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Abstract—A colocation data center rents out rack space and
equipment to third parties, while providing core services such
as power, cooling, and bandwidth. Energy consumption, power
distribution, and cooling account for the majority of the op-
erational costs. Reducing these operational costs is important in
order to increase the profit margins of the data center. When im-
plementing cost-saving measures, the Service Level Agreements
and the high Quality of Service have to be maintained. Therefore,
monitoring the effect of these measures is key. In a colocation
data center however, monitoring the effect on the IT equipment
owned by third parties is challenging, due to limited access
to the equipment. This work addresses the question: can we
monitor third party IT equipment in a colocation data center,
without requiring access to the operating system? To answer
this, we collect 2.5 billion data points from over 160 servers in a
data center, monitoring the server state and the environmental
parameters. We utilize this dataset to discover and train multiple
models that allow colocation data centers to monitor third party
servers without requiring access to the server’s operating system.
These models enable Data Center Operators to monitor the effect
of cost-saving measures on the thermal state of the servers. As
well as to monitor the computational load, in order to assist in
the expansion planning process.

Index Terms—data center monitoring, data-driven modeling,
colocation data centers

I. INTRODUCTION

Monitoring the IT infrastructure of a data center is essential

to guarantee the high Quality of Service specified in Service-

Level Agreements, and to determine the effect of energy

efficiency increasing measures on the data center. There is a

class of data centers where extensive monitoring is not trivial:

colocation data centers. A colocation data center is a type

of data center where rack space, network infrastructure, and

IT equipment are rented out to third parties. The colocation

data center provides only the power, cooling, bandwidth,

and security services. While traditional data centers own and

maintain all of the IT equipment, and therefore have full

control over the data center, colocation data centers only

concern themselves with the core infrastructure of the data

center, while the IT equipment is owned by their customers.

Therefore, a Data Center Operator (DCO) in a traditional data

center has insights into the complete state of the data center,

including the state of IT equipment. This is unlike a DCO

working in a colocation data center, who does not have detailed

information regarding the state of the IT equipment.

Both traditional and colocation data centers concern them-

selves with reducing the operational expenditures, while main-

taining high Quality of Service, in order to increase profit

margins. A significant portion of the operational costs incurred

by data centers are related to energy consumption, power

distribution, and cooling. These three categories account for

72% of a data centers monthly costs, that is excluding the

amortization of servers [1]. Thus increasing the energy ef-

ficiency of a colocation data center can greatly reduce the

monthly expenses. Common measures to improve the energy

efficiency in a data center include: optimizing the air flow han-

dling, increasing the temperature set point of the cold aisles,

using free air cooling and air economizers, selecting higher

efficiency power system equipment, as well as using machine

learning for optimization [1]. Extensive monitoring is required

to determine the effect of these energy efficiency measures on

the IT equipment and data center environment. Furthermore,

monitoring is also important for expansion planning, in terms

of increasing available space and optimizing the compute load,

but perhaps even more so in terms of the power and thermal

capacities of the data center.

There are conflicting interests between the DCOs of the

colocation data center and the third parties (i.e. the data

center’s customers) who rent rack space in the data center: the

customers are able to monitor their own equipment, but there is

no incentive to share this data with the DCOs as the customers

do not directly benefit from increased profit margins. In fact,

there are privacy and security concerns which customers have

to consider when exposing data to the colocation data center.

Conversely, for a colocation data center, server metrics such

as CPU utilization and CPU temperature are of great interest

as the CPUs of servers are the primary contributors to the

overall electrical load and thermal load of a data center [2].

While the colocation data center cannot monitor the internal

state (e.g. utilization) of the IT equipment, they can monitor

other aspects of the data center, such as the global temperature,

humidity and electrical load. There are also metrics which can

be monitored by both the customers as well as the data center.

In this work, we analyse the server metrics that are available
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to colocation data centers and customers. We use these metrics

to discover models that enables monitoring of the customers

IT equipment. We are interested in models that describe the

electrical load, computational load, as well as the thermal load

of the data center. These models would; (1) give colocation

data centers the tools required to monitor the server infrastruc-

ture despite not having access to the servers; (2) measure the

effects of energy saving actions on the server equipment; and

(3) assist in the expansion planning process to increase rack

space, as well as thermal and power capacities.

We conduct a large scale experiment where we collect

2.5 billion data points from over 160 High Performance

Computing (HPC) servers in a single data center over a period

of 5 months. The dataset consists of a multitude of metrics,

ranging from CPU usage and power consumption, to inlet and

outlet air temperatures. We propose a method for data-driven
monitoring of colocation data centers. The objective is to dis-

cover correlations between different metrics, and utilize them

to develop models that assist in monitoring and controlling a

colocation data center without requiring customers to expose

their data. In this work, we answer the question whether it is
feasible to monitor the server infrastructure of a colocation
data center without requiring customers to provide access to
the operating system, in turn enabling extensive monitoring
for colocation data centers despite conflicting interests.

