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Abstract—It remains unclear when it is the right time to
introduce software quality into the computing curriculum. Intro-
ductory students often cannot afford to also worry about software
quality, while advanced students may have been groomed into
undisciplined development practices already. To answer these
questions satisfactorily, educators need strong quantitative ev-
idence about the pervasiveness of software quality problems in
software written by novice programmers. This paper presents a
comprehensive study of software quality practices of novice pro-
grammers writing Scratch programs. By focusing on finding code
smells—coding patterns indicative of quality problems—we ana-
lyze a longitudinal dataset of 100+ novice Scratch programmers
and close to 3K of their programs. Even after gaining proficiency,
students continue to introduce the same quality problems into
their code, suggesting a need for timely educational interventions.
Given the importance of software quality for modern society,
computing educators should teach quality concepts and practices
alongside the core computing curriculum.

Index Terms—Software Quality; Introductory computing edu-
cation; Code Smells; Block-based programming; Scratch;

I. INTRODUCTION

To be fully prepared for the challenges of producing high

quality software in the real world, students must have been

introduced to software quality as part of the curriculum. Nev-

ertheless, the educational community is split on the question

of when the right time is to start introducing software quality.

Postponing the topic until later in the curriculum often grooms

introductory computing learners into undisciplined software

development practices. As Will Durant eloquently articulated:

“We are what we repeatedly do. Excellence, then, is not an

act, but a habit.” To truly embrace this principle, we should

intrinsically weave software quality into all parts of the CS

curriculum, starting from the first programming course.

Prior studies have uncovered the high prevalence of recur-

ring code quality problems in programs written by introductory

programmers [1], [2]. This finding calls for a serious reevalu-

ation of the importance of software quality in introductory

CS education. However, the research community possesses

limited knowledge about the software quality issues of novice

programmers. Closing this knowledge gap has potential to

provide valuable insights for computing educators, informing

the efforts aimed at creating novel educational interventions

that integrate the software quality concepts and practices into

the CS curriculum.

In this work, we study a large longitudinal dataset of soft-

ware artifacts produced by introductory computing learners.

Our study’s goal is to answer the following research questions:

• RQ1 Does the quality of student programs improve, as

students gain programming experience?

• RQ2: How persistent are poor coding practices, as stu-

dents gain programming experience?

• RQ3 Which programming concepts and patterns lend

themselves to influencing the software quality of intro-

ductory learners?

To identify quality problems, we adopt the terminology of code
smells, coding patterns known to indicate possible poor design

or implementation choices, the term made popular by Fowler’s

refactoring book [3]. We analyze a longitudinal dataset of

3,810 Scratch projects, written by a distinct group of 116

novice programmers. For these projects and their program-

mers, we compute a set of relevant explanatory variables,

which comprise the measurements and metrics that poten-

tially associate with the presence of code smells, including

programming proficiency and basic programming abstractions

and constructs. We apply survival analysis to identify the

relationship between a set of explanatory variables and the

risk of novice programmers introducing code smells into their

programs.

Our results indicate that for all levels of programming pro-

ficiency, students tend to retain an unchanged attitude toward

software quality, irrespective of their current level of pro-

gramming proficiency. Being exposed to certain programming

concepts and constructs lowers the computing learners’ vul-

nerability to introducing some code smells into their projects.

However, introducing students to these concepts alone may

be insufficient to convince them to embrace software quality.

However, if software quality concepts were taught alongside

the fundamentals of computing, students would acquire an

awareness and practical skills, required to proficiently develop

functional computing solutions, while also adhering to well-

established software design and implementation practices.

