

MID-TIER MODELS FOR BIG DATA
Jayesh Patel, Senior Member, IEEE

Abstract: With the rise of Big data, enterprises started accumulating significantly more data than they consume. Big Data
lake made data consumption easier for all stakeholders, analysts, and developers. Variety, volume, and velocity of data
and complexity of businesses added complexity in processing, organizing, and storing data to serve analytical solutions on
a timely basis. It is often a big challenge for enterprises to cleanse, organize, classify, and store big data so that insights
are accessible on time. Data consistency will also come into the picture when multiple data models define similar metrics.
As numerous data sources are integrated into a single platform, stakeholders often analyze data from various subject
areas. It leads to complex queries resulting in big joins and more processing power. Even with cheap storage and more
processing power of Hadoop and big data technologies, modeling big data is a time-consuming and error-prone process.
This paper addresses that challenge by introducing mid-tier models for big data. It discusses a novel data modeling-
Mid-Tier models approach to organize and store big data in distributed storage. It outlines how it overcomes some of the
challenges and showcases an example.

Index Terms—Enterprise Data Models, Mid-Tier Data Models, Big Data Lake, Dimensional Models, Big Joins, Hadoop, Spark

I. INTRODUCTION1

IN this big data age, enterprise applications generate a large
volume of structured, unstructured, and semi-structured
data. These data are processed and transformed to generate
insights which help to make strategic and tactical business
decisions. Business users also use ad hoc analysis to
identify patterns and predict the future. Enterprise data
models store all useful insights from various data sources in
a structured format. An enterprise big data lake contains
several enterprise data models to facilitate data-driven
decision support system for various stakeholders [2][10].
There are multiple challenges that business users face while
querying an enormous volume of processed data from
enterprise data models. On the other side, it is a very
ambitious task to keep up with all changes and provide
metrics on time.

Business users consume data from enterprise data
models. Due to data volume, data consistency and security,
raw data may not be available for them to access directly.
Enterprise Data models are designed and built using raw
data to serve their needs. Most times, they use data from
multiple models for decision making. In a big data
environment, these models are enormous. Joining large
tables is a costly operation and result in higher response

1This paper is submitted to IEEE DataCom 2019 on 05/29/2019.
Jayesh Patel currently works as a Sr. Data Engineer for Rockstar Games,

Carlsbad, CA 92008 USA and he is also a Senior IEEE member (e-mail:
jayesh423@yahoo.com).

time. For instance, analyzing users’ behavior on a social
media platform involves joining millions of users with
various activity facts to understand a full picture for a
specified time period. Even with big data tools and
technologies, this operation is slow and costly.

Additionally, when things go wrong, reprocessing or
backfilling affected metrics takes even more time and
resources. As most big data lakes on HDFS support insert
and append operations, updating the existing model is not
straightforward. When you add new metrics and want to
backfill only those metrics, it requires rewriting files with
all metrics. These existing methods are very inefficient and
time-consuming. Due to cheap storage and more processing
power, big data lake often contains multiple data models
with redundant metrics and similar insights. This leads to
data inconsistency, and time wastage on troubleshooting.
There are several other issues with current data modeling
techniques in big data platforms.

Clearly, enterprises need a better data modeling for big
data platforms to overcome these challenges. This paper
introduces the concept of mid-tier models which address
these issues that enterprises face while using big data.
Mid-tier models not only overcome these challenges but it
also provides unified analytics from multiple business
processes. Faster processing and easy maintenance are
integral to these models.

The organization of this paper is as follows. Section II
presents findings from relevant research in Big Data

222

2019 IEEE 5th International Conference on Big Data Intelligence and Computing (DATACOM)

978-1-7281-4117-6/19/$31.00 ©2019 IEEE
DOI 10.1109/DataCom.2019.00041

Modeling. Section III describes data modeling and
challenges with them in a big data environment. Section IV
explains mid-tier data models and provides details on how
to design it.. Section V demonstrates experiments and
results of mid-tier data models. Section VI concludes this
paper with the relevant remarks and future scope.

II. RELATED WORKS
Data modeling, Enterprise data warehouse, and Big Data

processing are not new as there have been new technologies
and platforms offering an effective way of processing and
modeling big data. Over the period of time, multiple
research and methodologies have been proposed.

R. Kimball, one of the original architects of data

warehousing [12], presented various use cases of big data
analytics, challenges to model big data and outlined the
necessary design elements to extend EDW to big data
analytics. In [13], various techniques to integrate big data,
and to process different types of data sources are
summarized. This research further enumerated opportunities
for better big data modeling techniques to address the
challenge of deep analysis on big data.