The remainder of this paper is organized as follows. Sec-

tion 2 explores the state of the art. We describe the dataset

of metrics, the acquisition method, and the metric selection

process in Section 3. In Section 4, we propose numerous

models for monitoring servers in a colocation data center

and evaluate them. The results are discussed in Section 5.

We highlight our future work in Section 6, and end with

concluding remarks in Section 7.

II. STATE OF THE ART

The conflicting interests that exists between the DCOs

of the colocation data center and the third party customers

who are renting space in a colocation data center play a

central role in this work. A data center can monitor metrics

related to the global temperature, humidity, and electrical

load with relative ease. They also have full control of the

cooling systems. The customers of the colocation data center

can monitor the internal state of the server, as they have

direct access to the operating system. These metrics include

memory usage, number of processes running, but more im-

portantly CPU utilization and temperature. There are also

server-related metrics that colocation data centers can monitor

without requiring server access, such as inlet and outlet air

temperature, and power consumption. Data centers often use

metered Power Distribution Units (PDUs) that monitor the

power consumption. The collection of air temperature data

may require the deployment of additional sensors.

A colocation data center aims to reduce the operation

expenditures, which can be achieved by optimizing the overall

efficiency of the data center. An example of a measure that

reduces the operational expenditures and increases the overall

efficiency is an increased temperature set point. This reduces

the load on the cooling equipment. However, this also has a

significant effect on the IT equipment, as it will be operating

at higher temperatures. This can have a major impact on the

performance, due to thermal throttling and humidity issues.

Therefore, the colocation data center has an interest in metrics

that are only accessible by their customers, such as the CPU

utilization (compute load) and the CPU temperature (thermal

load). The customer on the other hand has no incentive to share

the data, and instead has privacy and security considerations

to take into account.

Taking an Internet of Things (IoT) approach to data center

monitoring allows for the collection of a large and varied

dataset. This dataset can also be used for evaluating the many

key performance indicators that are applicable to data centers

[3]. Furthermore, correlating the metrics may uncover models

that allows colocation data centers to monitor the third party

IT equipment, despite the lack of access. These model may

also assist in increasing the data center’s energy efficiency.

For example, models that detect comatose or zombie servers

can contribute to the energy efficiency of the infrastructure.

Comatose servers are servers which are no longer in use and

serve no useful purpose. A report from the Anthesis Consulting

Group states that the percentage of comatose servers in data

centers is around 25% [4]. Utilizing IoT for data collection

and analysis leads to improvements in the data center’s service

levels by use of predictive maintenance [5].

The authors of [6] propose a real-time data center moni-

toring infrastructure using low-power wireless sensors. They

monitor the following parameters: temperature, humidity, air-

flow, water, security, vibration, differential air pressure, and

fire systems. They state that such a system can be rapidly

deployed and would enable real-time predictive modeling. In

[7], the authors also propose a wireless system architecture for

monitoring a data center. They consider not only sensing, but

also actuation. They propose to control the Power Distribution

Units and the cooling systems using wirelessly networked

sensors and actuators. A different approach is taken by [8],

combining Big Data strategies and 3D gaming technology

to monitor and visualize a HPC cluster. They collect 5,000

environmental data points (external metrics) and 3,500 server

data points (internal metrics). Their environmental data points

include temperature, humidity, air pressure, power consump-

tion, voltages, and amperages. Server data points consist

of software versions, CPU load, memory allocations, disk

utilization, network and link utilization, storage health and the

state of the job scheduler.

In our work, we focus on metrics related to IT equipment,

we do not collect metrics regarding cooling systems, air

pressure, and fire systems. However, the scale at which we

collect our metrics is orders of magnitude larger than [8]. We

rely on IoT sensors to collect billions of data points in order to

enhance the monitoring capabilities of colocation data centers.

The power usage and energy efficiency of both servers and

data centers are topics which are actively researched. One of

the most diverse datasets is provided by the SPECpower -
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ssj2008 benchmark [9]. The benchmark measures performance

and power of servers using gradual load levels. The benchmark

focuses on collecting measurements, but does not focus on

modeling. In [10], the authors propose a complete system

model for modeling the power consumption of six subsys-

tems: CPU, memory, chipset, I/O, disk, and GPU. They have

observed an average error of less than 9% per subsystem when

evaluating their model. The authors of [11] propose a different

approach to modeling power consumption. In their model,

they consider servers which are running virtual machines, and

evaluate how the number of virtual machines influences the

server’s power consumption. They also include the idle power

consumption and the overhead introduced by the hypervisor.