The rest of the paper is structured as follows. Section II

discusses the related work. Section III provides background

information. Section IV describes our dataset, measurements

and metrics used in this work. Section V explains our statistical
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Code Smell Definition

Broad Var. Scope
(BV)

A variable with its scope broader than its
usage (100% of all variables)

Duplicated Code
(DC)

Similar blocks in multiple places (≥ 0.34
instance per 100 LOCs)

Long Script (LS) A long script with LOCs > 11 (33% in-
stance of all scripts)

Uncommunicative
Name (UN)

Poor naming started with “Sprite” (100% of
all sprite names)

TABLE I
CODE SMELLS STUDIED IN THIS WORK

analysis and its results. Section VI interprets the results and

their implications, and Section VII concludes the paper.

II. RELATED WORK

Recent works offer a strong evidence of quality problems in

the context of introductory computing education [1], [4], [2].

However, very few works study software quality practices. In

particular, Robles et al. [5] study software clones in Scratch

projects. They found no computational concept associated with

the absence of duplicated codes, while many students still

continue copying and pasting code, despite knowing how to

avoid this poor coding practice. The results are similar to the

findings of a study of commonly occurring quality issues in

student Java codes [6]; students hardly ever resolve quality

problems and even the availability of code analysis tools fails

to influence how students engage in quality improvement.

This work seeks to further investigate the issue and enhance

our understanding of persistent quality problems in novice

programmers.

III. BACKGROUND

This section provides the background information required

to understand this work.

A. Code smells

Code smells encode those coding patterns that are indicative

of possible quality problems. Compared to coding styles,

code smells are less subjective, and thus work well in the

context of the strict visual syntax of block-based software.

Amenable to automated analysis, code smells also allow the

analysis heuristics to scale. In this work, we analyze projects

authored by novice programmers for the incidence of 4 types

of common code smells, which are defined in Table I. Our

previous work [2] provides additional information about these

code smells.

To account for varying project sizes, we calculate a smell

metric based on the percentage or density of smell instances,

noted in the Table I (e.g., a density-based metric for Duplicated
Code, and a percentage-based metric for Long Script, etc.).

We select the 75th percentile of the smell metric values across

all projects in the dataset as the threshold for classifying a

project as having an “unacceptable” number of a given smell

and being afflicted by it (e.g., the threshold for BV is 100%

). It is these projects that serve as the events of interest in our

survival analysis.

B. Programming proficiency

To measure programming proficiency of novice program-

mers, we leverage Computational Thinking Score (CT Score),
developed by Moreno and Robles and subsequently evaluated

extensively [7]. We calculate six CT dimensions (i.e., abstrac-

tion, data representation, flow control, logic, parallelization,

and synchronization), disregarding the interactivity dimension,

as it is not directly relevant to the general programming

proficiency we focus on in this work. The score in each

dimension is in the range of 0 to 3, based on the proficiency

inferred from the usage of different types of block constructs

in the program. The original work by Moreno and Robles [7]

provides specific details how these scores are computed.

C. Survival analysis

Survival analysis originated in epidemiology, in which the

time to the event-of-interest (survival time) was death, but

later has been applied more broadly in different research

fields including education (e.g., the effect of remixing or code

sharing on student learning progress [8]). Survival analysis

addresses the problem of incomplete information about the

survival time, called censoring. The data may be missing

because a study subject has not experienced the event of

interest by the time the observation period ends, thus making

the information about survival time incomplete. In this study,

we apply survival analysis to study the effect of certain learner

characteristics (e.g., poor quality of their past projects) on the

learners’ risk of their project being afflicted by a particular

code smell.

A standard way to visually explore and understand survival

data is the Kaplan-Meier plot of survival against time for each

study group; it considers one predictor variable at a time while

taking into account the censored data. However, for extensive

analysis, we use Cox proportional hazards [9], a popular model

for multivariate survival analysis. The Cox’s hazard ratio (HR)

describes the relative likelihood of the event-of-interest by

comparing event rates between different study groups, while

adjusting for other significant variables. In this study, the ratios

indicate how the relative likelihood of the event of interest

(the presence of code smells in a project) changes relative

to explanatory variables (e.g., numbers of past projects that

contain smells).