A. Gandomi, and M. Haider [14] reviewed big data

analytical techniques for structured and unstructured data.
This research stated the needs of major innovations in
analytical modeling techniques for massive volumes of less
trustworthy big data. Analysis on Big Data analytical
methods [15] asserted a critical challenge for outdated data
processing and modeling space for big data. Old methods of
data modeling no longer apply toward big data processing.
There is a need for new methods to manage big data for
getting maximum value. It grouped big data modeling
methods in three groups- descriptive models, predictive
models and prescriptive models based on the review of over
100 research papers.

A. Sebaa, F. Chick, A.Nouicer, and A. Tari [16] stated

that traditional modeling techniques and tools don’t scale
up due to processing complexities and limitations of
underlying hardware and infrastructure. Authors further
reviewed big data warehousing in Hadoop and different use
cases with their limitations.

A hybrid approach based on data filtering and processing

[17] is proposed to build an effective dimensional big data
model. Proposed method is described by three points: data
mart oriented, filtering based, and hybrid ETL/MapReduce
implemented. As data processing with MapReduce is
slower, there is a need for something better.

Recently, M. Golfarelli and S. Rizzi [18] summarized

more than 20 years of research on data warehousing
applications and modeling. Different architectures and
methodologies to process big data are summarized.

III. DATA MODELING

A. Data Models
At any time, enterprises generate more data than they

consume. Due to volume, variety, and structure, it is
difficult for end users to use data as is. Raw data need
processing and transformation to fit in a business context.
After applying fundamental business rules, standardize key
metrics are generated to track the performance of business
processes. This process of managing a vast amount of data
is known as data modeling [2][3]. Data models represent
the intricacies of the business process in the enterprise, and
they are widely used medium to communicate with
stakeholders effectively. Hence, enterprise data models
should be designed wisely.

For instance, books in a library are correctly classified

and arranged on shelves in the proper order to assure easy
access to each book. Analogously, for a large volume of big
data, we need a suitable method or system to sort and store
data. Readers may not read all the books in the library, but
they refer to the books of their interest. Likewise, business
users will only use metrics and data that help them in
making wise decisions.

B. Dimensional Models
Dimensional model, introduced by Ralph Kimball, is a

unique data model optimized for data analytics [1]. It
comprises of facts from business processes and contextual
information about the business process known as
dimensions. One of the fundamental concepts of this model
is to define the most granular attributes in the business
process. It represents the leaf level facilitating summarized
and detailed view of the same data. The granularity of a
dimension model is a combination of dimensions. Star
model and snowflake model are widely used dimensional
models in data warehouses and big data lakes.

An idea behind the dimensional model is to denormalize

at a certain level to avoid joins at a later stage. It works
perfectly fine for a specific business process to have all
required tables denormalized. However, problems arise
when you want to report metrics on different business
processes or to analyze different business processes at the
same time. Business users end up joining multiple fact
tables to complete the desired analysis. It is not
recommended to join numerous fact tables in an Enterprise
data warehouse or data lake [1][4][5]. Additionally,
dimensional models works really well with slicing and
dicing of data. However, big data usage is not limited to

223

slicing and dicing. With distributed and democratic usage
patterns, dimensional models fall short to serve analytical
needs on time.

There are several other types of modeling techniques but

they fall short in several ways for big data platforms. This
paper will not go in detail for those modeling techniques.

IV. MID-TIER MODELS

A. Designing Mid-Tier Models
Mid-tier model is inspired from the dimensional model,

and it implements a functionality which is shared across
multiple business processes and reporting needs. Mid-tier
model is a pre-computed collection of attributes and metrics
on big data with predefined granularity. It shifts the
business focus from process-centric to data-centric. The
goal is to keep all metrics with the same granularity from
multiple processes in a single model so that reporting and
analysts queries do not need to repeat the same expensive
scans and join on raw data and other models. If the
granularity of dimensions changes, it will be a different
model.

In case of dimensional models, there are multiple fact

tables, each depicting specific process or reporting needs.
However, the needs with big data shift towards exploratory
analysis and more democratic usage. Fig. 1 shows an
example of a mid-tier model built using data from multiple
processes and sources. To simplify the example, three
sources are considered for medical practice use case. This
mid-tier model is designed to build provider level summary
with metrics from claim processing, patient visits and
appointments. Grain for this model is provider_id and
date_key. Metrics from multiple processes with this grain is
stored in this model.

This mid-tier model can be built by using raw data

sources instead of using dimensional facts. Dimensional
facts are shown in this example to simplify the explanation.