Linear regression is applied to obtain the values of the model’s

parameters. The authors do not consider metrics other than

power consumption and CPU usage. In [12], the authors

model the CPU usage and the power consumption as random

variables and exploit the monotonicity property to describe the

relationship between these variables. The authors report mean

errors between 2% to 5.2%, depending on the dataset. Only

the power consumption and CPU usage are used. The authors

of [13] propose a method to estimate the power consumption

of individual CPU cores based on the measured CPU core

temperature. They also develop a technique to optimize the

throughput on CPU’s that have thermal constraints. Their opti-

mization method improved throughput by 4%, when compared

to existing temperature-based methods.

We observe that the state of the art focuses primarily on

estimating the power consumption based on internal metrics

such as CPU utilization, core temperature, and sometimes even

considers the hypervisor itself and the number of running

virtual machines. In other words, they estimate the external

metrics (often power consumption) based on internal metrics

(often CPU usage). In our work, we approach this problem

from the opposite direction because a data center can easily

measure the power consumption of IT equipment. It is the

internal server metrics that are difficult for the colocation data

center to measure and monitor.

III. METHODOLOGY

To discover metric correlations and candidate models to en-

able data-driven monitoring of colocation data centers, a large

dataset covering many metrics is required. The University of

Groningen has two on-campus data centers that house the

university’s IT infrastructure, in addition to a number of HPC

clusters and co-located servers. The data is gathered from one

of these HPC clusters; the Peregrine cluster, consisting of 164

blade servers. The cluster is utilized by researchers and staff

of the University of Groningen to assist in computationally

expensive jobs. Over the years, the Peregrine cluster has

assisted in more than 150 scientific publications. The type of

jobs that run on the cluster vary greatly, resulting in a varied

data set covering many different work loads.

Each of the 164 servers has two Intel Xeon E5-2680 v3

CPU’s and 128 gigabytes of Random Access Memory (RAM),

bringing the total to 3960 individual CPU cores and 21

TABLE I
THE LIST OF COLLECTED SERVER METRICS.

Metric Name Unit
Internal Metrics

Tcpu CPU Temperature Degrees Celsius
CPUuser CPU Util. (User) Percentage
CPUsys CPU Util. (System) Percentage
Memfree Unused RAM Kilobytes
Procrun # Processes Running Integer
Proctotal # Processes Total Integer
Ethin Ethernet In Bytes / Second
Ethout Ethernet Out Bytes / Second
Infin Infiniband In Bytes / Second
Infout Infiniband Out Bytes / Second

External Metrics
Pwatts Power Consumption Watts
Tin Inlet Air Temperature Degrees Celsius
Tout Outlet Air Temperature Degrees Celsius

terabytes of RAM respectively. Each server has 1 terabyte of

internal disk space, and is connected to a storage area network

consisting of 463 terabytes. The servers are locally connected

by a 56 gigabit per second Infiniband network connection,

and are also connected by a 10 gigabit per second ethernet

connection to the Internet. Data collection started on the 1st

of December 2016. Table I shows the metrics that are collected

every 10 seconds, and their unit of measurement. Every

month, around 560,000,000 individual data points are collected

from 164 servers. For this work, a subset of approximately

2,500,000,000 data points was used. Of the 164 servers, 15

servers recorded unusable data due to faulty configurations,

or missing data. Resulting in a usable dataset consisting of

149 servers in total.

We collect the dataset using a variety of hardware and

software sensors. The software sensors collect internal server

metrics such as RAM utilization as reported by the operating

system. The hardware sensors collect external metrics, such as

the air temperature. In order to prepare the dataset for analysis,

we apply the following sanitation steps:

1) Combine CPUuser and CPUsystem to obtain the

CPUtotal such that 0.0 ≤ CPUtot ≤ 100.0.

2) Subtract Tin from Tout to obtain Tdiff , the temperature

difference between inlet and outlet.

3) Detect and remove outliers / faults introduced by mea-

surements errors.

4) Compute the correlation between every pair of metrics.

5) Determine the lag between selected metrics.

Step 1 and 2 are mutations of the dataset. In the first step, we

combine the CPU usage in user space ( CPUuser) and kernel

space (CPUsys), the combination of these metrics gives us the

total CPU usage (CPUtot). In the second step, we subtract the

temperature of the cold air entering the server (Tin) from the

temperature of the hot air exiting the server (Tout) in order to

obtain the temperature difference (Tdiff ).

In the third step, we remove the faulty measurements from

the dataset. If a row in the dataset does not conform to the

following constraints, it is discarded:
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TABLE II
KENDALL’S TAU CORRELATION, INCLUDING STANDARD DEVIATION.