For example, to study how exposing learners to the concept

of procedure affects their risk of introducing duplicate code

smell, the following are the possible values of hazard ratio:

HR = 1: at any particular time, the event rates are the same

in both groups (the factor has no effect).

HR = 0.5: at any particular time, half as many learners,

whose past projects use procedures, are likely to introduce the

smell, as compared to the learners, whose past projects use

procedures one fewer time.

HR = 2: at any particular time, twice as many learners,

whose past projects use procedures, are likely to introduce the

smell, as compared to the learners, whose past projects use

procedures one fewer time.
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Variable Name Description

prior {smell} # of smell afflicted projects in the first 10 projects
CT overall Median CT scores across all dimensions
CT {dimension} Mean CT score for a dimension
numLocalVar Median local variables
sensorBlock Total number of times sensor blocks are used for ac-

cessing other sprites’ private fields
numProc Median number of custom blocks (procedures) created

TABLE II
PREDICTORS USED IN THE ANALYSIS MODEL

IV. DATA AND MEASURE

In this section, we describe our approach to data collection,

and the set of explanatory variables derived from the data.

Novice programmers Projects

Join Scratch > 2 yrs.
Created projects ≥30 projects
Other criteria

Original (not remixed)
Lines of code ≥ 20
Other criteria

Fig. 1. Criteria for data inclusion

Scratch provides a convenient access to each programmer’s

shared projects, and their last modification dates. These shared

projects form a longitudinal dataset for our case study. Figure 1

provides an overview of the criteria for random selection of the

programmers for the study. Each selected programmer must

have accomplished a minimum number of projects to ensure

sufficient longitudinal data. Project criteria is set to ensure that

only sufficiently complex projects are considered, excluding

common non-programming projects discussed in [8].
Once the project and programmer data are collected, we

then compute the CT score for each dimension. We further

exclude non-serious learners, whose entire created projects

never reach the overall CT score of 2. To filter out the cases

of “an occasional display of proficiency,” we only include

those projects in which the high proficiency levels (2 and 3)

are demonstrated at least three times. We found this heuristic

to effectively identify the projects that are worth analyzing

in our study. Assuming that programming proficiency is a

continuously increasing metric as learners author additional

projects, we include in our analysis dataset all the subsequent

projects once the sought-for level of proficiency is demon-

strated. We developed several automated program analysis

routines to extract relevant metrics for each project. These

metrics represent the explanatory and outcome variables of

interest used in our analysis model.
a) Explanatory variables: A set of explanatory variables

are used to predict the outcome variable of interest. We use the

first 10 projects in the analysis set of each programmer as the

baseline projects, assuming that the changes in programming

proficiency as well as programming practices are small and

can be used to capture the programmers’ characteristics. Table

III gives the summary statistics of the baseline data across all

programmers.
b) Outcome variable: The number of projects until the

smell afflicted project (exceed the 75th percentile threshold)

is used as the time to the event rather than the physical time,

a similar approach used in [8]. The smell afflicted projects

are identified from the 20 consecutive projects in the analysis

dataset, following the initial set of 10 baseline projects. Since

programmers may create multiple smell afflicted projects over

time, we use a counting process [9], a common approach for

modeling the recurring events. This model allows each smell

event for the same programmer to be considered independent

from each other and contributes to the risk analysis.

Statistic Mean St. Dev. Min Median Max

prior BVS 2.8 2.1 1 2 11
prior DC 5.2 2.5 1 5 12
prior LS 5.0 3.1 1 4 15
prior UN 7.1 3.9 1 7 15
CT overall 1.4 0.3 0.9 1.4 2.1
CT parallel 0.9 0.3 0 1 2
CT dataRep 1.6 0.6 1 1.5 3
CT abstraction 1.4 0.7 0 1 3
CT sync 2.2 0.8 0 2 3
CT flowControl 2.1 0.4 1 2 3
CT logic 1.6 1.4 0 1 3
numLocalVar 0.2 0.7 0 0 4
sensorBlock 6.2 17.4 0 0 113
numProc 0.2 0.9 0 0 7

