
SSN: A Spatial Semantic Network for
High-accuracy, Stable and Generalized Intent

Detection

Zhi, Zeng
Department of Computer Science

City University of Hong Kong
Hong Kong

zhizeng8-c@my.cityu.edu.hk

Chi-Yin Chow
Department of Computer Science

City University of Hong Kong
Hong Kong

chiychow@cityu.edu.hk

Jia-Dong Zhang
Department of Computer Science

City University of Hong Kong
Hong Kong

jzhang26@cityu.edu.hk

Abstract—Nowadays, deep learning-based chatbot technologies
have attracted the attention of many industries. Natural language
understanding which consists of intent detection and slot filling
is the first step in building a chatbot. Intent detection alone
can be used to build a chatbot to answer frequently asked
questions. However, there are still three major challenges in intent
detection, namely, accuracy, stability and generalization ability.
To overcome these three challenges, this paper proposes a new
spatial semantic network (SSN) for intent detection method based
on sentence embedding and support vector machine. Our SSN
method consists of a frontend mapping a sentence to a dense
vector in high dimensional space and a backend classifying the
points into different intents. We conducted experiments on two
popular real-world datasets. Experimental results show that our
SSN method outperforms the state-of-the-art methods in terms
of accuracy, stability as well as the ability to generalize on small
training set.

Index Terms—Intent detection, chatbot, sentence embedding,
support vector machine

I. INTRODUCTION

Chatbot is a computer program which can talk to a human-

being by voice or text. It can simulate the dialog between

human-beings, and even aims at passing the Turing test.

Chatbot can be used in practical scenarios, such as customer

services or information acquisition. Some chatbot has natural

language processing system, but most simple systems can only

select keywords from the input and then find the most suitable

response from the database. Nowadays, chatbot is a part of the

virtual assistant, e.g. google smart assistant, and can connect

with the applications, websites, instance message platforms

of different organizations. Non-assistance applications include

chatroom for entertainment, research, product promotion, and

social chatbot.

To build a chatbot, many attempts have been made. The

most simple kind of chatbot is rule-based. It is easy to

implement, but is hard to satisfy the diverse need of the

customers because of the richness of human natural language.

There are also chatbots built by end to end approach, similar to

the way neural machine translation was done. However, such

a kind of chatbot lacks consistency in answering questions.

It may have different answers when asked how old are you

and what is your age. To improve the quality of chatbot,

the pipeline method consisting of several different modules

including speech recognition, natural language understanding,

dialogue management, knowledge provider as well as natural

language generation are developed.

Natural language understanding is a critical step in building

a chatbot by the pipeline method. Because only when the

chatbot is able to understand what the user wants to do, the

chatbot can return a reasonable response. The natural language

understanding module consists of two parts, which are intent

detection and slot filling. Intent detection is the process of

understanding what the user wants to do, while slot filling

means the process of filling all necessary information, in order

to transform customer intent into explicit machine instruction.

Nowadays, chatbot based on deep learning techniques has

attracted the attention of many industries [1] [2] [3]. Intent

detection is an important step in building a chatbot. With

intent detection alone, FAQ-bot which is used in answer-

ing repetitive and common customer service questions [4].

Techniques in doing intent detection can be categorized into

non-deep learning methods and deep learning method. Non-

deep learning method uses hand-crafted features like Term

Frequency Inverse Document Frequency (TFIDF) while deep

learning method trains neural networks to learn features on

their own.

Most existing works used deep learning models. Liu and

Lane, 2016, showed the ability of sequence to sequence deep

learning model in the field of natural language understanding

[5]. Hakkani-Tur et al., 2016, presented an encoder-decoder

architecture and an attention based architecture [6]. Goo et

al., 2018, added a slot gate module in the attention based

architecture proposed by Liu and Lane in order to model the

explicit relationships between slots and intent vectors [7].

This paper mainly focuses on three research challenges on

intent detection for chatbot. (1) Improving the accuracy of

intent detection. Previous method has reached relatively high

accuracy, but there is still space to improve. (2) Making the

intent detection system perform more stable under different

testing sets. The weakness of previous approaches is that the

1

2019 IEEE 5th International Conference on Big Data Intelligence and Computing (DATACOM)

978-1-7281-4117-6/19/$31.00 ©2019 IEEE
DOI 10.1109/DataCom.2019.00010

accuracy fluctuates even if the training set and testing set are

exactly the same when run multiple times. (3) Strengthening

the ability to generalize. In practice, people hope the system

can perform well when the training set is as small as possible.