Fig 1. Mid-Tier model showing metrics from multiple

processes

Mid-tier model is also a data structure technique based on

divide and conquer principle to aggregate and store data
[11]. It is expensive to join one month of insurance claims
data with millions of users and providers. Instead,
processing these transactional sources by day or hour will
perform much faster and economical. Mid-tier model is
based on that fact that processing smaller batches of data
will be quick and efficient. Even for a large volume of daily
data, this process can be broken down further on either time
batches or other batches to speed up processing [7].

With big data, volume can affect data model processing.

It may be a time consuming operation when you join
multiple transactional sources daily. Mid-Tier model
suggest using smaller batches to break processing down.
Fig. 2 shows an example of a batched mid-tier model.
Batchid can be derived from a timestamp value or any other
value identifying the batch of records. It uses claims
transactions and patient appointment data. For each batch, it
calculates the number of claims and appointments by
providers. It also stores a date key to identify transaction
date. It requires a control mechanism to keep track of
completed batches to avoid data loss.

224

Fig 2. Mid-Tier model showing batch processing

Mid-tier model also proposes using complex types to join

multiple transactions into one table to avoid big joins. For
the same granularity, multiple transactions with different
attributes can be stored in a consolidated mid-tier model.
For example, claim_ transactions and patient_appts can be
merged in a transactional mid-tier if user needs
transactional level details. Fig. 3 shows a graphical
representation of a transactional mid-tier model. As
transactions at provider level are already joined, no further
joins are required.

Fig 3. Transactional Mid-Tier

For big data models stored in Hadoop, the biggest

question is for storage. As storage on HDFS is immutable,
only insert and append operations are permissible with
HDFS. For mid-tier model, it is recommended to use
mutable storage for models requiring full table scans.
Mutable storage such as Kudu and Cassandra supports

upserts and update operations. Updates are essential to
backfill specific metrics or to add new metrics at a later
stage. Update operation will make maintenance easier and it
is well supported in the iterative and fast development
cycle. For example, after a week of model going live in
production, an issue is reported in business logic, and there
is a need to fix it and backfill affected metrics. It will be
much easier to refresh the impacted metrics using new
business logic than regenerating entire model again. Apache
Spark, Kudu, and other big data technologies make it
possible for a big data platform [6][8][9].

There are several use cases where mid-tier model with

mutable storage provides best results. One such use case is
processing life-to-date metrics or life-to-date (ltd) values.
As life-to-date calculation requires full table scan, it is a
widely known problem with big data. Usually source tables
or models are scanned fully and then aggregated to
calculate ltd metrics. It becomes a serious issue when ltd
metrics are calculated from multiple tables and models.
That is not a viable solution when dealing with big data.
Mid-tier model handles that issue really well using mutable
storage on hdfs. Fig. 1 shows ltd metris in a mid-tier model.
no_of_ltd_claims shows total number of claims created
since the beginning. Mid-tier model calculates it by using
last known no_of_ltd_claims. It adds no_of_claims for the
most recent day and last known no_of_ltd_claims to
generate no_of_ltd_claims for the most recent day. Mutable
storage allows breaking that processing down to calculate
daily metric first and then use it to calculate ltd value.

Mid-tier model can be processed in multiple iterations

based on metrics and facts. First iteration should handle all
attributes and metrics that are trivial to source from a raw
data. For example, metric “no_of_submitted_claims” is
simply the value of “count(claim_id)” from the source
table. The first iteration can be further broken down by
source so that multiple sources can be updated
independently. For instance, metrics from claims data be
loaded in one iteration and metrics from appointment data
be loaded in other iteration. Subsequent iteration handle
derivative attributes and metrics. For example,
"ltd_submitted_claims" is the cumulative sum of
"no_of_submitted_claims", which was calculated in the first
iteration.

Additionally, iterations can be used to process one source

at a time. For example, metrics from claims transactions can
be calculated and stored in first iteration. In the second
iteration, metrics from appointments data can be calculated
and so on.

While designing mid-tier model, the number of iterations

225

should be smaller for practical reasons. Based on the
research and testing with Spark and Kudu, 5 or less
iterations will be optimal. More iterations may lead to
performance issues.

Fig 4. Iterative processing in Mid-Tier Model

B. Benefits of Using Mid-Tier Models
Mid-tier model helps solving several problems with big

data models. Here are some of the common issues and how
mid-tier model resolves them:
1) Big Joins: It is expensive to join multiple fact tables or

models in big data platforms due to data volume and
complexity of business rules. It leads to big joins. With
mid-tier model, big joins are broken into smaller ones
with more frequency and parallel computing.
Additionally, metrics and data for the same granularity
will not be repeated in different models. As a result,
data is consolidated into fewer models. For instance, to

calculate life to date (LTD) values, you don’t need to
scan the entire table or join multiple tables to calculate
them. Processing is broken down to update LTD
metrics on a daily or more frequent basis in the mid-tier
model. Hence, they are readily available to use from
mid-tier models.

