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Abstract: With the rise of Big data, enterprises started accumulating significantly more data than they consume. Big Data 
lake made data consumption easier for all stakeholders, analysts, and developers. Variety, volume, and velocity of data 
and complexity of businesses added complexity in processing, organizing, and storing data to serve analytical solutions on 
a timely basis. It is often a big challenge for enterprises to cleanse, organize, classify, and store big data so that insights 
are accessible on time. Data consistency will also come into the picture when multiple data models define similar metrics. 
As numerous data sources are integrated into a single platform, stakeholders often analyze data from various subject 
areas. It leads to complex queries resulting in big joins and more processing power. Even with cheap storage and more 
processing power of Hadoop and big data technologies, modeling big data is a time-consuming and error-prone process. 
This paper addresses that challenge by introducing mid-tier models for big data. It discusses a novel data modeling- 
Mid-Tier models approach to organize and store big data in distributed storage. It outlines how it overcomes some of the 
challenges and showcases an example.  
 
 
 
Index Terms—Enterprise Data Models, Mid-Tier Data Models, Big Data Lake, Dimensional Models, Big Joins, Hadoop, Spark 
 

I. INTRODUCTION1

IN this big data age, enterprise applications generate a large          
volume of structured, unstructured, and semi-structured      
data. These data are processed and transformed to generate         
insights which help to make strategic and tactical business
decisions. Business users also use ad hoc analysis to         
identify patterns and predict the future. Enterprise data        
models store all useful insights from various data sources in          
a structured format. An enterprise big data lake contains
several enterprise data models to facilitate data-driven      
decision support system for various stakeholders [2][10].       
There are multiple challenges that business users face while         
querying an enormous volume of processed data from
enterprise data models. On the other side, it is a very           
ambitious task to keep up with all changes and provide          
metrics on time.  

Business users consume data from enterprise data       
models. Due to data volume, data consistency and security,         
raw data may not be available for them to access directly.           
Enterprise Data models are designed and built using raw
data to serve their needs. Most times, they use data from           
multiple models for decision making. In a big data         
environment, these models are enormous. Joining large       
tables is a costly operation and result in higher response

1This paper is submitted to IEEE DataCom 2019 on 05/29/2019.  
Jayesh Patel currently works as a Sr. Data Engineer for Rockstar Games,

Carlsbad, CA 92008 USA and he is also a Senior IEEE member (e-mail:             
jayesh423@yahoo.com).  

time. For instance, analyzing users’ behavior on a social
media platform involves joining millions of users with        
various activity facts to understand a full picture for a          
specified time period. Even with big data tools and         
technologies, this operation is slow and costly.
  

Additionally, when things go wrong, reprocessing or       
backfilling affected metrics takes even more time and        
resources. As most big data lakes on HDFS support insert
and append operations, updating the existing model is not         
straightforward. When you add new metrics and want to         
backfill only those metrics, it requires rewriting files with         
all metrics. These existing methods are very inefficient and
time-consuming. Due to cheap storage and more processing        
power, big data lake often contains multiple data models         
with redundant metrics and similar insights. This leads to         
data inconsistency, and time wastage on troubleshooting.
There are several other issues with current data modeling         
techniques in big data platforms.  
 

Clearly, enterprises need a better data modeling for big
data platforms to overcome these challenges. This paper        
introduces the concept of mid-tier models which address        
these issues that enterprises face while using big data.         
Mid-tier models not only overcome these challenges but it
also provides unified analytics from multiple business       
processes. Faster processing and easy maintenance are       
integral to these models.  

The organization of this paper is as follows. Section II          
presents findings from relevant research in Big Data        
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Modeling. Section III describes data modeling and       
challenges with them in a big data environment. Section IV          
explains mid-tier data models and provides details on how         
to design it.. Section V demonstrates experiments and        
results of mid-tier data models. Section VI concludes this         
paper with the relevant remarks and future scope. 
  

II. RELATED WORKS  
Data modeling, Enterprise data warehouse, and Big Data        

processing are not new as there have been new technologies          
and platforms offering an effective way of processing and         
modeling big data. Over the period of time, multiple         
research and methodologies have been proposed.  

