the Consorzio Interuniversitario Nazionale

per l’Informatica (CINI).

REFERENCES

[1] K. Beck and C. Andres. Extreme programming ex-
plained: embrace change. Addison-Wesley, 2004.

[2] R. Buchanan. Wicked problems in design thinking.

Design issues, 8(2):5–21, 1992.

[3] L. Carter. Ideas for adding soft skills education to ser-

vice learning and capstone courses for computer science

students. In Proceedings of the 42Nd ACM Technical
Symposium on Computer Science Education, SIGCSE

’11, pages 517–522, New York, NY, USA, 2011. ACM.

[4] A. Csizmadia, P. Curzon, M. Dorling, S. Humphreys,

T. Ng, C. Selby, and J. Woollard. Computational think-

ing: A guide for teachers. 2015.

[5] D. F. Dansereau. Cooperative learning strategies. Learn-
ing and study strategies: Issues in assessment, instruc-
tion, and evaluation, pages 103–120, 1988.

[6] P. J. Denning. Remaining trouble spots with computa-

tional thinking. Communications of the ACM, 60(6):33–

39, 2017.

[7] A. Edmonson. Teaming to Innovate. Wiley, 2013.

[8] A. Edmonson. Wicked Problem Solvers. Harvard
Business Review, 94(June):52, 2016.

[9] A. Hoskey and S. Zhang. Computational thinking:

what does it really mean for the k-16 computer science

education community. Journal of Computing Sciences in
Colleges, 32(3):129–135, 2017.

[10] W. Hung, D. H. Jonassen, R. Liu, et al. Problem-

based learning. Handbook of research on educational
communications and technology, 3:485–506, 2008.

[11] D. Johnson, R. Johnson, and K. Smith. Active learning:
Cooperation in the college classroom. ERIC, 1998.

[12] D. A. Kolb. Learning styles inventory. The Power of the
2 2 Matrix, page 267, 2000.

[13] M. Missiroli, D. Russo, and P. Ciancarini. Learning agile

software development in high school: an investigation. In

Proc. 38th ICSE, pages 293–302. ACM, 2016.

[14] M. Missiroli, D. Russo, and P. Ciancarini. Agile for

millennials: a comparative study. In Proc. 1st Int. Work-
shop on Software Engineering Curricula for Millennials,

pages 47–53. IEEE Press, 2017.

[15] M. Raskino and G. Waller. Digital to the Core: Remas-
tering Leadership for Your Industry, Your Enterprise, and
Yourself. Routledge, 2016.

[16] H. Rittel and M. M. Webber. 2.3 planning problems are

wicked. Polity, 4:155–169, 1973.

[17] R. Slavin. Cooperative learning. Learning and Cognition
in Education, pages 160–166, 2011.

[18] K. Stanovich. Matthew effects in reading: Some con-

sequences of individual differences in the acquisition of

literacy. Reading Research Quarterly, pages 360–407,

1986.

[19] E. P. Weber and A. M. Khademian. Wicked prob-

lems, knowledge challenges, and collaborative capacity

builders in network settings. Public administration re-
view, 68(2):334–349, 2008.

[20] J. Wing. Computational Thinking. Communications of
the ACM, 49(3):33–35, 2006.

[21] Y. Zhao. World class learners: Educating creative and
entrepreneurial students. Corwin Press, 2012.

191191

