
1

Infusing Design Thinking Into a Software
Engineering Capstone Course

Maria Palacin-Silva, Jayden Khakurel, Ari Happonen, Timo Hynninen and Jari Porras

Lappeenranta University of Technology

name.lastname@lut.fi

Abstract—Software engineering (SE) educators are challenged
to balance the scope and depth in their courses to train students in
skills which will fulfill the ever-evolving industry needs. Capstone
courses are a tool for educators to transfer hands-on experience
into practical knowledge and skills of SE students. This paper
describes the design of a Casptone course, at Lappeenranta
University of Technology. The designed course is human-centric
SE capstone, infusing design thinking methods and agile practices
into the project life-cycle knowhow. The capstone was offered in
spring of 2017 as a 16-week course for 29 students. Design think-
ing was effective to perform requirement elicitation, software
design and testing. Also, the applied approach allowed students
to be self-directed which increased their motivation, as a result
there was 0% dropout rate. Design thinking is a powerful mean of
problem solving and effectively supports SE education in bringing
a more hands-on and minds-on, problem-based curriculum.

Index Terms—software engineering; education; design think-
ing; human-centric; capstone; software curricula; course design

I. INTRODUCTION

INA FAST CHANGING WORLD, Software Engineer-

ing (SE) educators face challenges to create courses

which prepare students for a professional life in industry -

courses with concepts that are applicable and real. At the same

time courses need to be technology-agnostic to an extent that

the fundamental principles are imparted enabling students to

operate effectively in an evnironment of constantly evolving

technology . Consequently, educators must create a balance

among the quality, scope, depth, applicability, soft and hard

skills, individual and collaborative learning in their teachings

[1]. Project Based Learning (PBL) is an effective mean to train

SE students to face real world challenges [2]. An increasingly

popular way to bring PBL into SE education is through

capstone courses [3] as these are a tool for educators to engage

SE students to engineer a solution from the beginning to the

end and therefore expose them to practical project working,

collaboration with other team members and project manage-

ment in a hands-on setting. [4]–[7]. Additionally, capstones

have been recommended by the ACM curriculum guidelines to

be included already in undergraduate SE education programs

[8]. A topic which has grown in relevance as societies and

industries need highly usable software systems [9]–[11] is

Design Thinking (DT). In industry, companies such as IDEO,

NEC, Airbnb, Microsoft, SAP use DT methods to improve

their processes, solutions and even working environments.

In SE education DT has stared to be applied for teaching

safety-critical systems engineering [12], mobile applications

design [9] and games development [13]. However, DT has

been reportedly suggested to have the potential to be used for

project-based learning [14], requirements elicitation [15] and

cybersecurity [11], [16] as well. As a result, there seems to be a

gap between the application of DT into software development

in industry and the knowledge being spread in SE education.

This motivated us to report our course design, separating our

solution from standard running a software project, as our

solution is a human-centric capstone including design thinking

methods and agile practices into the project life-cycle.

Our goal is to fill this gap between DT in industry and

in SE education, trough the analysis of our course results and

practical knowhow for other researchers and educators benefit.

This paper presents the methods, results and experiences on

how we designed the course as a human-centric software

engineering capstone by infusing design thinking methods

and agile practices into the SE project life-cycle. This article

represents a practical example about the importance of project-

based courses (such as capstones) in software engineering

education. Students were given real-world challenges based on

the Urban Solutions for a Living Planet Report [17] and they

planned, designed, developed and tested six solutions within

16 weeks. The idea of this is to emphasize complex real-world

challenges.

This article presents in section II the related work regard-

ing capstones and design thinking in software engineering,

followed by the course design and projects’ stages in section

III. Section IV, focuses on the analysis of the teams and

summarizes the projects developed. Overall student lessons

learned and student perceptions are presented in section V.

The conclusions of the study are provided in section VI.

II. RELATED WORK

A. Capstones and Software Engineering

Software engineering as an application area is particularly

challenging in providing students with the experience that they

will find useful after graduating [18]. Project Based Learning

(PBL) is an effective mean to train SE students to face

real world challenges [2]. A contemporary and increasingly

popular way to bring PBL into SE education is through

capstone courses [3], [4] as they are a tool for educators

to transfer hands-on experience and have been reported to

be an effective mean to prepare students for a profession

in industry [5]–[7]. Practical project working, collaboration

with other team members and reflection of the task at hand

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.41

212

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.41

212

have been established as effective tools to enhance learning

and increase students’ self-efficacy [5]. Capstone courses also

enhance student learning, participation and satisfaction [19]–

[21].

According to ACM curriculum guidelines for software

engineering, capstone projects should be included already

in undergraduate SE programs, because curricula should be

situated firmly into the work life needs [8]. For SE education to

be effective, students should be given an opportunity to apply

their skills. Significant SE projects accomplish this by allowing

the students to deepen their skills in many SE knowledge areas

[8].

Capstone courses at undergraduate level have been used

to teach agile methodologies [22], for example scrum and

the roles of software development teams [23]. Senior-level

capstone courses, particularly in design and engineering,

gained popularity already before the millenia [4]. On senior-

level courses students have been able to complete large and

impressive projects, such as game development projects [24],

[25], [26].

B. Design Thinking and Software Engineering

Design as practice evolved from making products attractive

to nest innovative ideas as a way of thinking [27]. As is

problem solving, design is also a natural and universal human

activity [10]. This is why for long time, design has been

a process applied to make physical functional objects look

good (from fashion and transport, to construction). Along

the time, it became clear that a good design could lead to

great success, with examples ranging from post-it notes to

apple products [28]. Design grew organically since 1920s

and started to be applied into more than just products (from

business strategies, social innovation to technology design).

As a result, the discipline of design thinking (DT) appeared

into the academic literature and business media in early 2000s

[29], [30]. However, already in 1969, Nobel laureate Herbert

Simon had seen ”design as a way of thinking rather than a
physical process [31].