Our proposed method tries to address these challenges.

To overcome the challenges described above, we propose a

new Spatial Semantic Network (SSN) for intention detection

based on sentence embedding and support vector machine. It is

designed for high accuracy, stable and well-generalized intent

detection system. At training time, in the frontend module, a

sentence embedding encoder is pre-trained and used to encode

an utterance into a dense vector in high dimensional space;

in the backend module, a support vector machine is trained

by these dense vectors together with their corresponding

labels. At testing time, in the frontend, the new utterances are

encoded by the pre-trained sentence embedding encoder; then

in the backend, these dense vectors are classified into different

intents by the trained support vector machine classifier. Our

main contributions can be summarized as follows:

• We designed a SSN that not only makes use of word

embedding but also sentence embedding, which enables

our system to understand the meaning of a sentence as a

whole better.

• We conducted several experiments on two different pop-

ular datasets using our proposed method. Experimental

results shows that our proposed method obtained higher

intent detection accuracy.

• Our SSN performs more stable than previous methods.

When run repeatedly, previous methods achieve different

accuracy even if the training set and testing set are the

same. By contrast, SSN generates the same accuracy

when run several times. Furthermore, SSN also achieves

lower standard deviation when tested on different testing

set.

• Our SSN is more capable of generalizing on small size

training set. The accuracy of previous methods will drop

considerably if the size of training set decreases signif-

icantly. On the contrary, SSN can keep a high accuracy

compared with other methods even if the training set

shrinks, which means that SSN has greater ability to

generalize.

The rest of the paper is organized as follows. Section 2

introduces related work. Section 3 presents the problem defi-

nition. Section 4 elaborates the limitations of previous method.

Section 5 shows the details of our proposed method. Section 6

evaluates the performance of our method compared with other

state-of-the-art methods. Finally, we conclude this paper in

Section 7.

II. RELATED WORK

This section briefly highlights the related work about intent

detection, word embedding and sentence embedding.

A. Non-deep learning methods

TFIDF-LR and TFIDF-SVM [8] are two kinds of non-deep

learning methods that are used to do intent detection. TFIDF

[9] stands for term frequency inverse document frequency. It

is a statistical method used to measure how important a word

is in a collection of documents by considering the frequency

of the word and document. The advantage of TFIDF is that it

can filter out some unimportant words in the sentence and keep

those words that are important. Term frequency measures how

frequently a word appears in a document. Inverse document

frequency decreases the weight of terms that occur very

frequently in the document set and increases the weight of

terms that occur rarely. After using TFIDF to represent the

utterances, the sentences are classified using logistic regression

or support vector machine.

B. Deep learning methods

Hakkani-Tur et al. proposed Multi-Domain Joint Semantic

Frame Parsing using Bi-directional RNN-LSTM [5]. It shows

the ability of sequence to sequence deep learning model in the

field of natural language understanding. Attention-based recur-

rent neural network models for joint intent detection and slot

filling was proposed by Liu and Lane [6]. In this paper, they

presented an encoder decoder architecture and an attention

based architecture. Later on, Goo et al. proposed Slot-Gated

Modeling for Joint Slot Filling and Intent Prediction [7]. In

this paper, they add a slot gate module in the attention based

architecture proposed by Liu and Lane in order to model the

explicit relationships between slots and intent vectors.

C. Word embedding

Before the existence of word embedding, the word appears

in a sentence are encoded by assigning an integer or by

one-hot encoding. Such representation can be used in some

simple NLP task, but it lose the meaning of the words. By

contrast, word embedding representation embed the sparse

representation into a low dimensional dense representation and

keeps the meaning of words, which means semantically similar

words will be located near each other. Word2vec [10] is one

of the famous word embedding techniques. In addition, there

exists more advanced techniques including GloVE [11] and

Fasttext [12] [13] [14]. However, word embedding alone is

not enough to figure out the intent of an utterance so we also

need sentence embedding which will be introduced later.