 
R. Kimball, one of the original architects of data         

warehousing [12], presented various use cases of big data         
analytics, challenges to model big data and outlined the         
necessary design elements to extend EDW to big data         
analytics. In [13], various techniques to integrate big data,         
and to process different types of data sources are         
summarized. This research further enumerated opportunities      
for better big data modeling techniques to address the         
challenge of deep analysis on big data. 

 
A. Gandomi, and M. Haider [14] reviewed big data         

analytical techniques for structured and unstructured data.       
This research stated the needs of major innovations in         
analytical modeling techniques for massive volumes of less        
trustworthy big data. Analysis on Big Data analytical        
methods [15] asserted a critical challenge for outdated data         
processing and modeling space for big data. Old methods of          
data modeling no longer apply toward big data processing.         
There is a need for new methods to manage big data for            
getting maximum value. It grouped big data modeling        
methods in three groups- descriptive models, predictive       
models and prescriptive models based on the review of over          
100 research papers.  

 
A. Sebaa, F. Chick, A.Nouicer, and A. Tari [16] stated          

that traditional modeling techniques and tools don’t scale        
up due to processing complexities and limitations of        
underlying hardware and infrastructure. Authors further      
reviewed big data warehousing in Hadoop and different use         
cases with their limitations. 

 
A hybrid approach based on data filtering and processing         

[17] is proposed to build an effective dimensional big data          
model. Proposed method is described by three points: data         
mart oriented, filtering based, and hybrid ETL/MapReduce       
implemented. As data processing with MapReduce is       
slower, there is a need for something better. 

 
Recently, M. Golfarelli and S. Rizzi [18] summarized        

more than 20 years of research on data warehousing         
applications and modeling. Different architectures and      
methodologies to process big data are summarized. 

III. DATA MODELING 

A. Data Models 
At any time, enterprises generate more data than they         

consume. Due to volume, variety, and structure, it is         
difficult for end users to use data as is. Raw data need            
processing and transformation to fit in a business context.         
After applying fundamental business rules, standardize key       
metrics are generated to track the performance of business         
processes. This process of managing a vast amount of data          
is known as data modeling [2][3]. Data models represent         
the intricacies of the business process in the enterprise, and          
they are widely used medium to communicate with        
stakeholders effectively. Hence, enterprise data models      
should be designed wisely.  

 
For instance, books in a library are correctly classified         

and arranged on shelves in the proper order to assure easy           
access to each book. Analogously, for a large volume of big           
data, we need a suitable method or system to sort and store            
data. Readers may not read all the books in the library, but            
they refer to the books of their interest. Likewise, business          
users will only use metrics and data that help them in           
making wise decisions. 

 

B. Dimensional Models 
Dimensional model, introduced by Ralph Kimball, is a        

unique data model optimized for data analytics [1]. It         
comprises of facts from business processes and contextual        
information about the business process known as       
dimensions. One of the fundamental concepts of this model         
is to define the most granular attributes in the business          
process. It represents the leaf level facilitating summarized        
and detailed view of the same data. The granularity of a           
dimension model is a combination of dimensions. Star        
model and snowflake model are widely used dimensional        
models in data warehouses and big data lakes.  

 
An idea behind the dimensional model is to denormalize         

at a certain level to avoid joins at a later stage. It works             
perfectly fine for a specific business process to have all          
required tables denormalized. However, problems arise      
when you want to report metrics on different business         
processes or to analyze different business processes at the         
same time. Business users end up joining multiple fact         
tables to complete the desired analysis. It is not         
recommended to join numerous fact tables in an Enterprise         
data warehouse or data lake [1][4][5]. Additionally,       
dimensional models works really well with slicing and        
dicing of data. However, big data usage is not limited to           

223



 
slicing and dicing. With distributed and democratic usage        
patterns, dimensional models fall short to serve analytical        
needs on time.  

 
There are several other types of modeling techniques but         

they fall short in several ways for big data platforms. This           
paper will not go in detail for those modeling techniques.  

  

IV. MID-TIER MODELS 

A. Designing Mid-Tier Models 
Mid-tier model is inspired from the dimensional model,        

and it implements a functionality which is shared across         
multiple business processes and reporting needs. Mid-tier       
model is a pre-computed collection of attributes and metrics         
on big data with predefined granularity. It shifts the         
business focus from process-centric to data-centric. The       
goal is to keep all metrics with the same granularity from           
multiple processes in a single model so that reporting and          
analysts queries do not need to repeat the same expensive          
scans and join on raw data and other models. If the           
granularity of dimensions changes, it will be a different         
model.  