DT is an approach to solve complex problems by using

creative methods. In DT, the empathy between the designer

and the users is highly regarded and the exploration of

problems and solutions is a shared process between these two

[29], [32]. This is aimed to go beyond assumptions that can

affect negatively the solutions. As a result of applying DT,

the best possible solution to a complex problem should be

found [33]. DT has been applied in multiple fields to solve

complex and wicked real world problems (e.g. creating cor-

porate strategies, technology designs, security and education

and social innovation) [9]–[11]. In recent software engineering

education, DT has been used to teach safety-critical systems

engineering [12], mobile applications design [9] and games

development [13]. However, DT has been reportedly suggested

to have the potential to be used as well for project-based

learning [14], requirements elicitation [15] and cybersecurity

[11], [16]. Furthermore, [34], [35] reported that agile methods

could be combined with design thinking in order to improve

software development. As both, agile development and design

Fig. 1.

thinking emphasis on people over processes, these two seem

to integrate naturally. Meanwhile in industry, DT in software

development has been regarded as a post-agile approach which

is already in place in many companies and has been key in

the success of big tech companies such as IDEO and NEC

[34], [36], [37]. As a result, there seems to be a gap between

the knowledge about design thinking being taught in software

engineering education and the application of design thinking

in industry. Therefore, a human-centric capstone which infuses

design thinking methods and agile practices into the project

life-cycle has been considered in the effort to bridge the

research gap.

Design thinking has three iterative stages: inspiration,

ideation and implementation (Figure ??) [27], [33]. DT

Projects loop between the stages. The first stage (inspiration)

is aimed at generating an empathy with the stakeholders that

boost the search for solutions some methods used in this

stage are personas and story boards. In the following stage

(ideation) various solution ideas are developed and tested some

methods used are journey maps and prototyping. The final

stage (implementation), focus on the development and run of

the selected solution idea [9], [38].

The use of DT methods such as personas, story boarding,

journey maps, prototype and usability testing is a way of in-

cubating ideas and creating innovative solutions within teams.

As ”these techniques of design thinking methods has ability
to enhance communication within multidisciplinary teams, but
also in their simplicity in use by non-experts” [39]. Below

some of the techniques of design thinking methods have been

presented.

• Personas: Personas can be used as the foundation and in-

spirational approach to develop the application ideas that

are initially discussed. Students can define the fictitious,

specific, and concrete representations [40] of a group

of target application users who share some common

characteristics, needs, and goals [41] so that each student

can initially understand and address the target users needs

and preferences, rather than depending on their own needs

and preferences.

• Story Boards: Storyboards can also identify potential

consequences that users might face with the application in

the future, based on the personas created in the previous

stage. Storyboards can be used as effective media to

capture and explore the user experience by translating

the story and script into scenes through who, what, when,

213213

where, and how using images and text [42], which could

later serve as the constant reminder of the usage and task

context [43]. Further, [43] states that vision, idea, board

context, background, scenario development, design, and

the storyboard session are seven steps that are essential

in creating the storyboard.

• Journey maps: This technique has been used extensively

in the service design industry under several names, such

as customer journey, customer journey map, and expe-

rience journey, [44] for many years. In the application

design context, the user journey map can be defined as

a visual illustration of a series of steps or interconnected

touch points, which users will experience while engaging

with an application. They are depicted chronologically

and often accompanied by emotional indicators [45].

• Prototyping and usability testing: Prototyping is the pre-

verification technique and can be defined as a quick and

effective way to optimize and facilitate innovative ideas

through iterative conceptual design work, a process that

lends itself well to early user experience research [46],

which reduces the risk of failure [47] and enhances time

to market (TTM) of application.

III. COURSE DESIGN

The course Running a Software Project was spread in 16

weeks, with 8 sessions of 3 academic hours and 4 mentoring

sessions (teams could request more mentoring sessions if

needed). The course was designed to require on average 7,5

hours of student effort weekly. A total of 29 students took

the course from beginning to end (the dropout rate was 0%).

The Course outline is presented in Table I. Course stages

are aligned with specific software project iterations aligned

with the Rational Unified Process (RUP) [48], with each stage

emphasizing the particular software project phase within an

iteration. At the same time, those stages are aligned with the

DT stages. The lectures had a flipped classroom like setup, as

students had to read materials posted on their Moodle before

coming to the lecture. Similar approaches have been applied

to teach SE foundations by [1] and to teach programming by

[49].

The learning objectives in this course were defined as

follows:

• Plan, estimate and monitor a software project in an

iterative and incremental manner;

• Understand design thinking methods and usability tech-

niques and, their practical application into a project’s life-

cycle

• Implement as software system from scratch

• Familiarize with contemporary development tools and

environments;

• Use modern software engineering practices to plan, mon-

itor and deliver a realistic software project that meets

stakeholders needs, is highly usable and sustainable.

• Understand the new business challenges and opportunities

for their software projects

It can be highlighted that the list of learning objectives gives

an emphasis to soft and hard skills.

TABLE I
COURSE STRUCTURE

Week SE Stage DT Stage Project Outcome

1-2 Project Plan and Business Modeling Inspiration
Scenario selection

Project plan

3-4 Requirements Analysis Inspiration
Personas

Story Boards
Journey Maps

5 Analysis and Design Ideation Prototypes

6-10 Development Implementation Artifact development

11 Testing Implementation
Validation and

Verification Testing

12 Testing
Implementation

Ideation
Usability Testing

Public Testing

13-15 Deployment and Maintenance All Maintenance Report

16 Presenting Project Solutions

A. Project Stages

The course followed a collaborative learning approach

where students worked together to achieve a positive goal -

which was to engineer a software project- , with the lecturer

as a facilitator. This approach has shown to develop critical

thinking and improve the understanding of concepts [50]–

[53]. Also, collaborative learning has become popular in SE

for providing instruction in a group context [54]. The course

consisted of four components: 1) flipped-classroom lectures;

2) in-class exercises; 3) weekly progress reports and, 4)

individual project work.

The theme of the course was Urban Solutions for Sustain-
able Development. It was inspired by a report with the same

name by WWF [17]. Students had to develop a project that

would address one of the themes from this report.