D. Sentence embedding

Sentence embedding is a dense vector in high dimensional

space generated form a sentence by an encoder. Sentences

with similar semantic meaning will be located near each other

in the sentence embedding representation. There are many

kinds of existing sentence embedding techniques, including

standard recurrent encoders with either Long Short-Term

Memory (LSTM) or Gated Recurrent Units (GRU), concate-

nation of last hidden states of forward and backward GRU,

Bi-directional LSTMs (BiLSTM) with either mean or max

pooling, self-attentive network and hierarchical convolutional

networks [15].

2

1) LSTM and GRU: The simplest kind of sentence em-

bedding technique is using LSTM [16] or GRU [17] units.

Given the word sequence containing several words as input,

the hidden states represented by several LSTM or GRU

hidden states are generated with rightward recurrent LSTM

operation or rightward recurrent GRU operation. The sentence

embedding is represented by the last hidden state of LSTM or

GRU unit. In addition, a bidirectional LSTM or GRU model

can also be used by concatenate the last hidden state of the

forward LSTM/GRU and the first hidden state of the backward

LSTM/GRU as the sentence embedding vector.

2) BiLSTM with mean/max pooling: The BiLSTM with

mean/max pooling architecure consists of a bidirectional

LSTM layer and a mean-pooling or max-pooling layer. Given

a word sequence as in put, the forward LSTM generates

a sequence of hidden states, the backward LSTM generates

another sequence of hidden states, then these two sequences

of hidden states are concatenated componentwisely [18]. Then

the concatenated hidden states are processed by max-pooling

(selecting the maximum value of each dimension) or average-

pooling (calculate the average value of each dimension). The

sentence embedding is represented by the processed fixed-size

vector. We can notice that in this way more information of the

sentence and more hidden states information are preserved in

the sentence embedding vector.

3) Self-attentive network: The self-attentive network con-

tains bidirectional LSTM and attention mechanism. Given

a word sequence as input, the concatenated hidden states

represented by several LSTM hidden states are generated.

These hidden states then go through an affine transformation

and hyperbolic tangent activation function to generate the keys

of each LSTM unit. Then the similarity between the keys

and context vector is calculated. Finally, sentence embedding

vector is a weighted combination of the similarity and hidden

state [19] [20].

4) Hierarchical ConvNet: Inspired by the convolutional

architecture termed AdaSent, researchers from Facebook in-

troduced an architecture with four convolutional layers. The

representation of each hierarchy is computed by max-pooling

operation at each layer. Finally, the sentence embedding vector

is represented by a linear concatenation of each hierarchical

representation from the four layers [21]. In this way, the hier-

archical abstraction can be captured from the input sentence

by the network.

E. Limitations of previous methods

The first limitation of previous method is that the intent

detection accuracy can still be higher. The second limitation is

that the accuracy of previous methods is sometimes better and

sometimes worse, which means that it is not stable enough.

The third limitation is that when we cannot collect massive

training data, the accuracy of previous methods tend to decline

in a big scale. Therefore, we propose a new method which can

achieve higher intention detection accuracy more stability as

well as greater ability to generalize on small size training set.

III. PROPOSED METHOD

This section is organized as follows. Firstly, the problem

definition is stated. After that, the idea behind the method

is introduced. Then the overall architecture of the proposed

method is presented. Later on, the details of the frontend and

backend are described.

A. Problem definition

The intent detection problem can be regarded as an utterance

classification problem. In the training set, each utterance is

associated with a label called intent. Each sample in the

training set can be described as (x, y), where x represents

the utterance and y represents the intent. Intent y is one of the

elements in the intent category set, which can be described

as Y = {y1, y2, . . . , yn}. The task is to find the appropriate

intent label given a new utterance from the testing set.