TABLE III
BASELINE CHARACTERISTICS OF THE FIRST 10 PROJECTS IN THE

ANALYSIS DATASET

V. SURVIVAL ANALYSIS AND RESULTS

In this section, we describe the Cox model used to study

the effect of different explanatory variables on the risk of

a programmer introducing code smells. We study each code

smell using a separate model. The Cox regression models

allow adjustment of other explanatory variables in the model,

while varying the explanatory variable of interest to ascertain

its effect size.

Table IV presents the models and their results. All statistical

analysis are performed using R and its survival analysis library

(survival package). We describe each model, its results,

and how the results answer each of the 3 research questions

above as follows:

RQ1: proficiency and the risk of poor code quality

To answer RQ1, we include the programming proficiency

score as a predictor in each of the models. We control for

programming proficiency in each of our analysis models by

using the average CT overall. The results in Table IV show

that the CT overall has no statistically significant effect on

the likelihood of novice programmers introducing code smells

into their projects. However, gaining programming proficiency

in certain CT dimensions can increase the risk of code smells.

Specifically, the results show that the increased score for

CT dataRep raises the likelihood of the learner’s program to

be afflicted by the BV smell. CT dataRep has a hazard ratio

of 1.74 with statistical significance at 5% level indicated by

*. This result suggests 1.74 or 74% more risk relative to the

group of learners whose scores are one fewer, when other

variables are held constant. Additionally, the increased score
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Model Variable
Hazard
Ratio

p-value

BV prior BV 1.11 0.005*
CT overall 0.48 0.059
CT dataRep 1.74 0.001*
numLocalVar 0.96 0.819
sensorBlock 0.99 0.045*

DC prior DC 1.1 0.000*
CT overall 1.08 0.698
CT flowControl 1.55 0.000*
CT abstraction 0.98 0.768
numProc 1.02 0.642

LS prior LS 1.08 0.000*
CT overall 0.12 0.693
CT sync 0.78 0.004*
numProc 0.98 0.725

UN prior UN 1.15 0.000*
CT overall 0.77 0.264

TABLE IV
THE STATISTICS OF THE EFFECT OF EACH PREDICTOR VARIABLE ON THE

LEARNERS’ RISK OF INTRODUCING SMELLS.

of CT FlowControl raises the likelihood of the projects being

afflicted by DC smell.

RQ2: Persistence of poor quality practices

To answer RQ2, we include the prior exposure of a smell,

defined as the number of baseline projects being afflicted by

the code smell (e.g. prior BV).

Table IV shows how the increased prior exposure to each

of the smells has a statistically significant effect on the

novice programmers’ risk of introducing the smell. For ex-

ample, prior BV with HR=1.11 can be interpreted as: for

one additional BV afflicted project, the programmer has an

increased risk of 1.11 times (11%) the risk of those having

one fewer BV afflicted projects. The Kaplan-Meier curves in

Figure 2 visualize varying risks faced by each learner group.

Programmers with BV afflicted projects in the range (0-3]

are more resistant to producing BV afflicted smells, as the

percentage of such programmers is higher than that in the

other two groups, across the observation period.

RQ3: Concepts/constructs for improving software quality

This research question explores how programming con-

cepts/constructs, of which novice programmers may be un-

aware, can improve their program quality. We take into account

some specific Scratch language features. Table V shows code

smells and corresponding programming concepts/constructs

that are relevant for minimizing each of the smell. These

programming concepts/constructs serve as the explanatory

variables and are also included in the analysis models.