The course aligned SE project stages with DT stages (see

Table I). This was done by having a SE life-cycle infused with

DT activities, this process can be seen from the DT perspective

in figure 2 and from the SE perspective in figure 3. As a result,

students learned how to move from the inspiration, ideation

to implementation stages while following the SE stages. Each

stage had a expert’s lecture, progress presentations by teams

and hands-on exercises. For example, requirements elicitation

was done using design thinking methods such as, personas,

story boards, journey maps and prototypes (paper and digital)

instead of regular SE techniques. In order to verify the efficacy

of this approach, in the testing stage we asked students to

identify functional and non functional requirements from their

initial project plans and User Experience (UX) design portfo-

lio. The use of design thinking for requirements elicitation was

successful as these techniques had improved the understanding

of user needs. Also, students increased their interaction and

empathy with stakeholders from early stages of the projects

this turned into better user experiences and higher student

motivation.

Following a description of those stages goals and activities:

• Project Planning: The main goal of this stage was to

allow students explore problems and estimate possible

solutions. Students chose a scenario where their solu-

tions would be developed, then they elaborated an initial

project plan. They presented their motivation and project

plan at class on week 2.

• Requirements: This stage lasted three weeks and started

with a lecture about DT and usability methods, which

was complemented by hands-on exercises such as paper

214214

Fig. 2.

Fig. 3.

prototyping. The second week was used to draw their

personas and story boards, the third week was used to

perform prototyping. The main aim of this stage was

requirements elicitation. Students had to understand users

needs, emotions and journeys by using different DT

techniques. They started talking with potential users from

this stage, they showed them their early prototypes and

gathered their comments. During this stage they had

closely mentoring sessions - specially because the stu-
dents did not know DT methods beforehand -.Following

sub-section describes how personas, storyboards, journey

maps and prototype were used in this course to collect

the requirements.

– Personas: In the course, students created three per-

sonas presenting the users they had planned the

project for. Personas includes the name, demographic

characteristics, current frustrations, needs, and goals.

– Storyboards: As next step, students created a digital

storyboard as an inspirational approach to explore

the user experience and further brainstorm their own

application ideas, with the focus on the storytelling

rather than the technical details.

– User Journey Map: Students did applied user journey

map technique in design process for an inspiration

so that they could gain a holistic overview of the

sequence of the touch points and actions that users

should have with their application.

– Prototyping and usability testing:The prototyping

technique was conducted in two phases, with usabil-

ity testing as the ideation approach. Prototyping can

be useful as a pre-verification technique to under-

stand the users needs and solve design problems in

the early phase of the development cycle. In the first

phase, each team of students was asked to design

the paper prototype and conduct usability testing

with the users outside their design team to gather

usability issues (i.e., before and during the mentoring

session). The paper prototype was refined based

on user feedback and followed by an interactive

prototype, on which similar usability testing was

conducted as in the previous session. In the second

phase, each team of students included the feedback

from the first phase and developed the actual fit

for the users purpose and the prototype application.

Each team was asked to conduct usability testing of

the prototype application in the open environment

with the public in order to understand what users

think and how they interact. The phase concluded

with the importance of external users in testing the

prototype designed by students during the software

development project. In addition, they can potentially

understand the usability requirements, such as text

size, color, and terminologies.

• Development: The building of the full software artifact

took place in this stage. The stage lasted four weeks (with

a break week in the middle). It started with a lecture about

development practices and an introduction to frameworks

and environments available for use. As this was a mas-

ter’s course, each team was given significant freedom

to evaluate and to select frameworks, environments and

programming languages that they wished to use. At the

end of this stage, they had to give a mid-term presentation

with a working demo of their solutions. Other students

and stakeholders were invited to those presentations to

give feedback to the teams.

• Testing: This stage lasted two weeks and was divided into

two core activities 1) software testing and quality and 2)

public testing. During the first activity, they received a

lecture about software qualities based on [55], quality in

use based on [56] and verification and validation testing.

This lecture was followed by a inter-teams roles jigsaw

exercise. Some team members were moved to a different

team (to play the role of testers) and some were kept

(to observe user interactions with their solutions). They

were asked to a) identify functional and non-functional

requirements from their project plan and UX design

portfolio and b) Evaluate how well the solution meets the

quality in use standard. In second activity public testing,

booths were set up for each team in a popular area of

university. They had to show their solutions to anyone

passing by including, students and university staff. Each

user had to fill a survey after testing a solution (They

had to rate statements in a five point scale from strongly

disagree to strongly agree). Those surveys were designed

based on the ten statements from the systems usability

scale (see table II) from [57], [58]. Finally students

processed these surveys and used the results as inputs

for the maintenance stage.

215215

TABLE II
SURVEY STATEMENTS FROM THE SYSTEMS USABILITY SCALE [57], [58]

Systems Usability Scale Statements
I think that I would like to use this system frequently
I found the system unnecessarily complex
I thought the system was easy to use
I think that I would need the support of a technical person to be able to use this system
I found the various functions in this system were well integrated
I thought there was too much inconsistency in this system
I would imagine that most people would learn to use this system very quickly
I found the system very cumbersome to use
I felt very confident using the system
I needed to learn a lot of things before I could get going with this system

• Maintenance: This stage aimed at wrapping-up the stages

students had completed before, it lasted three weeks.

This, stage started with a lecture about software main-

tenance practices and workshop to review teams perfor-

mance, practices, success stories and current issues. Stu-

dents had to improve their solutions using the feedback

gathered in the public testing day. They went through all

DT stages to solve certain issues they did not expect.

• Presenting Project Solutions: Industry stakeholders and

the local government were invited as jury for the final

projects presentation. They evaluated the content of the

final reports, the ideas and the project implementation.

The feedback was positive and as detailed in section VI,

they will play the clients role for this course in future.

B. The Teaching Process

The teaching team was composed by the authors of this

article. The course was led by MSc. Maria Palacin-Silva,

special lectures and mentoring - in particular topics- were

given by MSc. Jayden Khakurel (DT techniques and usability

design), DSc. Ari Happonen (Team dynamics) and MSc. Timo

Hynninen (software quality testing).

The course had one session per project stage (Fig 3). Each

session started with a 5 to 10 minutes progress presentation

by each team. This would be followed by one hour lecture on

a particular topic (e.g software quality testing). Then teams

would have an in-class practical exercise to complete (e.g

paper prototyping, in figure 4). Afterwards,students would

receive an assignment to apply the session teachings onto

their own projects and generate a deliverable (which would

get presented during the following session). In addition, two

sessions were fully dedicated to evaluate the teams detailed

progress (a mid-term and a final presentation). Finally, one

mentoring session per project stage was organized for the

teams.

