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Abstract—Given t ranking systems of n objects, consensus
ranking (CR) aims to derive a ranking which best represents the
consensus goal of these ranking systems. Since a ranking system
of n objects is equivalent to a permutation of the n natural
numbers [1, n] from 1 to n, the CR problem has been studied on
the bubble-sort graph rank space Bn which consists of the set of
all permutations of order n. However, it remains a challenging
issue when a combination of ranking systems (consensus ranking)
has ties. But Bn does not include permutation (or rank systems)
with ties. In this paper, we propose a multi-layer combinatorial
fusion algorithm for combining multiple ranking systems on
the generalized permutation rank space where ties are allowed.
Using two simulated data sets and an empirical data set in the
molecular docking domain, we demonstrate the robustness of
our approach. This study also provides a viable approach to
data analytics, machine learning, and combinatorial fusion in
the non-parametric rank space.

Keywords—Bubble-sort graph, Combinatorial Fusion Algo-
rithm, ER-algorithm, generalized permutation rank space, rank
aggregation, scoring system combination

I. INTRODUCTION

The bubble-sort graph Bn is a Cayley Graph with the

symmetric group Sn as the node set and adjacency is generated

by a subset of adjacent swaps. The n-dimensional bubble-sort

graph Bn has many good combinatorial properties including

(n − 1)-regular, bipartite, (n − 1)-connected, Hamiltonian
Laceable, fault tolerant, and recursively constructible [1], [2],

[9], [13], [23], [30], [46], [47], [49]. Combinatorial Fusion,

proposed in Hsu, Shapiro, and Taksa [21], has been used to

combine multiple scoring or ranking systems using the rank-

score characteristic (RSC) function and cognitive diversity

[18]–[20]. It improves data analytic and machine learning re-

sults in a variety of domains including biomedical informatics

[7], [32], [33], [41], [42], [44], virtual screening [8], [12],

[50], cognitive neuroscience [5], [43], [45], predictive analytics

[15], [29], [34]–[36], [38], [39], text categorization [31], and

portfolio management [48].

The Cayley graph Bn as a metric space has the distance

between two nodes P , Q, d(P,Q), the Kendall’s τ distance
τa [27] which is equal to the number of pairwise interchanges
when applying bubble-sort sorting algorithm to P in order to

obtain Q [9]. Kendall [26] defined another distance measure-

ment τb which can handle the weak orders, the ranking order
with ties. However, as pointed out by Emond and Mason [10],

Kendall’s τb distance does not satisfy the triangle inequality.

Hence it is limited as a practical metric space. Kemeny and

Snell [25] proposed a distance metric, we call the KS-metric,

using absolute values, which satisfies several good axioms.

However, since it uses summation of absolute values, it is

difficult to come up with an accurate calculation for large

sample spaces.

Emond and Mason [10] proposed a rank correlation τx
which is useful in the rank space (Hn, τx), where Hn is a

generalized bubble-sort graph rank space and equal to Bn ∪
{rank orders with ties}. In this paper, we use the generalized
Bubble-sort graph rank space with Hn as our rank space and

dH as our distance metric obtained from the rank correlation

τx.

We propose a combinatorial fusion algorithm, called ER-

algorithm for expansion and reduction, on the generalized

rank space Hn with distance metric dH . Let A be a set

of t weak rank orders or permutations with or without ties,
A1, A2, . . . , At, where normalized dH distances to the identity
permutation In are within the interval [0.4,0.5). We apply the
ER-algorithm to the set of initial t rank orders. The resulting
t rank orders are used again in a multi-layer process which
aims to move these t nodes closer and closer to the identity
permutation In. This process terminates when the results at a
layer are not improved from the previous layer. We illustrate

the robustness of the ER-algorithm and the multi-layer process

with two simulated data sets from H10 and H300. We also

apply the multi-layer ER-algorithm to a set of 12 scoring

functions which are the best 12 neural networks obtained

by a deep learning process in molecular docking function

development [16]. Our results demonstrate good improvement

over the given 12 scoring systems.

The current study will also provide a computational

framework for a variety of data analytic and machine learning

tasks such as prediction, rank aggregation, joint decision

making, deep learning, preference learning [4], [10], [11], [17],

[19], [27], [37], [51] and target search, in the non-parametric

rank space.