B. Idea of the method

The idea of our method contains two steps. The first step

is to map an utterance to a dense vector in high dimensional

space. Such vector is called sentence embedding. Sentence

embedding enables sentences having similar semantic meaning

to be located near each other, just like word embedding enables

words having similar semantic meaning to be located near

each other. The limitation of word embedding is that although

it knows “chicken”, “hen” and “rooster” are close to each

other, it does not know “male chicken” equals “rooster” or

“female chicken” equals “hen”. As a result, the meaning of

a sentence composed of several words cannot be described

solely by word embedding. Fortunately, due to the progress

in sentence embedding research, we can now do the mapping

form sentences to dense vectors in high dimensional space

through deep learning. The sentence embedding is trained on

vast dataset and not restricted to the intent detection training

dataset which is small comparatively. As a result, our proposed

method is able to generalize better than previous method when

the utterances appear in the testing set have not been shown in

the training set. The second step is do the mapping from dense

vectors to intent labels. Essentially, this is dividing the high

dimensional space into several subspaces and draw boundaries

between them. As we know, support vector machine is such a

boundary divider that can maximize the margin between points

from different classes.

C. Architecture of the method

The architecture of our model consists of two parts, the

frontend and the backend. The frontend is used for sentence

embedding and the backend is used for intent classification.

The overall architecture of the proposed method with inter-

mediate computing process is depicted in figure 1. The details

of the frontend will be introduced in subsection III-D and the

details of the backend will be introduced in subsection III-E.

3

Fig. 1: An overview of the architecture of our SSN.

D. Frontend for sentence embedding

There are many existing neural networks that can be used to

encode sentences into fixed size dense vectors in high dimen-

sional space. Such neural networks includes standard recurrent

encoders with either Long Short-Term Memory (LSTM) or

Gated Recurrent Units (GRU), concatenation of last hidden

states of forward and backward GRU, Bi-directional LSTMs

(BiLSTM) with either mean or max pooling, self-attentive

network and hierarchical convolutional networks. Researchers

from Facebook have compared the performances of these

seven kinds of sentence encoders and it turns out that the Bi-

directional LSTMs (BiLSTM) with max pooling has the best

performance. Given a sequence of words (w1, w2, ..., wT) as

input, the bidirectional LSTM computes its hidden states both

forwards and backwards. The forward and backward results

are then concatenated. The formulas are as follow.

−→
ht =

−−−−−→
LSTMt(w1, ..., wT) (1)

←−
ht =

←−−−−−
LSTMt(w1, ..., wT) (2)

ht = [
−→
ht ,
←−
ht] (3)

Researchers from Facebook have compared the perfor-

mance of combining the concatenated results by max-pooling

(selecting the maximum value over each dimension of the

hidden units) and mean-pooling (considering the average of

the representations). It turns out that max-pooling has better

performance. Therefore, in our proposed method, we choose

Bi-directional LSTMs (BiLSTM) with max pooling as our

frontend sentence encoder.

E. Backend for intent classification

After going through the frontend, the intent detection prob-

lem has been transformed into a point classification prob-

lem in high dimensional space. There are many machine

learning techniques that can be used to classify points in

high dimensional space, including logistic regression, fully

connected neural network and support vector machine [22].

After experiments, it turns out that the support vector machine

is the best choice because of its few hyper-parameters, stable

and accurate performance, as well as good interpretability. The

support vector machine can draw a boundary between points

belonging to two different classes in high dimensional space

such that the gap or margin is maximized by using kernel

trick. The binary classification can also be extended to multi-

class classification problem. What’s more, even if the labels

are unknown, we can do unsupervised learning by a variant of

support vector machine called the support vector clustering.

F. Training procedure

The training of the frontend and backend are done one

after another. Firstly, the frontend is trained on the SNLI

(Stanford Natural Language Inference) dataset. The input of

the dataset is a sentence pair containing a premise sentence

and a hypothesis sentence, the label of the sentence is the

relationship of the two sentences, which has three categories

including entailment, contradiction and neutral. The two sen-

tences are fed into two identical frontend encoders, the output

(u, v) are combined by (u, v, |u − v|, u ∗ v), then fed into

a fully-connected layer,producing a predicted category. In the

concatenation, u and v are necessary information, while |u−v|
and u∗v corresponds to the euclidean distance and cosine dis-

tance between the two vectors. The loss is computed using the

classic cross entropy method and optimized by using stochastic

gradient descent. The model has been trained by researchers

from Facebook, so we can make use of the pre-trained model.