This course used moodle as a platform for sharing the

reading and lecture materials, exercises, deliverables and dis-

cussion forums (e.g. a forum was set for students to brainstorm

ideas and join teams).

IV. THE TEAMS

Project teams of four to five students were formed in the

early stage of the course (via the forum tool of Moodle). In

order to promote inter-cultural diversity, students were advised

to team up with students of different nationalities.Students

posted their interests and skills and searched for students

Fig. 4.

Fig. 5.

matching their interests. Teams were formed among students

with closest interests. Each team had to appoint clear roles

for each team member and divide responsibilities from the

beginning of the project. Students had to record their project

work hours and report them on a weekly basis. Figure 5

presents a summary of cumulative work hours per team (this

figure includes all team members).

Teams had a total of nine deliverables consisting

project plan, UX design portfolio, code repository,

architecture, verification and validation review, usability

testing results, weekly reports, belbin tests [59] and final

report. Teams also had progress presentations by the

end of each project stage. The two main presentations,

a mid-term and a final presentation, were evaluated

and rated by other teams and invited panel of external

experts. Teams also had a possibility to receive bonus

points for active participation in class and mentoring sessions.

A. Teams Analysis

In this course Belbin team analysis [59] was used for

analysing the team structures. Belbin created a theoretical

framework for team roles, as he saw that each individual

could bring a special contribution to team work and, as such,

enhance the team efforts [60]. The point of understanding

the team structure is explained by [61], stating that team

reflections can make the entire team more aware about the

potential challenges and impending threats the team could face

in future. This increased understanding can add internal team

216216

Fig. 6.

communion that can then balance collaboration in the team

[62]. In short, the Belbin team inventory analysis divides team

structures into nine core team roles [60]. This analysis is done

to pinpoint the possible underlying team structures that have

impacts to successfull teamwork. In the course, the concept of

team analysis was explained to every team and all teams were

assesed with belbin analysis tool. Each team were then given

their own team structure. For example, the results of the team

analysis for one of the student teams is shown in Figure 6.

The visualization of team 2 analysis results (figure 6 clearly

shows the missing roles in the team. Team 2 did not have

anyone who would prefer to take the role of resource inves-
tigator. Resource investigator helps the group to find external

resources for the team. This could indicate a challenge for

this team for example to find outsiders to test their product.

On another hand, a lot of interest was given towards the role

of implementor, which actually compares to the amount of

implementation actions this group did.

The idea behind the use of this analysis tool was that

when a team knows what are their individual preferences in

team work, they could be better prepared to tackle the project

challenges. As a result, some teams did notice later on why

their team struggled in certain stages. For example, one team

who had weak interest on plant role - also known as idea

generator - struggled in the initial stages to find a scenario

and idea for their solution. At the end of the course, team

members reported, that seeing the Belbin results made them

understand the source of their struggle.

This part of the course added an important learning outcome

into the course as it helped teams to understand the team

dynamics in work life. This is important outcome as skills

to work in groups and efficientcollaboration are especially

important in software engineering work life. Collaborative

group work adds the amount of positive results [63] in software

projects.

B. Projects

The projects were defined to follow a value-driven approach

[64] as this approach allow students to focus on the actual user

needs rather than what the user asks for [19]. A total of six

projects were developed and implemented during this course:

1) Blood4Life: As the blood demand in health care around

the world is increasing, the will to give and ability to donate

blood in right place and time is an integral part of an efficient

blood supply. Blood donation does not have a big physical

impact on the health of a donor, but it can save lives. As

blood donation is currently the only viable solution for blood

shortage problems, this project was created to connect the

people with the blood donation collectors at the right time and

place. The aim of Blood4life is to help saving human lives. It

was designed as a web application where individuals register

and provide some basic information such as blood type and

living area. Blood4life algorithm will then automatically notify

the donors when their blood is needed in their area and the

donors can book a blood donation time. For the health center

the application offers monitoring of all the appointments and

provide a channel to notify about the blood need.

2) Activate: Activate is designed to bring like-minded

people together into shared activities to improve their mental

well-being. It is an application to connect people with shared

interest (e.g app allows to use distance / preferred area range as

parameter). Activate differentiates itself from a typical social

media tool as it not based on know connections. Individuals

use the application and create or join in an event (e.g. movies

discussion or dog walking) in a set location.

3) LUT Events: team found a gap in the way events are

organized at Lappeenranta University of Technology(LUT).

Many students leverage on campus events for social life to

meet new people and to develop long lasting relationships but

the information about events is spread in multiple forums (e-

mail, facebook, websites). This causes the students to miss

these important events. Therefore, this team decided that a sin-

gle source of events information was needed. The project’s aim

was to implement a mobile phone application for accessing all

events at LUT. The app uses a socail media approach in which

users can easily inform (post), tag and find events as well

as follow event organizers. The app provides also a way for

organizers to reach the students (e.g. send event notifications).

The platform also allows rating functionality in order to rank

the organizers and help students to choose which paid event

is worth of their money.

4) WatchDog: is a solution for city administration to see a

structured view of problems in the area. This solution eases up

operational planning and allows actions to be targeted where

these are needed (e.g. prioritize deteriorating infrastructure).

The web application helps to create a democratic framework

for citizens to report any hazards in the city. A web app is

used for taking pictures and classifying the problems (e.g. road

problem, violation etc.). Application automatically attaches the

location coordinates to the picture and the data is sent to the

server. The city administration can see a visualization of the

emerging problems on the city map. Items can be sorted in

order of significance (per citizen consensus) to create more

democratic operational plans. Citizens can follow the status

of the reports until they are fixed by the city administration.

5) Ostracon: focuses on the problem of food waste as

nearly 1/3 of produced food is wasted yearly [17]. The purpose

of this project was to minimize food waste in the phase of

cooking, serving and consuming in restaurants by increasing

customer satisfaction in student restaurants. The application

allows users to review and rate the food they had eaten. The

feedback is detailed yet simple to give. This information is

then processed and restaurants can have a granulated visual-

ization of which items need to be changed or improved and

217217

which ones to keep. This application also provided a feature

for meal planning based on the feedback for restaurants. The

intended effect is that restaurants can improve the food taste

to fit more perfectly to the customers preferences. The projet

assumes that this will produce less food waste.