II. MULTI-LAYER COMBINATORIAL FUSION

In this section, we describe the rank space Hn with

distance metric τx to measure the distance between two nodes.
We also describe combinatorial fusion algorithms which com-

bine multiple scoring or ranking systems with weights. We
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then define the Expansion-Reduction (ER-) algorithm and

describe the multi-layer combinatorial fusion process.

A. The Rank Space Hn with Distance Metric dH

Let [a, b], where 0 < a ≤ b, be the set of positive
integers between a and b inclusively. Suppose we are given

a group of t rank orders, ranking systems, or permutations
on a set of n data items (objects, subjects, or labels) D =
{d1, d2, . . . , dn}. Let Sn be the symmetric group of order

n which consists of all permutations of [1, n] or all the
rank orders of the data items d1, d2, . . . , dn. Cayley graph
Cay(Sn, Tn) consists of the node set Sn and the subset Tn

of adjacent transpositions. Two nodes A1 and A2 are adjacent

to each other if A1 = A2 ◦ tn or A2 = A1 ◦ t′n where tn
and t′n are two permutations which are adjacent transposition
in Tn, and tn ◦ t′n = t′n ◦ tn = In, the identity permutation
[9]. These graphs are also known as the Bubble-sort graph

Bn of order n because the adjacency so defined leads to the
distance metric counting the number of interchanges between

two nodes, a permutation, using the Bubble-sort sorting al-

gorithm. Bn has many excellent graph properties including

regularity, biparticity, connectedness, Hamiltonian properties,

and recursively constructable [1], [9], [13], [23], [28], [30],

[46], [47]. We illustrate B3 and B4 as follows:

Example 1: B3 consists of 6 permutations

(123), (132), (213), (231), (312), (321). B4 has 4! = 24
nodes, degree = 3, diameter = 6, and 36 edges. Two B4

graphs are shown in Fig. 1. The graph B4 in Fig. 1(b) shows

that B4 can be recursively constructed from 4 copies of B3 and

it has maximal connectivity of 3. B4 in Fig. 1(c) is constructed

as a metric space with S4 as the node set and Kendall τa
rank distance as the metric. In both B4 in Fig. 1(b) and 1(c),

there exist 3 disjoint paths between any pair of two nodes.

For example, between 1432 and 4123, the three disjoint paths

are: P1 = 1432, 4132, 4123; P2 = 1432, 1423, 4123; and
P3 = 1432, 1342, 3142, 3412, 4312, 4321, 4231, 4213, 4123.

Since the Bubble-sort distance is equivalent to the

Kendall’s rank distance resulting from τa correlation, the

Bubble-sort graph Bn is turned into a metric space Bn =
G(Sn, dK) where dK is the Kendall rank distance. But

Kendall’s τa correlation cannot handle ranking with ties [26].
Kemeny and Snell [25] proposed a distance metric dKS

obtained from a score matrix of a rank order as was done in τb
which can handle ties. But since dKS is represented as sums

of absolute values, it does not lead to practical applications.

Emond and Mason [10] reexamined the concept of the half-flip

proposed in [25] and defined a new rank correlation τx. They
then proved that the half-flips metric Th, the Kemeny-Snell

metric, and the τx rank correlation coefficients are equivalent
in the sense that they all satisfy the Kemeny-Snell axioms. The

τx rank correlation coefficient is defined as follows where ties
and partial orders are allowed in a rank order or permutation.

Definition 1 [10]: Suppose that a weak order A, a rank
order with ties allowed, of n data items D = {d1, d2, . . . , dn},

is represented as an n× n score matrix aij as follows [10]:

aij =

⎧⎪⎪⎨
⎪⎪⎩

1 if data item di is ranked ahead of
or tied with data items dj ;

−1 if di is ranked behind dj ;
0 if i = j.