Secondly, we use to well-trained sentence encoder to encode

user utterances from ATIS or Snips dataset and obtained many

sentence embedding vectors in high dimensional space. We

use these vectors and their intent labels to train a support

vector machine with linear kernel. After training, the two

components, frontend and backend, are combined together,

4

with testing user utterances as input, to generate intent labels

as output.

Algorithm 1: SSN training algorithm

Input: training data including SNLI dataset and ATIS

dataset, all hyper-parameters;

Output: trained SNN model;

initialization: all training parameters Θ1 in the frontend

and all training parameters Θ2 in the backend;

/* training the frontend */
for each epoch in SNLI dataset do

for each batch do
encode sentence pair by untrained BiLSTM

max-pooling encoder;

combine two vectors by (u, v, |u− v|, u ∗ v);
feed into fully connected neural network;

optimize Θ1 by minimizing the cross entropy

loss;

end
end
/* encoding the sentences into

embedding vectors */
for each utterance in ATIS dataset do

encode user utterance by trained BiLSTM

max-pooling encoder;

end
/* training the backend */
for each vector in encoded vector set do

for each batch do
compute the loss by

Loss = R(w) + CΣmax(0, 1− yi(wxi + b));
optimize Θ2 by minimizing loss;

end
end

In this algorithm, Θ1 is all the training parameters in the

frontend, Θ2 Θ2 is all the training parameters in the backend,

u is the sentence embedding vector of the first sentence in

the sentence pair while v is the sentence embedding vector of

the second sentence in the sentence pair. Loss = R(w) +
CΣmax(0, 1− yi(wxi + b)) is the loss function of SVM,

where R(w) is the regularizer, C is the penalty parameter for

the error term, and Σmax(0, 1− yi(wxi + b)) is the hinge

loss. Hinge loss means that if the class is correctly predicted

with a margin, the loss will be zero; otherwise the loss grows

linearly.

IV. EXPERIMENTS

A. Experiment settings

1) Datasets: In this study, we use two popular datasets,

including ATIS and Snips1. The ATIS dataset contains the

utterances about making flight reservations. The training set

contains 4,478 utterances and the testing set contains 893

1The datasets used in this study can be downloaded from
https://github.com/MiuLab/SlotGated-SLU/tree/master/data

TABLE I: Statistics of the datasets

ATIS Snips
Vocabulary size 722 11,241
Number of intents 21 7
Training set size 4,478 13,084
Testing set size 893 700

utterances. There are 120 slot labels and 21 intent types in

the dataset. Another dataset called Snips is collected from the

Snips personal voice assistant, where the number of samples

for each intent is approximately the same. The training set

contains 13,084 utterances and the testing set contains 700

utterances. There are 72 slot labels and 7 intent types in the

dataset. The statistical information of the two datasets are

summarized in table 1.
2) Evaluation metrics: The performance of the intent de-

tection system is evaluated by the accuracy and stability.

Accuracy is defined by the formula

accuracy =
M

N
,

where M is the correctly detected intents while N is the total

number of actual intents. Stability is defined by the standard

deviation of the accuracy on different subsets of the testing

set. The formula is

SD =

√
Σn

i=1(xi − x̄)2

n− 1
,

where n is the number of data points, xi represents each of

the values of the data, and x̄ is the mean of xi.
3) Hyper-parameter setting: For the frontend, the batch

size is set to 64, the word embedding dimension is set to 300,

the encoder lstm dimension is set to 2048, and the dropout

rate is set to zero. For the backend, the kernel is set to linear,

parameter C is set to 1, and other parameters are set to default.

B. Compared models
We compared our proposed method with the following

models.

• Joint Seq. [5]: a model built based on LSTM and can

capture the sequential information of the sentence.

• Atten.-Based [6]: a model making use of attention mech-

anism, thus it is able to focus on the key words of the

sentence to do classification.

• Slot-Gated (Full Atten.) [7]: a model utilizing slot gated

mechanism, a way to model the explicit relationship

between slots and intent vectors.

• Slot-Gated (Intent Atten.) [7]: a variant of the third

model, which works better on simpler natural language

understanding task.