6) Ostaap: was designed to promote the culture of smart

consumption. The aim was to build a platform where you can

access product reviews and find best deals around a town in

order to avoid countless hours of wandering around shops and

supermarkets. Users can also track interesting upcoming or

ongoing sales and as such affact app users’ smart consuming

decisions. The design goal for the Ostaapp was to create

a platform that gives decision power back in the hands of

the consumers by providing crowd-sourced product reviews

with the special emphasis on products which are sustainably

produced, packaged or transported.

V. LESSONS LEARNED AND PERCEPTIONS

Our Running a software project course was designed to

combine design thinking to iterative software development in

a capstone manner. The lessons learned from the course can

be looked from various perspectives.

A. Design Thinking Perspective

Different stages of the design thinking process infused

into the iterative software development process all revealed

some insights. These insights reflect how teachers perceive

the learning of the students during the course due to DT:

• Personas: We discovered that creating personas inspired

engineering students to look at problems from the per-

spective of a group of target application users, rather than

from a technological and own perspective.

• Storyboards: We discovered that expressing ideas with

real behaviors and actions of users through storyboarding

helped students to further understand who, what, when,

where, and how the application is used and identify

the social and ethical implications. For example with

storyboard classroom presentation, one team found out

that their idea could invade the privacy of users. As a

result, the idea was improved.

• User journey map: We found that the user journey map

helped students to improve and enhance their design

thinking by helping them understand the emotions of the

application users in the early stages. In mentoring session,

students pointed out that through the user journey map

they managed to understand the deeper feelings of the

users of the application, which might have been difficult

otherwise.

• Prototyping: We discovered that students found the pro-

totype design to be very helpful in improving their design

process. For example, one of the teams pointed out during

the mentoring session that having feedback from users

during the prototype process was useful in outlining

the user interface. Similarly, other teams pointed out

that usability testing with external users helped them to

understand the importance of the color and placement

of a button. Introduction to the prototype testing with

the public in an open environment helped engineering

students to understand beyond design and development,

and it also helped them with marketing. For example,

one of the students pointed out that this not only helped

students to understand users needs but it also helped them

to market the application indirectly.

Design thinking approach fitted well together with the iterative

development process of software. Also, The use of DT meth-

ods such as personas, story boarding, journey maps, prototype

and usability testing was an effective way of incubating ideas

and creating innovative solutions.

B. Teachers Perspective

Teachers reflected the implementation of the course in

relation to the results and approached of their other course

(with similar or different learning objectives). As a result the

following lessons were recorded:

• The projects were based on real world challenges pre-

sented in the Urban solutions of the sustainable de-
velopment but the real industry and society linkage re-

mained weak. The industry stakeholders and the local

municipality representatives were invited as jury for the

final project presentations but in future they should be

used for defining the local challenges. Teams did engage

external users for the testing but they did not have a clear

client. However, teams explored business opportunities

for their solutions, as a jury of their mid-term presenta-

tions pointed out that their solutions could have real value

for society. Teams participated in an entrepreneurship

event with their solutions and two out of six projects

won a local entrepreneurship competition (with some

financial compensations) and three are continuing with

their projects.

• The capstone course design was effective to motivate

students to participate actively in the entire course. Teams

took ownership of their projects and their level of mo-

tivation was high. Dropout rate was zero, which is not

common in work intensive courses like this. Regardless of

this seemingly successful approach some enhancements,

like gamification [65] approaches should be considered.

For this the methods should be like defined in [66],

where game like mechanisms area applied in non-game

environment. This is extremely important for course like

this, as based on [67], models that have applied some sort

of gamification mechanism have been able to increase

collaboration [68]. In addition to that, it has been show

that gamification is adding into motivation to achieve the

set goals [69].

• The capstone course design was rather work intensive

both for teachers and students. The active interaction

with the teams kept the motivation high but at the same

time required active communication and mentoring. Each

team could have be assigned a separate teaching assistant

to monitor closely their progress, dynamics and support

them. [1] shows that this approach can be effective

in a SE project-based environment. Teachers wanted to

keep holistic perception and all teams we co-supervised.

218218

Teachers were not reporting their hours used to this

course while students needed to document and report

their work. This course was worth 5 ECTS, which means

116 hours of work per student (including the teaching

and mentoring sessions). As it can be seen in figure

5, none of the teams (composed by 5 team members)

reported to have worked 582 hours or more. However,

students perceived this course as a heavy load course

for the credits it gives. This might be due to students

underreporting their worked hours. Some studies [70]–

[72] have shown that perceived workload is not synony-

mous of time spent studying but, rather a result of the

learning environment (which includes context, difficulty,

type of assessment, and human interactions). Thus, the

measurement of worked hours as such is not a useful

probe of learning behavior and outcomes [70], [73]. Also,

PBL has been reported to increase the load perception

on students [74] and, therefore it should be carefully

monitored. In future, we will present additional material

and tools to support their time management skills. Also,

we will use additional measures - than worked hours - to

understand and assess the student workload.

C. Students Perspective

Students of the capstone course continuously reflected self

and team learning through reports to help the teachers to

measure the teaching and learning efficiency in different stages

of the course. All 26 students and 6 teams (response rate

for the reflections was 100%) performed a set of reflections

about what they did learn in the course. 49 different learning

related reflections were collected, recorded and analyzed in

a systematic manner. The results show that students were

somewhat surprised on how much they actually learned about

different details related in developing of a complex software

solution. As a result of analysis, 6 most repeated learning

outcomes has been pointed out in the following list:

• ”We did learn a lot about team and project management
dynamics (including documentation, project time tables,
skills and work division, collaboration and so on).”.

Many students stated that Belbin test opened their eyes

about their own and their teams strengths and weaknesses

and helped them to realize that they might need outside

help to succeed in their project. In addition, students also

noticed that the efficiency difference between participants

in teams and that they needed to use the skills people

have in vice manner. E.g. students wrote that We did
learn team skills and we noticed that knowing others
specialties and skills is important Step-by-step course
approach but everyone as responsible person in some part
of the course.