Tcpu Pwatts Procrun CPUtot

Pwatts 0.76± 0.07 -
Procrun 0.54± 0.11 0.62± 0.13 -
CPUtot 0.73± 0.08 0.83± 0.08 0.70± 0.13 -

Tdiff 0.78± 0.11 0.82± 0.09 0.57± 0.12 0.76± 0.07

1) Tcpu > 0
2) Pwatts > 0

3)
∑

m∈M
m > 0

Inspection of the dataset shows that Pwatts and Tcpu are

sometimes 0, while other metrics are not. This indicates a

measurement error. Thus, the first and second constraints are

required. The final constraint ensures that rows with all zeros

are excluded, by verifying that the sum of all metrics is not

zero. These all-zero rows appear when the monitoring system

is unavailable.

For step 4, the goal is to identify which metrics are

correlated, and to what extent. This allows us to perform

feature selection and use the appropriate set of metrics for our

models. We determine the correlation between metrics using

Kendall’s tau coefficient [15] for each individual node:

τ =
nc − nd

n(n− 1)/2
(1)

Where nc is the number of concordant pairs, nd is the

number of discordant pairs, and n is the number of pairs.

When applied to the data we immediately notice that there

are numerous metrics with very weak correlations (−0.5 <
τ < 0.5): Tin, Availram, Proctot, Ethin, Ethout, Infin and

Infout. We discard the metrics with a weak correlation, as

they would have little to no contribution to our models. Table II

provides the resulting mean correlation and standard deviation

of the remaining metrics, where the mean is taken over the

correlation results for each individual server. The remaining

metrics consist of two external metrics (Tdiff and Pwatts)

and three internal metrics (Tcpu, Procrun, and CPUtot). The

characteristics of the metrics are described in Table III.

The metrics that describe the internal state of a server are

CPUtot, Tcpu, and Procrun. However, we exclude Procrun
as it is too specific to the tasks that a server is performing, and

therefore does not generalize well in different environments.

For example, a single process could have a CPU usage of

100%, while the same holds true for 100 processes with

1% CPU usage each. Furthermore, the correlations between

Procrun and the external metrics are significantly lower than

the other correlations we have observed in Table II. Thus we

have the following metrics, CPUtot and Tcpu, representing

the internal state of the server. The external metrics are Pwatts

and Tdiff , as these can be measured externally to the server.

It has to be noted that Tdiff in reality consist of two metrics:

Tin and Tout, the in- and outlet air temperature. Based on the

TABLE III
CHARACTERISTICS OF THE SELECTED SET OF METRICS.

Tcpu Pwatts Procrun CPUtot Tdiff

Mean 56.06 263.73 18.02 62.36 13.96
S.D. 12.51 70.24 24.12 37.43 3.29

Min. 24.00 77.00 0.00 0.00 0.00
25% 34.00 196.00 12.00 29.22 11.00
50% 43.00 280.00 22.00 79.20 15.00
75% 60.00 336.00 24.00 100.00 17.00
Max. 100.00 448.00 2867.00 100.00 25.00

Kendall’s Tau correlation we identify the following models to

be explored and evaluated:

1) CPU Load models (CPUtot), utilizing Tdiff and / or

Pwatts.

2) CPU Thermal models (Tcpu), utilizing Tdiff and / or

Pwatts.

3) Air Flow Thermal models (Tdiff ), utilizing Pwatts.

The CPU Load models estimate the CPUtot metric, with

Tdiff and / or Pwatts as input features. This is an important

metric for the colocation data center as comatose (unused)

servers have a significant impact on the energy consumption

of the data center, and it provides an indication of the overall

load in the data center.

The CPU Thermal models estimate the Tcpu metric, also

with Tdiff and / or Pwatts as input features. The CPU

Thermals are another important metric from the data center

point of view, as this relates to the cooling load. It also allows

the colocation data center to monitor the effects of changes in

the cooling system on the servers.

Finally, the Air Flow models estimate the Tdiff metric,

with Pwatts as the input feature. These models also correlates

strongly to the cooling load of the data center. The Air

Flow Thermal model utilizes one external metric (Pwatts) to

estimate another external metric (Tdiff ). This model does not

provide any insights in the internal state of a server, but it

allows the colocation data center to describe the relationship

between power consumption and the increase in air tempera-

ture which has to be mitigated by the cooling system.

In total we identify 7 models to evaluate; 3 different

variations of CPU Load models, 3 different variations of CPU

Thermal models, and 1 Air Flow Thermal model. All of the

models relate directly to either the IT equipment or cooling

system, the two categories responsible for the majority (75%)

of a data center’s energy consumption. These models also

assist with measuring the effect of energy savings measures

without requiring internal access to the IT equipment.

Finally, we consider the notion of lag between two discrete

time-series (step 5). Inspection of the data set shows that there

is a delay between the time-series. The cause of this lag is

twofold: there is a delay between individual observations from

sensors, and certain time-series have a natural tendency to lag

behind. For example, an increase in Tcpu would eventually

lead to an increase in Tdiff (as exhaust temperatures increase).

However, it takes a certain amount of time for the heat
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to dissipate, which causes lag between the two time-series.