 
In case of dimensional models, there are multiple fact         

tables, each depicting specific process or reporting needs.        
However, the needs with big data shift towards exploratory         
analysis and more democratic usage. Fig. 1 shows an         
example of a mid-tier model built using data from multiple          
processes and sources. To simplify the example, three        
sources are considered for medical practice use case. This         
mid-tier model is designed to build provider level summary         
with metrics from claim processing, patient visits and        
appointments. Grain for this model is provider_id and        
date_key. Metrics from multiple processes with this grain is         
stored in this model.  

 
This mid-tier model can be built by using raw data          

sources instead of using dimensional facts. Dimensional       
facts are shown in this example to simplify the explanation. 

 
Fig 1. Mid-Tier model showing metrics from multiple 

processes 
 
Mid-tier model is also a data structure technique based on          

divide and conquer principle to aggregate and store data         
[11]. It is expensive to join one month of insurance claims           
data with millions of users and providers. Instead,        
processing these transactional sources by day or hour will         
perform much faster and economical. Mid-tier model is        
based on that fact that processing smaller batches of data          
will be quick and efficient. Even for a large volume of daily            
data, this process can be broken down further on either time           
batches or other batches to speed up processing [7].  

 
With big data, volume can affect data model processing.         

It may be a time consuming operation when you join          
multiple transactional sources daily. Mid-Tier model      
suggest using smaller batches to break processing down.        
Fig. 2 shows an example of a batched mid-tier model.          
Batchid can be derived from a timestamp value or any other           
value identifying the batch of records. It uses claims         
transactions and patient appointment data. For each batch, it         
calculates the number of claims and appointments by        
providers. It also stores a date key to identify transaction          
date. It requires a control mechanism to keep track of          
completed batches to avoid data loss. 
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Fig 2. Mid-Tier model showing batch processing 

 
Mid-tier model also proposes using complex types to join         

multiple transactions into one table to avoid big joins. For          
the same granularity, multiple transactions with different       
attributes can be stored in a consolidated mid-tier model.         
For example, claim_ transactions and patient_appts can be        
merged in a transactional mid-tier if user needs        
transactional level details. Fig. 3 shows a graphical        
representation of a transactional mid-tier model. As       
transactions at provider level are already joined, no further         
joins are required. 
 

 
Fig 3. Transactional Mid-Tier 

 
For big data models stored in Hadoop, the biggest         

question is for storage. As storage on HDFS is immutable,          
only insert and append operations are permissible with        
HDFS. For mid-tier model, it is recommended to use         
mutable storage for models requiring full table scans.        
Mutable storage such as Kudu and Cassandra supports        

upserts and update operations. Updates are essential to        
backfill specific metrics or to add new metrics at a later           
stage. Update operation will make maintenance easier and it         
is well supported in the iterative and fast development         
cycle. For example, after a week of model going live in           
production, an issue is reported in business logic, and there          
is a need to fix it and backfill affected metrics. It will be             
much easier to refresh the impacted metrics using new         
business logic than regenerating entire model again. Apache        
Spark, Kudu, and other big data technologies make it         
possible for a big data platform [6][8][9]. 

 
There are several use cases where mid-tier model with         

mutable storage provides best results. One such use case is          
processing life-to-date metrics or life-to-date (ltd) values.       
As life-to-date calculation requires full table scan, it is a          
widely known problem with big data. Usually source tables         
or models are scanned fully and then aggregated to         
calculate ltd metrics. It becomes a serious issue when ltd          
metrics are calculated from multiple tables and models.        
That is not a viable solution when dealing with big data.           
Mid-tier model handles that issue really well using mutable         
storage on hdfs. Fig. 1 shows ltd metris in a mid-tier model.            
no_of_ltd_claims shows total number of claims created       
since the beginning. Mid-tier model calculates it by using         
last known no_of_ltd_claims. It adds no_of_claims for the        
most recent day and last known no_of_ltd_claims to        
generate no_of_ltd_claims for the most recent day. Mutable        
storage allows breaking that processing down to calculate        
daily metric first and then use it to calculate ltd value. 