Rank correlation τx between two weak orders A and B
is given by the inner product of their score matrix [10]:

τx(A,B) =

∑n
i=1

∑n
j=1 aij · bij

n · (n− 1)

The relationship between the rank correlation and rank dis-

tance dH metric is:

τx(A,B) = 1− dH(A,B)
n(n−1)

2

So the rank distance matrix dH metric is:

dH(A,B) = n(n− 1) · (1− τx

2
) (1)

This rank distance metric dH defined in the node set Hn =
Sn ∪ {rank orders with ties allowed} defines a rank space
(Hn, dH). H3 is illustrated as follows in Fig. 2 [24], [25]:

Example 2: The rank space H3 has 13 nodes where 6

nodes are rank orders without ties, 6 nodes with 2 ties, and

1 node with three ties. In Figure 2, the node
(

a
b
c

)
means the

data items a, b, c, are ranked in order 1,2,3. The node ( a
b−c )

is equivalent to the ranking of data items as {1, 2.5, 2.5}.
We note that the number of nodes fn in Hn is greater

than or equal to the number of nodes in Bn, which is n!.
Although an asymptotic function is given by Gross [14], the

exact number is not known. We will elaborate more on this

issue in concluding remark section.

B. Combinatorial Fusion Algorithm

Let D = {d1, d2, . . . , dn} be a set of data items. Let A
be a scoring system consisting of a score function sA from D
to R, the set of real numbers, and a rank function rA from

D to N , N = [1, n], obtained by sorting the score values into
descending order and assigning a rank i ∈ N to each of the

elements (data items) in D with respect to that order.

Let sA and sB be score functions and rA and rB be

rank functions of two scoring systems A and B, respectively.
Average score combination C and average rank combinationD
are calculated as follows: sC(di) =

(sA(di)+sB(di))
2 , sD(di) =

(rA(di)+rB(di))
2 . Rank functions rC and rD are obtained by

sorting the score values in descending order based on the score

functions sC and sD accordingly. We note that the two final

rank orders rC and rD may not be the same. It was shown

in [22] that under certain conditions, related to diversity or

dissimilarity, rD has more predictive power than rC (also see
[19]). Let {A1, A2, . . . , At} be t scoring systems on the set
of data items D. Each scoring system A has a score function

sA : D → R and a rank function rA : D → N . For each
score function, after normalization to [0, 1], the score value
vector (sA(d1), sA(d2), . . . , sA(dn)) is in [0, 1]n. The rank
value vector (rA(d1), rA(d2), . . . , rA(dn)) is in Nn. In this
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(a) B3 (b) B4

(c) S5

Fig. 1. The Bubble-sort graph B3 and B4. B4 has connectivity = 3.

Fig. 2. The Rank Space H3 = G(H3, dH) [24], [25].

paper, we view the rank order of A on the data set items

in D as the rank order (rA(d1), rA(d2), . . . , rA(dn)), where
rA(di) ∈ [1, n] which is equivalent to the permutation of the n
numbers in [1, n]. For a set of t rank orders (permutation) on
the data items D = {d1, d2, . . . , dn}, there are totally 2t−1−t
combinations with k-combination where k = 2, 3, . . . , t. For
each of the k-combinations Ak, we have

sAk
(di) =

k∑
j=1

rAmj
(di),where {m1,m2, . . . ,mj} ⊆ [1, t]

(2)

C. The Multi-layer ER-Algorithm

The expansion-reduction algorithm consists of the ex-

pansion step using three combinatorial fusion algorithms:

the weighted combination by performance, combination by

geometric mean [6], and the mixed group rank (MGR) com-

bination algorithm [40]. At the first step, the set of t rank
orders is expanded to 2× (2t−1− t)+1 = 2t+1−2t−1 rank
orders using the three methods. The second step takes these q
rank orders (ranking system) which are better than the initial

t rank orders. In the third step, these q systems are ordered in
the decreasing order of two attributes (a) performance and (b)

diversity strength calculated by average of diversity between
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each ranking system (rank order) and other q−1 rank systems.
We use a sliding rule on these two rankings to pick the top t
rank orders which appear in both lists. Note that if the resulting

number of ranking systems q is less than or equal to t, we
just use these q systems in next layer. The ER-algorithm is

summarized as follows:

ER-Algorithm: Let A1, A2, . . . , At be a group of t rank
orders with ties allowed. Let p(Ai), i = 1, 2, . . . , t, be the
performance of Ai as measured as Ai’s dH distance to the

identity permutations (including ties) In. The following steps
will generate a new group of t or less than t rank orders which
hopefully will be closer to In than the previous group of t rank
orders.