Intuitively, decreasing the lag between time-series increases

the number of concordant pairs, and consequentially increases

the correlation. A higher correlation between time-series is

of benefit when modeling the data. To determine the exact

amount of lag between two metrics, we utilize the cross-

correlation. Given two discrete time-series x[m] and y[m], the

cross-correlation is defined as [16]:

Rxy(k) =
∞∑

m=−∞
x[m]y[m− k] (2)

Where k ∈ Z, and −∞ ≤ k ≤ ∞. Parameter k is also

known as the lag parameter. For each of the selected metrics

we determine the lag that exists between them by performing

cross-correlation for every pair of time-series and selecting

the k which maximizes (since the time-series are positively

correlated) Rxy(k) such that:

lagunits = argmax
k

Rxy(k) (3)

We calculate the lag individually for every server and adjust

the time-series accordingly. Shifting the time-series based on

the lag further increases Kendall’s tau correlation.

IV. MODELS AND EVALUATION

We distinguish between two types of models: the individual

models and the universal model. Individual models are models

which we train separately for each individual server, using

only the subset of data that belongs to a specific server. For

the universal model, we train and evaluate one global model

using all available data, of every server. This verifies the ability

of the models to generalize.

Inspection of the dataset shows that there is a near-linear

correlation between the external metrics (Pwatts, Tdiff ) and

the internal metrics (CPUtot, Tcpu). Therefore, we define a

linear regression model of at most two parameters (Eq. 4):

ŷ = w0 + w1x1 + w2x2 (4)

Where x1 and x2 are the parameters of the model, w0, w1,

w2 are the weights, and ŷ is the estimated value. Since the data

is not fully linear, we transform the features into polynomial

features. For every model, we generate all polynomial features

from the 1st degree to the 10th degree. For example, given two

features x1 and x2, the transformation to polynomial features

of the 2nd degree is performed according to Equation 5.

z = [x1, x2, x1x2, x
2
1, x

2
2] (5)

The resulting model is a linear regression model in which

the features are polynomial (Eq. 6). Thus we can apply any

linear regression technique, such as ordinary least squares

fitting, to obtain our polynomial model.

ŷ = w0 + w1z1 + · · ·+ w5z5 (6)

To train our individual models we apply the Ridge Regres-

sion method, which is expressed as ordinary least squares, the

first term in Equation 7, with an additional L2 regularization

term, the second term in the equation. The α parameter

controls the strength of the regularization.

min
w
‖Xw − y‖2 + ‖αw‖2 (7)

Due to the sheer size of the complete dataset (2.5 billion

data points) compared to the dataset for an individual server

(15 million data points), we have to modify the approach for

learning universal models, as we cannot fit all 2.5 billion data

points simultaneously. Instead of Ridge Regression, we fit the

polynomial models using Stochastic Gradient Descent with L2

regularization [17]. We partially fit the data of every individual

server, until all the training data has been fitted.

Finally, to evaluate how well our models generalize, we

apply k-fold cross-validation with k = 10 [18]. We evaluate

both the Root Mean Squared Error (RMSE) and the Coeffi-

cient of Determination (R2) obtained using cross-validation.

In Section IV-A we evaluate the individual models, and in

Section IV-B we evaluate the universal model. The results

are discussed in Section V. The tables which summarize the

results distinguish between RMSEi and R2
i for the individual

models, and RMSEu and R2
u for the universal model.

A. Individual Models

We train models for each of the 149 servers. For each

of the seven models, we train 10 distinct iterations where

we vary the polynomial degree from 1 to 10. In total we

train (149 × 7 × 10 =) 10,430 different polynomial models.

When the results are summarized, we discard the results from

polynomial degrees 7 till 10, as in nearly all cases the models

start to overfit at the 5th or 6th degree. The exception to this

observation are the models with only a single feature. For these

models, as the number of degrees approaches the number of

data points, the observed error approaches 0.

1) Individual CPU Load models (CPUtot): First, we eval-

uate the results for modeling the CPU load (CPUtot). The

summary of the results can be found in Table IV. In this

table we list the mean RMSEi and the mean R2
i metrics (and

their standard deviations) for every selection of input features.

The input features are the external parameters as selected

in Section III. For feature Pwatts, we observe a significant

improvement in RMSEi and R2
i between the 1st and 3rd

degrees, with RMSE = 8.13 and R2 = 0.95. For feature

Tdiff , the same improvement is observed at the 3rd degree,

where RMSEi = 12.45 and R2
i = 0.89. Furthermore, we

can clearly see that the models start to overfit from the 6th

degree, as the standard deviation of RMSEi increases, and

the R2
i significantly decreases. The last features we evaluate to

model the CPU Load is the combination of Pwatts and Tdiff .

As observed in previous cases, a notable improvement happens

until the 3rd degree, where RMSEi = 7.68 and R2
i = 0.96.