• Students found out the importance of prototyping and

developing more ideas / solution and implementation path

prototypes than what is needed for minimum effort. For

example students wrote that the course taught valuable
lessons in how to conceptualize an idea to a prototype
and how to improve the original idea based on the
prototype feedback.

• Students learned the value and meaning of effort put into

a project. The extra work actually really differentiates

their results from other teams. For example students

wrote: Level of details considered largely affected the end
quality.

• Students recognized the value of the input given by non-

engineer back grounded people. Public testing of the

solution gave the students the possibility to learn this

valuable lesson. Students stated that in future they might
need to listen more what outsiders have to say about their
solutions.

• Students really learned teamwork. Length of the course is

one important factor while teaching the students how to

work as a team. In shorter courses students can pretend

to work as a team, but in capstone course they truly have

to divide the work and trust on each other. This course

revealed the real challenges in team dynamics and as such

was highly praised by the students by stating that this was

an eye opener to aspects or details that we did not think
of as a team.

• Students learned the big picture of application projects in

capstone course. This just like teamwork is understood

when the problem is complex enough. Some students

stated that they never realized how many steps and details

are needed to cover when an application is designed for

bigger crowds This was reflected as a project that has
given me the opportunity to work on a group to develop
a project from a simple idea in a professional manner.

As final conclusion on this analysis the following reflection

truly explains what this course was about. When you are a
normal user of different applications you are not conscious
about the real steps that were taken to develop it. You assume
that to develop an application someone needs just to code.
What we learned from this course is that there are certain
processes that should be carried out, as much important as
the coding itself. UX Design is one of them. Storyboards, Per-
sonas, Scenarios are all crucial to understand what user really
needs... of the general message, most of the course reflection
did pin point. Students stated that they were surprised how (as

engineering students) they sometimes have somewhat narrow

view on what a professional application development truly is.

Overall students reflected that this sort of a course is highly

efficient professional work life simulator. If you really want

to succeed you need to understand your customer, listen the

potential customers, and be able to step into customer shoes.

Students did believe that after the course, they are more ready

to go into work life.

VI. CONCLUSION

This paper reported the design and implementaton of a soft-

ware engineering capstone course that infuses design thinking

methods and agile practices into the SE project life-cycle. This

design was done in order to address the existing gap between

the application of design thinking into software development

in industry and the skills and competences being taught

in software engineering education. This paper presents the

methods, results and experiences from this capstone offered in

219219

spring of 2017 as a 16-week course for 29 students. This article

illustrates a practical example of the impact of project-based

courses (such as capstones) in software engineering education

Design thinking methods were proven to be a hands-and

minds-on method to effectively engage students and enhance

their experience and improve soft skills (e.g. team working)

important in industry. In this course, we used design think-

ing to prompt project-based learning, requirements elicita-

tion, software design and development. The applied approach

allowed students to be self-directed which increased their

motivation and, as a result, reduced dropouts to minimum.

All student projects surpassed the expectations. Two projects

are being continued as entrepreneurial initiatives and one as

an open-source project.

In future the course will be improved by 1) inviting indus-

try and local municipality representatives to provide project

challenges and participate actively in the client role and 2)

improving the link between design thinking and agile software

development practices.

REFERENCES

[1] H. Erdogmus and C. Péraire, “Flipping a Graduate-Level Software En-
gineering Foundations Course,” in Proceedings of the 39th international
conference on Software engineering - ICSE ’17, 2017, pp. 23–32.

[2] J. R. Savery, “Overview of problem-based learning: Definitions and
distinctions,” Essential readings in problem-based learning: Exploring
and extending the legacy of Howard S. Barrows, pp. 5–15, 2015.

[3] S. Howe, “Where are we now? statistics on capstone courses nation-
wide,” Advances in Engineering Education, vol. 2, no. 1, 2010.

[4] A. J. Dutson, R. H. Todd, S. P. Magleby, and C. D. Sorensen, “A review
of literature on teaching engineering design through project-oriented
capstone courses,” Journal of Engineering Education, vol. 86, no. 1,
pp. 17–28, 1997.

[5] J. C. Dunlap, “Problem-based learning and self-efficacy: How a capstone
course prepares students for a profession,” Educational Technology
Research and Development, vol. 53, no. 1, pp. 65–83, 2005.

[6] ——, “Changes in students’ use of lifelong learning skills during a
problem-based learning project,” Performance Improvement Quarterly,
vol. 18, no. 1, pp. 5–33, 2005.

[7] L. Wijnia, S. M. Loyens, and E. Derous, “Investigating effects of
problem-based versus lecture-based learning environments on student
motivation,” Contemporary Educational Psychology, vol. 36, no. 2, pp.
101–113, 2011.

[8] T. J. T. F. on Computing Curricula, “Curriculum guidelines for un-
dergraduate degree programs in software engineering,” New York, NY,
USA, Tech. Rep., 2015.

[9] N. Costa Valentim, W. Silva, and T. Conte, “The Students ’ Perspectives
on Applying Design Thinking for the Design of Mobile Applications,”
in Proceedings of the 39th International Conference on Software En-
gineering: Software Engineering and Education Track. IEEE Press,
2017, pp. 77–86.

[10] R. Razzouk and V. Shute, “What Is Design Thinking and Why Is It
Important ?” Review of Educational Research, vol. 82, no. 3, pp. 330–
348, 2012.

[11] J. J. Winnefeld, C. Kirchhoff, and D. Upton, “Cybersecurity’s
Human Factor: Lessons from the Pentagon,” Harvard Busi-
ness Review, 2015. [Online]. Available: https://hbr.org/2015/09/
cybersecuritys-human-factor-lessons-from-the-pentagon

[12] J. Cleland-Huang and M. Rahimi, “A Case Study: Injecting Safety-
Critical Thinking into Graduate Software Engineering Projects,” in Pro-
ceedings of the 39th International Conference on Software Engineering:
Software Engineering and Education Track. IEEE Press, 2017, pp. 67–
76.