Step 1:

Step 1.a: Generate all the weighted 2t − t− 1 com-
binations (2-comb, 3-comb up to t-comb)

using each of the combinations by perfor-

mance and by geometric mean. For the k-
combination rAk, we have the weighted

combination Wk using performance PAmj

of the rank system Amj
:

Wk(di) =

k∑
j=1

rAmj
(di)

PAmj
(di)

where k = 2, 3, . . . , t
Step 1.b: Generate the mixed group rank combina-

tions [40].

Step 2: Pick top q rank orders, which are better than all the
t rank orders, from the 2(2t − 1− t) + 1 rank orders
obtained from Steps 1.a and 1.b.

Step 2.a: Calculate diversity (using dH ) between
each pair of the

q·(q−1)
2 pairs of rank

orders.

Step 2.b: Calculate the performance and diversity

strength of each of these q systems.
Step 2.c: if q < t, we stop.

Step 3: Use the sliding rule to pick the top t rank orders
which has the highest diversity strength and highest

performance.

Now we apply the ER-algorithm to the initially given

t rank orders continuously until it converges where there is
no improved combination, q < t, or it reaches the identity
permutation In.

III. SIMULATED AND EMPIRICAL RESULTS

In this section, we run three experiments to illustrate

our proposed multi-layer ER-algorithm on the rank space Hn

with dH as distance metric of the simulated case to identity,

and empirical case to target. Two simulated cases are in H10

and H300 while the empirical case is in H300. In all three

examples, the group of initial rank orders has t = 6 [3].

A. Data Sets and the Computing Environment

For the simulated cases in H10 and H300, we initially

take 125 rank orders from the Bubble-sort graph rank space

S10 and S300 in H10 and H300 with the rank distance metric

dH in the interval [0.4, 0.5) to the identity rank order I10
and I300, respectively. For example in S300, we first generate

all 1,485,000 rank orders where dH rank distance to I300
are three numbers in [0.4, 0.5). Then 125,000 rank orders
(permutations) are derived with uniform distribution. In this

set of rank orders in S300, we randomly select 150 as our

pool of initial rank orders.

For the empirical case, 12 top scoring functions are

taken from the top 100 neural networks resulting from a deep

learning study which predicts protein-ligand binding affinities

[16]. The distances of each of the 12 rank orders to the target

rank order is in [0.126, 0.135]. This range of distances is quite
close to the target in the scale from 0 to 1 as they are the results

from a deep learning computing experiment [16].

All simulations and empirical results were conducted on

an Ubuntu 18.04.2 server on an Intel Xeon® CPU E5-2670,

2.30Ghz, with 24 cores and 32GB of RAM.

B. Simulated Results in H10 and in H300

In the rank spaceH10, we divide the 150 rank orders into

28 groups of 6 rank orders with few duplicates. We randomly

choose 8 groups from these 28 groups in Table I. The results

demonstrate that distances of these initial 6 rank orders are

in [0.444, 0.489], distance of the output in [0.0889, 0.4222],
number of layers [1, 5], and time spent (sec) in [1.47, 7.68].
Table I lists eight groups of the initial six rank orders from the

125 rank orders and their outputs with the number of layers

and time spent.

In the rank space H300, we use the 150 rank or-

ders to construct 50 groups of 6 each with some dupli-

cates. We choose 5 groups from these 50 groups in Ta-

ble II. The results demonstrate that distances of the initial

6 rank orders in [0.49949, 0.49996], distance of the outputs in
[0.46253, 0.48495], number of layers in {2, 3}, and time spent
(min) in [20.29, 31.64], respectively. Table II lists five groups
of the initial six rank orders from the 150 rank orders and

their outputs with the number of layers and time spent.

C. Empirical Results in H300

The top 12 rank orders obtained from the results of the

best 100 neural networks [16] have rank distances dH to the

target ranking in [0.126466, 0.134448]. We choose 5 groups
of 6 rank orders from the 12: best 6, worst 6, random six

(case A), random six (case B), and random six (case C).
The distances of the output rank orders to the target ranking

[0.117659, 0.120223], number of layers {2, 3}, and time spent
(in mins) [39.64, 47.74] are listed in Table III.