C. Overall comparison
Our proposed methods are called Spatial Semantic Network

(SSN) because they transform the semantic classification prob-

lem to the spatial classification problem. From the experiment

results, we can see that our proposed methods outperform

previous methods not only in the ATIS dataset, but also in the

Snips dataset. Therefore, it shows good generalization ability.

5

Fig. 2: Comparison of each method on ATIS dataset

Fig. 3: Comparison of each method on Snips dataset

D. Comparison of variants

There are three different variants of our proposed method

(SSN). Version I is called Static Vocabulary Spatial Semantic

Network with GloVe (SV-SSN(g)), because it uses GloVe as

word embedding and pick the most frequent 10000 words in

the dictionary as vocabulary. Version II is called Static Vocab-

ulary Spatial Semantic Network with Fasttext (SV-SSN(f)),

because it uses Fasttext as word embedding and pick the

most frequent 10000 words in the dictionary as vocabulary.

Version III is called Dynamic Vocabulary Spatial Semantic

Network with GloVe (DV-SSN(g)), because it uses GloVe as

word embedding and pick the words from the sentences as

vocabulary. The experiment results shows that GloVe is more

suitable to be used as word embedding than Fasttext and

having a higher vocabulary coverage rate achieved by dynamic

TABLE II: Overall comparison

Methods
Accuracy in

ATIS dataset
Accuracy in

Snips dataset
Joint Seq. 92.6% 96.9%
Atten.-Based 91.1% 96.7%
Slot-Gated (Full Atten.) 93.6% 97.0%
Slot-Gated (Intent Atten.) 94.1% 96.8%
Spatial Semantic Net-
work (SSN) 95.97% 97.43%

TABLE III: Comparison of variants

Methods
Accuracy in
ATIS dataset

Accuracy in
Snips dataset

SV-SSN(g) 96.08% 96.86%
SV-SSN(f) 95.30% 96.57%
DV-SSN(g) 95.97% 97.43%

Fig. 4: Sentence embedding distribution of training set

vocabulary will increase and stabilize the performance of our

system.

E. Visualization and interpretation

To have a better understanding of how and why our pro-

posed method can achieve such a high accuracy in the intent

detection task, we visualize some intermediate computing

process. Figure 4 shows the sentence embedding distribution

of training set, processed by t-SNE [23]. We can see that

sentences labeled with the same intent are clustered together,

making it easier for the back end to classify the sentences

in the testing set. Figure 5 shows the sentence embedding

distribution of training set and testing set. The alpha value of

the training points’ color is set to 0.25 while the alpha value

of the testing points’ color is set to 1. We can see that most of

the sentences in the testing set falls into the correct category

of the region defined by the training set data. There are some

exceptions, but parts of it due to the information loss of the

t-SNE processing. Figure 6 shows the confusion matrix of the

testing set after experiment. It shows the error distribution of

the intent detection system.

F. Influence of training set size

The size of training set and the size of testing set can influ-

ence the performance of an intent detection system, because

deep learning systems are built based on big data. Usually,

people hope the system can perform well on a testing set as

large as possible while requiring a training set as small as

possible, that is a good ability of generalization. This section

compares the performance difference of different methods on

6

Fig. 5: Sentence embedding distribution of training and testing

set

Fig. 6: Confusion matrix of testing set, the x-axis is the actual

intent class while the y-axis is the detected intent class

different size of training set and testing set, which shows their

different ability to generalize.

In this experiment, training set of 25%, 50%, 75% and

100% of the size of the original training set are used for

training different models. The performance difference are

shown in the line chart below. It shows that the abilities to

generalize are almost the same with little differences on Snips

dataset. However, our proposed method apparently has greater

capability to generalize on ATIS dataset, because it can keep

an accuracy higher than the compared methods even when the

size of the training set decreases significantly.

G. Stability analysis

The stability of an intent detection is very important,

because the testing result of a deep learning model can be

different even if the training set and the testing set are exactly

the same when the model is run for several times. So we divide

the testing set into four parts with thee same size and test

different methods for four times. Their performance difference

are shown in the line chart and the standard deviations of the

Fig. 7: The influence of training set size on performance (ATIS

dataset)

Fig. 8: The influence of training set size on performance (Snips

dataset)

accuracy of different methods are compared in the histogram.