 
 
Mid-tier model can be processed in multiple iterations        

based on metrics and facts. First iteration should handle all          
attributes and metrics that are trivial to source from a raw           
data. For example, metric “no_of_submitted_claims” is      
simply the value of “count(claim_id)” from the source        
table. The first iteration can be further broken down by          
source so that multiple sources can be updated        
independently. For instance, metrics from claims data be        
loaded in one iteration and metrics from appointment data         
be loaded in other iteration. Subsequent iteration handle        
derivative attributes and metrics. For example,      
"ltd_submitted_claims" is the cumulative sum of      
"no_of_submitted_claims", which was calculated in the first       
iteration. 

 
Additionally, iterations can be used to process one source         

at a time. For example, metrics from claims transactions can          
be calculated and stored in first iteration. In the second          
iteration, metrics from appointments data can be calculated        
and so on.  

  
While designing mid-tier model, the number of iterations        
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should be smaller for practical reasons. Based on the         
research and testing with Spark and Kudu, 5 or less          
iterations will be optimal. More iterations may lead to         
performance issues.  

 
Fig 4. Iterative processing in Mid-Tier Model 

 

B. Benefits of Using Mid-Tier Models 
Mid-tier model helps solving several problems with big        

data models. Here are some of the common issues and how           
mid-tier model resolves them: 
1) Big Joins: It is expensive to join multiple fact tables or           

models in big data platforms due to data volume and          
complexity of business rules. It leads to big joins. With          
mid-tier model, big joins are broken into smaller ones         
with more frequency and parallel computing.      
Additionally, metrics and data for the same granularity        
will not be repeated in different models. As a result,          
data is consolidated into fewer models. For instance, to         

calculate life to date (LTD) values, you don’t need to          
scan the entire table or join multiple tables to calculate          
them. Processing is broken down to update LTD        
metrics on a daily or more frequent basis in the mid-tier           
model. Hence, they are readily available to use from         
mid-tier models.  

2) Backfilling: Backfilling is one of the pressing issues for         
enterprises. It may be required for various reasons such         
as operational issues, late arriving data, hardware       
failures, etc. Either you will reprocess the entire model         
or re-run it for affected sources. With mid-tier, it is          
possible to re-run model only for affected data sources         
as it supports upserts in the model. It is less          
time-consuming and has less overhead. 

3) Maintenance: As things change over a period of time,         
the model needs to be updated accordingly. There may         
be a requirement to either to add new metrics in the           
existing model or to update business rules for existing         
metrics. Mid-tier model in Kudu offers easy ways to         
add and update columns in tables [6][8]. You can run          
custom scripts to update affected metrics one time and         
it is done. 

4) Ease of use: If all metrics you want for your machine           
learning pipeline or for your analysis are stored in         
fewer models, remaining steps become easier.      
Responsive queries and faster responses will make       
mid-tier models the first choice to use for various         
purposes. Additionally, it speeds up the development of        
downstream models by reducing the RAM/disk/CPU      
resources required to build the expensive models. 

 

V. EXAMPLE 
Cloudera QuickStart VM was used to set up the         

environment for experimentation and testing. VMWare      
Image was used with 16GB of memory. Data from CSV file           
was loaded to HDFS in a columnar Parquet format. Apache          
Spark, Impala, Hive, and Kudu were used for        
experimentation.  

 
To validate the mid-tier model and run some        

experiments, Iowa liquor sales data was used. The Iowa         
Department of Commerce necessitates that every store that        
sells alcohol in bottled form for off-the-premises       
consumption must hold a class 'E' license. Hence, all         
alcoholic sales made by stores registered with the Iowa         
Department of Commerce are logged in the departmental        
system. This data set is published as open data by the State            
of Iowa. Iowa liquor sales data contains information on the          
name, kind, price, quantity, and location of sales        
transactions of individual containers or packages of       
containers of alcoholic beverages from January 1, 2012 to         
October 31, 2017. This denormalized dataset has over 16         
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million rows with 3.3 GB in total size. 
 
The mid-tier model was built using this dataset to         

illustrate some of the design methodology proposed in this         
paper. Comparison with traditional EDW modeling is also        
discussed. Mid-tier model to analyze various metrics by        
date, store and item is prepared. A similar model is also           
prepared with dimensional modeling methods. The first use        
case tested was daily and life-to-date metrics.  