Improvements are observed until the 5th degree, after which

the models overfit as the increased standard deviation of the
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TABLE IV
SUMMARY OF MODELING CPU LOAD (CPUtot), i = INDIVIDUAL MODELS, AND u = UNIVERSAL MODEL.

Degree: 1st 2nd 3rd 4th 5th 6th
Features: Pwatts

RMSEi 10.02± 0.84 9.95± 0.87 8.13± 0.85 8.08± 0.85 8.05± 0.86 8.02± 0.86
R2

i 0.92± 0.03 0.93± 0.03 0.95± 0.03 0.95± 0.03 0.95± 0.03 0.95± 0.03

RMSEu 10.68± 0.53 10.68± 0.53 8.71± 0.34 8.67± 0.32 8.67± 0.32 8.66± 0.32
R2

u 0.96± 0.01 0.96± 0.01 0.97± 0.00 0.97± 0.00 0.97± 0.00 0.97± 0.00
Features: Tdiff

RMSEi 14.25± 1.06 14.16± 1.18 12.45± 1.16 12.37± 1.21 12.35± 1.26 13.13± 5.77
R2

i 0.85± 0.04 0.85± 0.03 0.89± 0.03 0.89± 0.03 0.89± 0.03 0.63± 2.10

RMSEu 15.68± 0.92 15.66± 0.88 13.68± 0.87 13.64± 0.89 13.67± 0.95 13.51± 0.85
R2

u 0.91± 0.02 0.91± 0.01 0.93± 0.01 0.93± 0.01 0.93± 0.01 0.94± 0.01
Features: Pwatts and Tdiff

RMSEi 9.71± 0.83 9.5± 0.86 7.68± 0.8 7.51± 0.79 7.35± 0.81 8.14± 5.89
R2

i 0.93± 0.02 0.93± 0.02 0.96± 0.02 0.96± 0.02 0.96± 0.02 0.68± 2.27

RMSEu 10.43± 0.47 10.30± 0.46 8.38± 0.32 8.30± 0.32 8.14± 0.30 9.10± 2.97
R2

u 0.96± 0.01 0.96± 0.01 0.98± 0.00 0.98± 0.00 0.98± 0.00 0.97± 0.03

RMSEi and the lower R2
i signify. The optimal result is

obtained using both Pwatts and Tdiff as features to model the

CPU Load with a polynomial of the 5th degree. This results

in a mean RMSEi of 7.35%.

2) Individual CPU Thermal models (Tcpu): Next, we ana-

lyze the results we obtained when modeling the CPU Thermal

characteristics (Tcpu). A summary of these results is shown

in Table V. Again we list the mean RMSEi and R2
i that

was obtained individually for all 149 servers. First, we model

the CPU Thermals using only Pwatts as a feature. Again, we

observe a significant improvement at the 3rd degree, where

the RMSEi = 4.74 and the R2
i = 0.85. A similar decrease

in RMSEi is noted when only applying feature Tdiff . At

the 3rd degree we observe RMSEi = 3.51 and R2 = 0.92.

At the 6th degree the models start to overfit; the RMSEi

increases, as does the standard deviation. When using both

Pwatts and Tdiff as features, we observe RMSEi = 3.23
and R2

i = 0.93 for the 3rd degree. Significant overfitting

occurs after the 5th degree, with R2
i becoming negative which

indicates that the model fits the data extremely poor. The

optimal results are obtained when using both Pwatts and Tdiff

as features, a polynomial of the 5th degree models the CPU

Thermal characteristics with a mean RMSEi of 3.17◦C.

3) Individual Air Flow Thermal models (Tdiff ): Finally,

we assess the results of modeling the Air Flow Thermal

characteristics (Tdiff ), the difference between air flow inlet

and outlet temperature of a server. The results are summarized

in Table VI In this case, there is only one feature that has

a strong correlation, that is Pwatts. We do not observe a

significant increase at the 3rd degree, as we noted in previous

models. The RMSEi and R2
i improve ever so slightly as the

number of degrees increases. The optimal results are observed

at the 10th degree, where the mean RMSEi of the Air Flow

Thermal models is 1.07◦C.

B. Universal Model

After evaluating and inspecting all of the individual models

in Section IV-A, it becomes apparent that the individual

models of a given type appear to be very similar to one

another. Therefore, the next step is to reduce the ten-thousand

individual models to less than a hundred universal models,

and determine how well these universal models generalize.

Considering that large data centers can contain several hun-

dreds of thousands of servers [19], it would be advantageous to

develop a universal model that represents a significant subset

of servers. For each of the 7 model types we train 10 distinct

iterations where we vary the polynomial degree from 1 to 10.

We train (7×10 =) 70 different universal polynomial models.