[13] E. Hayes and I. Games, “Making Computer Games and Design
Thinking: A Review of Current Software and Strategies,” Games
and Culture, vol. 3, no. 3-4, 2008. [Online]. Available: http:
//journals.sagepub.com/doi/pdf/10.1177/1555412008317312

[14] W. Akili, “Perspectives on engineering design learning: Realities, chal-
lenges, and recommendations,” in Frontiers in Education Conference.
IEEE, 2015, pp. 1–7.

[15] S. T. Acuña, J. W. Castro, and N. Juristo, “A HCI technique for im-
proving requirements elicitation,” Information and Software Technology
journal, vol. 54, pp. 1357–1375, 2012.

[16] J. N. Haack, G. A. Fink, W. M. Maiden, D. McKinnon, and E. W. Fulp.,
“Mixed-Initiative Cyber Security: Putting humans in the right loop,”
in In The First International Workshop on Mixed-Initiative Multiagent
Systems (MIMS) at AAMAS, 2009.

[17] WWF (World Wide Fund for Nature), “Urban solutions for
a living planet - Learning cases,” Tech. Rep., 2013. [Online].
Available: http://awsassets.panda.org/downloads/urban{ }solutions{ }
lc{ }summary{ }web.pdf

[18] A. Chamillard and K. A. Braun, “The software engineering capstone:
structure and tradeoffs,” ACM SIGCSE Bulletin, vol. 34, no. 1, pp. 227–
231, 2002.

[19] C. Bastarrica, D. Perovich, and M. Marques Samary, “What can Students
Get from a Software Engineering Capstone Course?” 2017.

[20] C. Dean, T. D. Lynch, and R. Ramnath, “Student perspectives on
learning through developing software for the real world,” in Frontiers
in Education Conference (FIE), 2011. IEEE, 2011, pp. T3F–1.

[21] H. A. Wayment and K. L. Dickson, “Increasing student participation
in undergraduate research benefits students, faculty, and department,”
Teaching of Psychology, vol. 35, no. 3, pp. 194–197, 2008.

[22] B. Lu and T. DeClue, “Teaching agile methodology in a software engi-
neering capstone course,” Journal of Computing Sciences in Colleges,
vol. 26, no. 5, pp. 293–299, 2011.

[23] V. Mahnic, “A capstone course on agile software development using
scrum,” IEEE Transactions on Education, vol. 55, no. 1, pp. 99–106,
2012.

[24] T. Smith, K. M. Cooper, and C. S. Longstreet, “Software engineering
senior design course: experiences with agile game development in a
capstone project,” in Proceedings of the 1st International Workshop on
Games and Software Engineering. ACM, 2011, pp. 9–12.

[25] E. Sweedyk and R. M. Keller, “Fun and games: A new software
engineering course,” SIGCSE Bull., vol. 37, no. 3, pp. 138–142, Jun.
2005. [Online]. Available: http://doi.acm.org/10.1145/1151954.1067485

[26] N. E. Cagiltay, “Teaching software engineering by means of computer-
game development: Challenges and opportunities,” British Journal of
Educational Technology, vol. 38, no. 3, pp. 405–415, 2007.

[27] T. Brown, “Design Thinking,” Harvard Business Review, 2008.
[Online]. Available: https://hbr.org/2008/06/design-thinking

[28] T. Brown and M. Roger, “Design for Action,” Harvard Business Review,
2015. [Online]. Available: https://hbr.org/2015/09/design-for-action

[29] U. Johansson-sköldberg and J. Woodilla, “Design Thinking : Past ,
Present and Possible Futures,” Creativity an Innovation Management,
vol. 22, no. 2, pp. 121–146, 2013.

[30] R. Buchanan, “Wicked problems in design thinking,” Design issues,
vol. 8, no. 2, pp. 5–21, 1992.

[31] H. A. Simon, The sciences of the artificial. MIT press, 1996.

[32] K. Yamazaki, “Design Thinking and Human-Centered Design - Solution-
Based Approaches to Innovation and Problem-Solving in Social Envi-
ronment,” NEC Technical Journal, vol. 8, no. 3, pp. 15–19, 2014.

[33] T. Brown and J. Wyatt, “Design Thinking for Social Innovation,”
Standford Social Innovation Review, 2010. [Online]. Available: https:
//ssir.org/articles/entry/design{ }thinking{ }for{ }social{ }innovation

[34] J. Krüger and J. Müller, “How can Design Thinking improve
Software Engineering Processes?” 2014. [Online]. Available: https:
//www.tele-task.de/archive/video/html5/25024/

[35] O. Sohaib and K. Khan, “Integrating usability engineering and agile
software development: A literature review,” in Computer design and
applications (ICCDA), 2010 international conference on, vol. 2. IEEE,
2010, pp. V2–32.

[36] T. Roach, “How to combine Design Thinking and Agile in practice,”
2015. [Online]. Available: https://medium.com/startup-study-group/
how-to-combine-design-thinking-and-agile-in-practice-36c9fc75c6e6

[37] M. Kern, “”Post-Agile” Software Development,”
2016. [Online]. Available: https://www.linkedin.com/pulse/
post-agile-software-development-matthew

[38] S. S. Erzurumlu and Y. O. Erzurumlu, “Sustainable mining develop-
ment with community using design thinking and multi-criteria decision
analysis,” Resources Policy, vol. 46, pp. 6–14, 2015.

[39] D. Chasanidou, A. A. Gasparini, and E. Lee, “Design thinking methods
and tools for innovation,” in International Conference of Design, User
Experience, and Usability. Springer, 2015, pp. 12–23.

[40] J. Pruitt and T. Adlin, The persona lifecycle: keeping people in mind
throughout product design. Morgan Kaufmann, 2010.

220220

[41] J. M. Maness, T. Miaskiewicz, and T. Sumner, “Using personas to
understand the needs and goals of institutional repository users,” D-Lib
Magazine, vol. 14, no. 9/10, pp. 1082–9873, 2008.

[42] M. Shin, B.-s. Kim, and J. Park, “Ar storyboard: an augmented reality
based interactive storyboard authoring tool,” in Mixed and Augmented
Reality, 2005. Proceedings. Fourth IEEE and ACM International Sym-
posium on. IEEE, 2005, pp. 198–199.