D. Discussion

In the simulated case H10, our ER-algorithm improves

the dH rank distance (to the identity permutation) from 0.489

to 0.0889 as demonstrated in Table I. This amounts to 36 steps

out of the 90 steps which is the diameter of H10. In the case

of H300, our multi-layer combinatorial fusion algorithm using

the ER-algorithm improves the dH rank distance from 0.49996
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TABLE I
H10 SIMULATED CASE

Group Index Input Input Input Input Input Input Output Layer Time (sec.)
G1 73,74,75,76,77,78 0.489 0.444 0.489 0.444 0.467 0.489 0.0889 5 5.93
G2 7,32,57,82,107,132 0.489 0.489 0.467 0.467 0.444 0.444 0.0889 4 7.68
G3 16,41,66,91,116,141 0.489 0.489 0.467 0.467 0.489 0.444 0.1333 4 6.90
G4 49,50,51,52,53,54 0.444 0.467 0.467 0.467 0.444 0.489 0.2000 4 4.40
G5 25,26,27,28,29,30 0.467 0.489 0.467 0.444 0.444 0.467 0.2000, 0.2222, 0.2444 3 5.50
G6 15,40,65,90,115,140 0.444 0.467 0.489 0.467 0.467 0.467 0.2667, 0.2889, 0.3111 2 2.61
G7 133,134,135,136,137,138 0.444 0.489 0.489 0.489 0.444 0.489 0.3111,0.3333 2 2.30
G8 8,33,58,83,108,133 0.489 0.489 0.489 0.489 0.444 0.444 0.4000, 0.4222 1 1.47

TABLE II
H300 SIMULATED CASE

Group Index Input Input Input Input Input Input Output Layer Time (min.)

G1 19,20,21,22,23,24 0.49996 0.49993 0.49971 0.49973 0.49953 0.49953 0.46253, 0.46446, 0.46462, 0.46524, 0.46537, 0.46540 3 22.90
G2 13,14,15,16,17,18 0.49996 0.49996 0.49973 0.49971 0.49953 0.49953 0.47061, 0.47166, 0.47374, 0.47670, 0.47737, 0.47819 2 25.14
G3 25,26,27,28,29,30 0.49993 0.49996 0.49971 0.49976 0.49953 0.49949 0.47458, 0.48486, 0.48495 2 20.29
G4 1,2,3,4,5,6 0.49993 0.49993 0.49973 0.49973 0.49949 0.49951 0.47594, 0.47679, 0.47690 3 20.98
G5 7,8,9,10,11,12 0.49996 0.49993 0.49971 0.49971 0.49951 0.49949 0.48370, 0.48375 3 31.64

TABLE III
H300 EMPIRICAL CASE

Group Input Input Input Input Input Input Output Layer Time (min.)

G1(B6) 0.126466 0.129164 0.130903 0.131037 0.131371 0.132308 0.117659, 0.118149, 0.118172, 0.118239, 0.118305 3 47.74
G2(W6) 0.132486 0.132642 0.133289 0.133846 0.133846 0.134448 0.118707 2 39.64
G3(R6A) 0.132308 0.131371 0.133846 0.132486 0.131037 0.130903 0.117793, 0.117837, 0.119576, 0.119755, 0.119777, 0.119866 3 44.87
G4(R6B) 0.131037 0.132642 0.134448 0.132486 0.130903 0.133846 0.119086, 0.119420, 0.119955, 0.120045, 0.120201, 0.120223 3 46.34
G5(R6C) 0.131037 0.133846 0.131371 0.129164 0.132642 0.134448 0.11922 2 45.53

to 0.46253 in Table II. This is equivalent to 3357 steps out

of the diameter 300× 299 = 89700 steps. Comparing the two
rank spaces H10 and H300, the complexity of more than 300!

nodes in H300 increases tremendously compared to that of

more than 10! nodes in H10.

In the empirical case H300, the multilayer CFA improves

the dH rank distance from 0.126466 to 0.117659 which is

equivalent to 790 steps out of the diameter of 89700 steps.