1) Universal CPU Load models (CPUtot): As before with

the individual models, we first analyze the results (Table IV)

for modeling the CPU Load with one universal model, using

three different combinations features. When only using feature

Pwatts, we observe a significant decrease in RMSEu at the

3rd degree, where RMSEu = 8.71 and R2
u = 0.97. For

feature Tdiff we record RMSEu = 13.68 and R2
u = 0.93 at

the 3rd degree, which shows the most significant improvement

as well. And finally, when using both Pwatts and Tdiff as

features, we obtain RMSEu = 8.38 and R2 = 0.98 at the

3rd degree. However in this case the the 5th degree shows

slightly better results, whereas the 6th degree and higher show

signs of overfitting. These results are in line with the results of

the individual models for CPU Load. We observe the optimal

results using a polynomial of the 5th degree while using both

Pwatts and Tdiff as features. This yields a RMSEu of 8.14%.

2) Universal CPU Thermal models (Tcpu): We model the

CPU Thermals using the same three sets of features as used

when modeling the CPU Load. First we use Pwatts as a

feature, which yields significant improvements (Table V) up

until the 3rd degree (RMSEu = 5.17 and R2
u = 0.92), after

which the RMSE decreases much slower. Selecting Tdiff

as a feature yields better results, at the 3rd degree we obtain

RMSEu = 4.22 with R2
u = 0.95. After the 3rd degree we

observe minor improvements in RMSE. When utilizing both

Pwatts and Tdiff as features we get RMSEu = 3.88 and

R2
u = 0.95 at the 3rd degree, improving at the 4th degree
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TABLE V
SUMMARY OF MODELING CPU THERMALS (Tcpu), i = INDIVIDUAL MODELS, AND u = UNIVERSAL MODEL.

Degree: 1st 2nd 3rd 4th 5th 6th
Features: Pwatts

RMSEi 4.96± 0.54 4.84± 0.56 4.74± 0.55 4.72± 0.55 4.67± 0.55 4.65± 0.55
R2

i 0.84± 0.04 0.85± 0.04 0.85± 0.04 0.85± 0.04 0.86± 0.04 0.86± 0.04

RMSEu 5.32± 0.23 5.23± 0.25 5.17± 0.25 5.17± 0.25 5.13± 0.23 5.13± 0.23
R2

u 0.91± 0.01 0.91± 0.01 0.92± 0.01 0.92± 0.01 0.92± 0.01 0.92± 0.01
Features: Tdiff

RMSEi 4.04± 0.35 3.88± 0.39 3.51± 0.36 3.4± 0.35 3.39± 0.37 3.47± 0.71
R2

i 0.89± 0.04 0.90± 0.03 0.92± 0.03 0.92± 0.02 0.92± 0.03 0.90± 0.17

RMSEu 4.69± 0.30 4.61± 0.35 4.22± 0.31 4.15± 0.33 4.13± 0.34 4.13± 0.35
R2

u 0.93± 0.01 0.93± 0.01 0.95± 0.01 0.95± 0.01 0.95± 0.01 0.95± 0.01
Features: Pwatts and Tdiff

RMSEi 3.90± 0.36 3.66± 0.39 3.23± 0.34 3.17± 0.36 3.21± 0.78 4.79± 10.17
R2

i 0.90± 0.03 0.91± 0.02 0.93± 0.02 0.93± 0.03 0.89± 0.33 −6.58± 60.01

RMSEu 4.42± 0.23 4.26± 0.28 3.88± 0.24 3.84± 0.25 3.85± 0.35 3.86± 0.34
R2

u 0.94± 0.01 0.94± 0.01 0.95± 0.01 0.95± 0.01 0.95± 0.01 0.95± 0.01

after which the error slowly increases. The best results are

obtained when using both features, a 4th degree polynomial

gives a RMSEu of 3.85◦C.

3) Universal Air Flow Thermal models (Tdiff ): The last

universal model we train and evaluate is for modeling the

Air Flow Thermals. The best result is observed when using

a polynomial between the 3rd and 10th degree. This yields

a RMSEu = 1.25 and R2
u = 0.93 (Table VI). The error

remains nearly constant after the 3rd degree, which results in

an optimal RMSEu of 1.25◦C.

V. DISCUSSION

Based on the evaluation, we conclude that the individual

models are, when compared to the universal model, better

at estimating the CPU Load, CPU Thermals, and the Air

Flow Thermals. This is expected, as each server will have

unique characteristics that are included in its own individual

model. These variations can, for example, be caused by the

positioning of the server in the rack. However, the universal

model is nearly as accurate as the individual models in terms

of RMSE. Both the individual and the universal models

demonstrate similar behaviour: as the number of polynomial

degrees increases beyond the 6th degree, the models tend

to overfit. After the 3rd and 4th degree there is little to no

improvement in terms of RMSE and R2. Therefore the 3rd

and 4th degree strike a good balance between computational

complexity, which grows exponentially as number of polyno-

mial degrees increases, and the RMSE and R2 scores.