 
Dimensional model for daily and LTD metrics is        

designed as two models- daily_sales_fact and      
ltd_sales_fact. Due to immutable file system, processing       
complexity, easy maintenance and extensibility, ltd metrics       
are stored in a separate model- ltd-sales_fact. Both models         
are partitioned by date and stored in immutable parquet         
format on HDFS. Fig. 5 shows the schema of these two           
models. Daily process should add a partition in both models          
calculating respective metrics. daily_sales_fact is populated      
by aggregating daily transactions. ltd_sales_fact is      
calculated by using daily_sales_fact and prior ltd metrics.        
The downside in this approach is a costly join when using           
daily and ltd metrics for the analysis.  

 

 
Fig 5. Traditional vs Mid-Tier Models 

 
Mid-Tier model is proposed combining daily and ltd        

metrics in the same model using mutable storage- Kudu. As          
Kudu model has primary keys on store_id and item_id,         
queries were faster than dimensional model. Sample queries        
with mid-tier models were completed 5 times faster than         
running them on joining dimensional models. To present        
the memory consumption, query plans are shown for both         
cases. Fig. 6 shows query plan for running a simple query           
on LTD dimensional model. Fig. 7 shows the query plan for           

the same query using mid-tier model in Kudu. Fig.8 shows          
a plan for a query with joins using dimensional models. As           
mid-tier model doesn’t require joins in this case, query plan          
remains the same. Memory requirement using dimensional       
models is higher than using mid tier model in Kudu.  

  

 
Fig 6. Sample Query Plan for Dimensional Model 

 

 
Fig 7. Sample Query Plan for Mid-Tier Model 

 

 
Fig 8. Sample Plan for a Query with Joins using 

Dimensional Models  
 
The second use case experimented was iterative       

processing with the mid-tier model. With traditional facts,        
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daily and ltd metrics must be processed in the same          
execution due to immutable storage. This leads to larger         
memory footprint and causes issues with large volume of         
data. On the other hand, mid-tier model can be processed in           
iterations- first iteration loads daily metrics and second        
iteration load ltd metrics. As processing is broken down,         
data load is faster. As data used in experiments was already           
denormalized with lower volume, there was not much        
difference in performance. However, in the real world when         
data has been aggregated from multiple sources, mid-tier        
models performs better. Additionally, a use case was tried         
for a maintenance and extension. A new metric-        
total_profit_last_30_days to store total profit on an item in a          
store in the last 30 days is required to be added and to be              
loaded for historical data. If it is considered to be added in            
traditional model-ltd_sales_fact, it requires reprocessing     
data since 2012 and rewriting parquet files due to         
immutable format. It is a larger operation even in this          
experiment. However, it is much easier to write an impala          
query to update metric in mid-tier model- daily_sales_fact.        
Similarly, traditional models needs reprocessing data in       
case of issues. If someone has reported an issue with source           
data and there is a need to reprocess. It is much costly to             
reprocess using traditional processing than doing it in        
mid-tier model. Mid-tier model can also be refreshed for         
just affected metrics. It doesn’t need to reprocess all         
metrics.  

 

VI. FUTURE WORK 
Mid-tier model is breaking processing and joins in        

smaller batches which will resolve few issues. It also         
proposes mutable storage for HDFS and that is one of the           
evolving space in big data platform. Partitioning of data is a           
major factor in achieving good performance. As mid-tier        
models are intended to use further, query response time         
should be low. Partitioning really depends on the nature of          
data and source applications. Partitions on transaction date        
should be enough for most use cases. Hash and Range          
partitions should be considered as needed. However,       
recommendations for better partitioning scheme is left for        
future research.  

VII. CONCLUSION 
Organizing big data is not an easy task. This paper          

proposed an overview of mid-tier data models which can         
help alleviate certain issues with current data modeling        
techniques. It discussed approach to build a mid-tier model         
and how it can solve some of the challenges in big data            
environments. Mid-tier model is an effective way to        
organize facts in a big data environment. With evolving         
tools and processes, there will be further enhancements in         
how data is stored in big data platforms to enhance decision           

support systems.  
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