[43] J. Arnowitz, M. Arent, and N. Berger, Effective prototyping for software
makers. Elsevier, 2010.

[44] S. G. Storaas, “Service blueprints and user jour-
neys,” Trondheim, pp. 1–16, 2010. [Online]. Avail-
able: https://www.ntnu.no/documents/10401/1264435841/Synneva+
Storaas+PD9+Artikkel.pdf/6fcfdfd2-75d8-4c03-9a4f-396065445b0e

[45] R. Halvorsrud, R. Halvorsrud, K. Kvale, K. Kvale, A. Følstad, and
A. Følstad, “Improving service quality through customer journey analy-
sis,” Journal of service theory and practice, vol. 26, no. 6, pp. 840–867,
2016.

[46] M. C. Martini, M. A. Smith, and R. J. Youmans, “A comparison of
prototyping on paper (pop) software and traditional paper prototyping
for developing mobile products with optimal user experience,” in Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting,
vol. 58, no. 1. SAGE Publications Sage CA: Los Angeles, CA, 2014,
pp. 1849–1853.

[47] J. Purtilo, A. Larson, and J. Clark, “A methodology for prototyping-in-
the-large,” in Software Engineering, 1991. Proceedings., 13th Interna-
tional Conference on. IEEE, 1991, pp. 2–12.

[48] P. Kruchten, The rational unified process: an introduction. Addison-
Wesley Professional, 2004.

[49] A. Herala, E. Vanhala, A. Knutas, and J. Ikonen, “Teaching program-
ming with flipped classroom method: a study from two programming
courses,” in Proceedings of the 15th Koli Calling Conference on Com-
puting Education Research. ACM, 2015, pp. 165–166.

[50] P. Dillenbourg, “The Evolution of Research on Computer-Supported
Collaborative Learning: From Design to Orchestration,” Technology-
Enhanced Learning, no. June, pp. 3–19, 2009. [Online]. Available:
http://link.springer.com/10.1007/978-1-4020-9827-7

[51] A. A. Gokhale, “Collaborative learning enhances critical thinking,” 1995.

[52] A. Knutas, “Increasing Beneficial Interactions in a Computer-Supported
Collaborative Environment,” Lappeenranta, Tech. Rep., 2016. [Online].
Available: http://www.doria.fi/handle/10024/125665

[53] T. Okamoto, “Collaborative technology and new e-Pedagogy,” Proceed-
ings - IEEE International Conference on Advanced Learning Technolo-
gies, ICALT 2004, pp. 1046–1047, 2004.

[54] G. C. Gannod, J. E. Burge, and M. T. Helmick, “Using the inverted
classroom to teach software engineering,” Proceedings of the 13th
international conference on Software engineering - ICSE ’08, p.
777, 2008. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
1368088.1368198

[55] D. Hoyle, “Iso 9000: quality systems handbook,” 2001.

[56] ISO, “ISO/IEC 25010,” 2011. [Online]. Available: http://iso25000.com/
index.php/en/iso-25000-standards/iso-25010

[57] Usability.gov, “System Usability Scale (SUS).” [On-
line]. Available: https://www.usability.gov/how-to-and-tools/methods/
system-usability-scale.html

[58] J. Brooke, “SUS - A quick and dirty usability scale,” Usability evaluation
in industry, vol. 189, no. 194, pp. 4–7, 1996.

[59] R. M. Belbin, Team roles at work. Routledge, 2012.

[60] ——, “Team roles at work: A strategy for human resource management,”
zitiert in: Teamarbeit und Teamentwicklung, p. 321, 1993.

[61] G. Gibbs, Learning by doing: A guide to teaching and learning methods.
Further Education Unit, 1988.

[62] L. J. Mullins, Management and organisational behaviour. Pearson
education, 2007.

[63] M. Csikszentmihalyi, Toward a psychology of optimal experience.
Springer, 2014.

[64] B. W. Boehm, “Value-based software engineering: Overview and
agenda,” in Value-based software engineering. Springer, 2006, pp.
3–14.

[65] I. Glover, “Play as you learn: gamification as a technique for motivating
learners,” 2013.

[66] F. Groh, “Gamification: State of the art definition and utilization,”
Institute of Media Informatics Ulm University, vol. 39, 2012.

[67] F. S. Din, J. Calao, K. Ward, C. Chiong, and C. Shuler, “The effects of
playing educational video games on kindergarden achievement,” Child
Study Journal, vol. 31, no. 2, pp. 95–102, 2001.

[68] M. Sanmugam, H. Mohamed, N. M. Zaid, Z. Abdullah, B. Aris, and
S. M. Suhadi, “Gamification’s role as a learning and assessment tool
in education,” International Journal of Knowledge-Based Organizations
(IJKBO), vol. 6, no. 4, pp. 28–38, 2016.

[69] S. K. Sheth, J. S. Bell, and G. E. Kaiser, “Increasing student engagement
in software engineering with gamification,” Department of Computer
Science, Columbia University, New York, NY, USA. Columbia University
Computer Science Technical Reports. Dpartment of Computer Science,
Columbia University, 2012.

[70] D. Kember*, “Interpreting student workload and the factors which shape
students’ perceptions of their workload,” Studies in higher education,
vol. 29, no. 2, pp. 165–184, 2004.

[71] C. Bryson and L. Hand, “The role of engagement in inspiring teaching
and learning,” Innovations in education and teaching international,
vol. 44, no. 4, pp. 349–362, 2007.

[72] K. Struyven, F. Dochy, S. Janssens, and S. Gielen, “On the dynamics
of students’ approaches to learning: The effects of the teaching/learning
environment,” Learning and Instruction, vol. 16, no. 4, pp. 279–294,
2006.

[73] P. Ramsden, Learning to teach in higher education. Routledge, 2003.
[74] J.-R. Ruiz-Gallardo, S. Castaño, J. J. Gómez-Alday, and A. Valdés,

“Assessing student workload in problem based learning: Relationships
among teaching method, student workload and achievement. a case study
in natural sciences,” Teaching and Teacher Education, vol. 27, no. 3, pp.
619–627, 2011.

221221