Without knowledge of the internal state of a server, we

prove that we can accurately estimate the CPU Load using

only external metrics. The CPU Load ranges from 0% to

100%. Exclusively utilizing the power consumption (Pwatts)

of the server as a feature for the models yields an error of

8.02% (individual) or 8.66% (universal) when estimating the

CPU Load. When we estimate the CPU Load based on the

temperature difference (Tdiff ) between inlet air and outlet

air, we obtain less accurate results with an error of 12.35%
(individual) or 13.51% (universal). When considering both

power consumption and temperature difference as features, the

error is 7.35% (individual) or 8.14% (universal).

We can also estimate the CPU Thermals based on external

parameters. The CPU Thermals range from 24◦C to 100◦C.

When determining the CPU Thermals using the server’s power

consumption as a feature, we obtain an error of 4.65◦C (in-

dividual) or 5.13◦C (universal). Using the temperature differ-

ence between inlet and outlet air to estimate the CPU Thermals

yields a better result, with an error of 3.39◦C (individual) or

4.13◦C (universal). Estimating the CPU Thermals using both

power consumption and temperature difference results in an

error of 3.17◦C (individual) or 3.84◦C (universal).

In addition, we demonstrate that we can estimate the Air

Flow Thermals without requiring access to the server. While

this is not used for determining a server’s internal state, it is

useful from the data center perspective as it relates directly

to the cooling load of a data center. In our dataset, the Air

Flow Thermal characteristics range from 0◦ to 25◦. Given the

power consumption of a server, our model yields an error of

1.07◦C (individual) or 1.25◦C (universal) when estimating the

Air Flow Thermals.

VI. CONCLUSION

We investigated the issue of monitoring third party IT

equipment in a colocation data center from the Data Center

Operator (DCO) perspective, with the goal of uncovering

models that can be used to monitor and control colocation

data centers more efficiently. In this work, we have provided a

positive answer to the question whether it is feasible to monitor

the server infrastructure of colocation data centers without

requiring direct access to the customer’s servers, avoiding the

conflicting interests of the DCO and customer.

Our answer is based on 2.5 billion data points collected

from 164 individual servers, covering 13 distinct metrics.

We determined the correlation between each of the metrics,

and identified external metrics that are good candidates for

the estimation of the internal state of servers. We presented

our approach to modeling the relationship between internal
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TABLE VI
SUMMARY OF MODELING AIR FLOW THERMALS (Tdiff ), i = INDIVIDUAL MODELS, AND u = UNIVERSAL MODEL.

Degree: 1st 2nd 3rd 4th 5th 6th
Features: Pwatts

RMSEi 1.10± 0.10 1.10± 0.10 1.09± 0.10 1.09± 0.10 1.09± 0.10 1.08± 0.10
R2

i 0.88± 0.04 0.88± 0.04 0.88± 0.04 0.89± 0.04 0.89± 0.04 0.89± 0.04

RMSEu 1.26± 0.10 1.26± 0.10 1.25± 0.10 1.25± 0.10 1.25± 0.10 1.25± 0.10
R2

u 0.93± 0.01 0.93± 0.01 0.93± 0.01 0.93± 0.01 0.93± 0.01 0.93± 0.01

and external metrics, discovering CPU Load models, CPU

Thermal models, and Air Flow Thermal models. We distin-

guished between individual models and universal models, and

determined that the universal models generalize well. In total,

we trained and evaluated 10,430 individual models and 70

universal models. The CPU Load models allow the DCO to

monitor the overall load in the data center and to use this

information for expansion planning. The CPU Thermal models

and the Air Flow Thermal models strongly relate to estimating

the required cooling capacity, and can be used to optimize

the cooling systems or to monitor the effect of cost-saving

measures on the IT equipment.

The results are evidence that using external metrics as mea-

sured by the data center to estimate the internal state of a server

is feasible. This enables data-driven monitoring for colocation

data centers, as we demonstrate that access to the server’s

operating system or chassis is no longer needed to monitor

the server’s internal state. Instead, we can employ IoT-enabled

sensors to measure the inlet and outlet air temperature, and

the power consumption of a server. Using these inexpensive

sensors, the DCOs can monitor the server infrastructures of

their customers, as our models enable able them to monitor

the CPU Load, CPU Thermals, and Air Flow Thermals using

exclusively external parameters. In turn, this allows DCOs to

ensure a high Quality of Service (QoS) while maintaining the

existing Service Level Agreements (SLAs), while at the same

time implementing cost-saving measures and monitoring the

effect of these measures on the IT equipment.

In future work, we would like to collect data from servers

with different characteristics (e.g. variations in chassis size,

CPU models, GPU models) and introduce additional features

to our models. We also would like to explore the role of

AI planning and scheduling in work load placement, server

placement, and cooling optimizations, utilizing the models we

have uncovered.
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