The results in Table IV show a few programming con-

cepts/constructs appear to naturally induce quality improving

practices among novice programmers. Specifically, novice

programmers with higher CT sync have a reduced risk of LS
afflicted projects (i.e., HR=0.78, or a reduced risk of 22% rel-

ative to the group whose CT sync is one fewer). This finding

confirms the observation about scenario-based programming

Code Smell Scratch Concept/Constructs

BV Local variable to Sprite, Sensing blocks
DC Loop iteration, Cloning
LS Synchronization (broadcast/receive), Procedures
UN N/A

TABLE V
CODE SMELLS ALONGSIDE PROGRAMMING CONCEPTS/CONSTRUCTS THAT

CAN REDUCE THEIR INCIDENCE

[10], which is captured by CT sync. This programming style

fosters modular thinking, which leads to short scripts.

Novice programmers, who have more exposure to the use of

sensor blocks in the past, are slightly less likely to introduce

the BV code smell (i.e., HR=0.99, or a reduced risk of 1%

relative to the group less exposed to sensor blocks). Sensor

blocks make it possible to read the local variables of other

sprites, similar to getter methods to access private fields.

However, having been exposed to local variables alone fails to

translate into reducing the incidence of BV afflicted projects.

Our results show no association between the usage of

procedures and the lower risk of DC afflicted projects. Upon

further investigation, we discovered that very few novice

programmers in the dataset have ever used procedures (custom

blocks in Scratch).

VI. DISCUSSION

This section discusses our findings and their implications.

a) Informal learning: Our results raise questions about

the nature of programming practices fostered by informal

programming learning environments, which have become in-

creasingly popular in recent years. In these environments,

introductory learners are encouraged to freely explore and

learn on their own and from projects shared by others. This

way, students move quickly to gain programming proficiency.

However, as our results indicate, an increase in programming

proficiency does not necessarily translate into proper program-

ming practices, which emphasize the importance of software

quality as an important objective.

b) Persistent poor quality practices: Prone to introduc-

ing certain code smells into their code, novice programmers

continue this trend, as their code continues to be afflicted

with the same code smells. These poor quality practices likely

need an educational intervention that focuses on how students

can avoid introducing them in the first place. Discussing how

certain programming practices are considered improper and

how to improve upon them can be an effective pedagogical

strategy for equipping students with knowledge and skills

required to improve software quality.

c) Opportunities for educational intervention: Using cer-

tain computing concepts and programming styles can be

conducive to decreasing the vulnerability of introducing some

code smells, as the protective effect of CT sync on LS seems to

suggest. This insight suggests that effective educational inter-

ventions can introduce known effective programming concepts

and practices as a way to improve software quality.
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Fig. 2. KM survival curves: Programmers with a high number of prior smell-afflicted projects incur higher risks of introducing the same smells.

d) Threats to validity: Our results might not generalize

beyond the context of the study (e.g., the studied subjects be-

yond the specified criteria, different programming languages,

educational settings, etc.). Because of our dataset’s properties

, the results apply mostly in the context of informal CS educa-

tion and block-based programming pedagogy. The validity of

our findings may be affected by other factors, not considered

or impossible to measure in this study, such as age, the setting

(i.e., formal / informal settings for CS Education).

VII. CONCLUSION

Our ultimate objective is to design effective educational

interventions to promote the culture of quality and qual-

ity improving practices among the introductory computing

learners. As a first step in this effort, we conducted this

study to understand software quality in the context of novice

programmers. Specifically, we strive to understand all the

different factors that may affect the software quality of the

code written by introductory programmers.

We apply survival analysis to identify the effect of various

factors on the programmers’ risk of introducing recurring

quality problems, known as code smells. Our findings show

that novice programmers prone to introducing some smells

continue to do so even as they gain experience: as their

programming proficiency increases, the quality of their code

continues to suffer.

These findings indicate the need of promoting the culture of

quality from the ground up. To that end, novel educational in-

terventions should be able to instill the importance of software

quality in introductory computing learners. By incorporating

these insights, novel educational interventions can be designed

to seamlessly integrate the core computing concepts with

disciplined software development practices, while ensuring

that these topics are introduced at the level appropriate for

introductory learners.
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