It is interesting to note that although the improvement

percentage 40.01% in H10 decreases to that of 3.743%
in H300, the time spent from 7.68 sec in H10 to 31.64

min=1898.4 sec in H300 is proportional to 300. The pro-

portional increase of the time for the multi-layer CFA is

reasonable with respect to the architecture of the generalized

rank space. However, the performance improvement depends

on the initial six ranking systems. In particular, the location of

these initial ranking systems (or permutations) would dictate

the diversity between them which is crucial in the expansion

phase of the ER-algorithm. We will elaborate more on this

issue in the next section.

IV. CONCLUDING REMARK AND FURTHER WORK

In this paper, we propose a multi-layer combinatorial

fusion algorithm for t ranking systems of n objects, to

derive a ranking system which best represents the consensus

goal of these ranking systems. The proposed ER-algorithm

works on the generalized rank space Hn with the node set

Hn = Bn∪{ranking systems with ties allowed} and edge set
defined by the rank distance dH which is related to the rank

correlation τx [10]. Using two simulated data sets in H10 and

F300 and one empirical data set in H300 resulting from a deep

learning study in the protein-ligand docking scoring function

development domain, we demonstrated the robustness of the

proposed process.

The study will also provide a new approach to perform

big data analytics, deep learning, consensus ranking, decision

making, and model fusion in the non-parametric rank space

[10], [17], [19], [27]. In particular, the space Hn of ranking

systems, with ties allowed, and the rank distance dH provide

a good learning and fusion space. The thrust of our approach

is the combination of statistical techniques such as rank

correlation and combinatorial techniques such as rank distance.

In addition, we are able to extend the bubble-sort graph rank

space Bn to the generalized rank space Hn which includes

ranking systems with ties allowed. Since Bn (also Sn) is

a subset of Hn, the many good combinatorial properties in

Bn can be used to facilitate the ER-algorithm in the CFA

process. Table IV gives a comparison between rank correlation

and rank distance as used in statistics and in combinatorics,

respectively:

In the following, we list some issues which are worthy

of further investigation.

1) Which t initial ranking systems we should use? Ideally,
these t initial ranking systems should be good enough
and have diversity between them [18], [19], [50]. This

translates to first choosing those t initial ranking systems
from the left half of the rank space (see Fig. 1(c)) as

we did to pick ranking systems with rank distance dH in

[0.4 to 0.5). Secondly, these t ranking systems have to
be diverse. In our future work, we will pick those 150
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TABLE IV
COMBINATORIAL DISTANCE VS STATISTICAL CORRELATION

Combinatorial distance(A,B) dK dKS dH

properties adjacency(A,B) Bn(Sn, τa) (Hn, Th) (Hn, Th) [10]

Statistical correlation(A,B) τa [29] τb [26], dKS [25] τx [10]
Properties matrix fun A aij [25] aij [26] aij [10]

TABLE V
THE NUMBER OF NODES IN Hn , fn , AS COMPARED TO n!

n 2 3 4 5 6 7 8 9 10

fn 3 13 75 541 4,683 47,293 545,835 7,087,261 102,247,563
n! 2 6 24 120 720 5,040 40,320 362,880 3,628,800

ranking systems in H10 and H300 (section III(A)) with

high diversity to facilitate the formation of the t ranking
systems.

2) What is the optimal number of initial ranking systems?

In this paper we use t = 6. We could have used t = 5 or
t = 7. Ideal case should be at least 3 or 4 and at most
10 or 11 [3], [19], [50] to have a proper balance between

performance of each of the ranking systems and diversity

between any pair of two systems. In the future, we will

investigate the cases t = 5, 7, and 8.
3) What are the combination methods we should use? In

theory, we should use the combination method which

expands the rank space to include ranking systems which

are better than the existing ranking systems. In this

paper, we use three kinds of combination methods in

our multi-layer CFA process: performance weighted rank

combination, rank combination using geometric mean,

and the mixed group rank method [40]. We will explore

other combination methods in the generalized rank space

Hn.

4) What is the exact number of nodes fn in Hn? Gross [14]

gave a recurrence relation and an asymptotic function for

fn. The first few numbers produced are listed in Table V
as compared to n! = |Bn|, where Bn is the bubble-sort

Cayley Graph. Armed with the recurrence relation for

fn and the combinatorial structure of Hn, one might be

hopeful to construct an exact formula for fn.
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