It shows that our proposed method has the lowest standard

deviation compared with other methods on two different

datasets. It means that the stability of the proposed method

outperforms previous methods.

Fig. 9: Performance difference on different subsets (ATIS

dataset)

7

Fig. 10: Performance difference on different subsets (Snips

dataset)

Fig. 11: The stability of the methods are measured by the

standard deviation, and experiment results shows that our

proposed method achieves the lowest standard deviation

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new method to do intent

detection based on sentence embedding and support vector

machine. Our system contains a frontend which is used to do

sentence embedding and a backend which is used to do intent

classification. We evaluated the performance of our method

on two popular intent detection datasets. Experiment results

show that our method outperforms previous methods in terms

of accuracy and stability. What’s more, our method also shows

greater generalization ability on small size training set.

Although our method has shown its great ability in doing

intent detection, it has not been able to do intent detection and

slot filling jointly. Since the sentence embedding technique can

also mark the importance of each word in a sentence, doing

slot filling based on sentence embedding may be one of our

future research directions.

REFERENCES

[1] L. Cui, S. Huang, F. Wei, C. Tan, C. Duan, and M. Zhou, “Superagent:
a customer service chatbot for e-commerce websites,” Proceedings of
ACL 2017, pp. 97–102, 2017.

[2] C. Tao, W. Wu, C. Xu, Y. Feng, D. Zhao, and R. Yan, “Improving
matching models with contextualized word representations for multi-
turn response selection in retrieval-based chatbots,” arXiv preprint
arXiv:1808.07244, 2018.

[3] P. Zhu, Z. Zhang, J. Li, Y. Huang, and H. Zhao, “Lingke: A
fine-grained multi-turn chatbot for customer service,” arXiv preprint
arXiv:1808.03430, 2018.

[4] P. Khurana, P. Agarwal, G. Shroff, L. Vig, and A. Srinivasan, “Hybrid
bilstm-siamese network for faq assistance,” in Proceedings of the 2017
ACM on Conference on Information and Knowledge Management,
pp. 537–545, 2017.

[5] D. Hakkani-Tür, G. Tür, A. Celikyilmaz, Y.-N. Chen, J. Gao, L. Deng,
and Y.-Y. Wang, “Multi-domain joint semantic frame parsing using bi-
directional rnn-lstm.,” in Interspeech, pp. 715–719, 2016.

[6] B. Liu and I. Lane, “Attention-based recurrent neural network models for
joint intent detection and slot filling,” arXiv preprint arXiv:1609.01454,
2016.

[7] C.-W. Goo, G. Gao, Y.-K. Hsu, C.-L. Huo, T.-C. Chen, K.-W. Hsu,
and Y.-N. Chen, “Slot-gated modeling for joint slot filling and intent
prediction,” in Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), vol. 2, pp. 753–757,
2018.

[8] C. Xia, C. Zhang, X. Yan, Y. Chang, and P. S. Yu, “Zero-shot
user intent detection via capsule neural networks,” arXiv preprint
arXiv:1809.00385, 2018.

[9] J. Ramos et al., “Using tf-idf to determine word relevance in document
queries,” in Proceedings of the first instructional conference on machine
learning, vol. 242, pp. 133–142, 2003.

[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composition-
ality,” in Advances in neural information processing systems, pp. 3111–
3119, 2013.

[11] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pp. 1532–
1543, 2014.

[12] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[13] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” in Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, 2017.

[14] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext.zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

[15] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes,
“Supervised learning of universal sentence representations from natural
language inference data,” CoRR, 2017.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[18] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th international conference on Machine learning, pp. 160–
167, 2008.

[19] Y. Liu, C. Sun, L. Lin, and X. Wang, “Learning natural language
inference using bidirectional lstm model and inner-attention,” arXiv
preprint arXiv:1605.09090, 2016.

[20] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and
Y. Bengio, “A structured self-attentive sentence embedding,” arXiv
preprint arXiv:1703.03130, 2017.

[21] H. Zhao, Z. Lu, and P. Poupart, “Self-adaptive hierarchical sentence
model.,” in IJCAI, pp. 4069–4076, 2015.

[22] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proceedings of the fifth annual workshop
on Computational learning theory, pp. 144–152, 1992.

[23] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

8