2) Backfilling: Backfilling is one of the pressing issues for
enterprises. It may be required for various reasons such
as operational issues, late arriving data, hardware
failures, etc. Either you will reprocess the entire model
or re-run it for affected sources. With mid-tier, it is
possible to re-run model only for affected data sources
as it supports upserts in the model. It is less
time-consuming and has less overhead.

3) Maintenance: As things change over a period of time,
the model needs to be updated accordingly. There may
be a requirement to either to add new metrics in the
existing model or to update business rules for existing
metrics. Mid-tier model in Kudu offers easy ways to
add and update columns in tables [6][8]. You can run
custom scripts to update affected metrics one time and
it is done.

4) Ease of use: If all metrics you want for your machine
learning pipeline or for your analysis are stored in
fewer models, remaining steps become easier.
Responsive queries and faster responses will make
mid-tier models the first choice to use for various
purposes. Additionally, it speeds up the development of
downstream models by reducing the RAM/disk/CPU
resources required to build the expensive models.

V. EXAMPLE
Cloudera QuickStart VM was used to set up the

environment for experimentation and testing. VMWare
Image was used with 16GB of memory. Data from CSV file
was loaded to HDFS in a columnar Parquet format. Apache
Spark, Impala, Hive, and Kudu were used for
experimentation.

To validate the mid-tier model and run some

experiments, Iowa liquor sales data was used. The Iowa
Department of Commerce necessitates that every store that
sells alcohol in bottled form for off-the-premises
consumption must hold a class 'E' license. Hence, all
alcoholic sales made by stores registered with the Iowa
Department of Commerce are logged in the departmental
system. This data set is published as open data by the State
of Iowa. Iowa liquor sales data contains information on the
name, kind, price, quantity, and location of sales
transactions of individual containers or packages of
containers of alcoholic beverages from January 1, 2012 to
October 31, 2017. This denormalized dataset has over 16

226

million rows with 3.3 GB in total size.

The mid-tier model was built using this dataset to

illustrate some of the design methodology proposed in this
paper. Comparison with traditional EDW modeling is also
discussed. Mid-tier model to analyze various metrics by
date, store and item is prepared. A similar model is also
prepared with dimensional modeling methods. The first use
case tested was daily and life-to-date metrics.

Dimensional model for daily and LTD metrics is

designed as two models- daily_sales_fact and
ltd_sales_fact. Due to immutable file system, processing
complexity, easy maintenance and extensibility, ltd metrics
are stored in a separate model- ltd-sales_fact. Both models
are partitioned by date and stored in immutable parquet
format on HDFS. Fig. 5 shows the schema of these two
models. Daily process should add a partition in both models
calculating respective metrics. daily_sales_fact is populated
by aggregating daily transactions. ltd_sales_fact is
calculated by using daily_sales_fact and prior ltd metrics.
The downside in this approach is a costly join when using
daily and ltd metrics for the analysis.

Fig 5. Traditional vs Mid-Tier Models

Mid-Tier model is proposed combining daily and ltd

metrics in the same model using mutable storage- Kudu. As
Kudu model has primary keys on store_id and item_id,
queries were faster than dimensional model. Sample queries
with mid-tier models were completed 5 times faster than
running them on joining dimensional models. To present
the memory consumption, query plans are shown for both
cases. Fig. 6 shows query plan for running a simple query
on LTD dimensional model. Fig. 7 shows the query plan for

the same query using mid-tier model in Kudu. Fig.8 shows
a plan for a query with joins using dimensional models. As
mid-tier model doesn’t require joins in this case, query plan
remains the same. Memory requirement using dimensional
models is higher than using mid tier model in Kudu.

Fig 6. Sample Query Plan for Dimensional Model

Fig 7. Sample Query Plan for Mid-Tier Model

Fig 8. Sample Plan for a Query with Joins using

Dimensional Models

The second use case experimented was iterative

processing with the mid-tier model. With traditional facts,

227

daily and ltd metrics must be processed in the same
execution due to immutable storage. This leads to larger
memory footprint and causes issues with large volume of
data. On the other hand, mid-tier model can be processed in
iterations- first iteration loads daily metrics and second
iteration load ltd metrics. As processing is broken down,
data load is faster. As data used in experiments was already
denormalized with lower volume, there was not much
difference in performance. However, in the real world when
data has been aggregated from multiple sources, mid-tier
models performs better. Additionally, a use case was tried
for a maintenance and extension. A new metric-
total_profit_last_30_days to store total profit on an item in a
store in the last 30 days is required to be added and to be
loaded for historical data. If it is considered to be added in
traditional model-ltd_sales_fact, it requires reprocessing
data since 2012 and rewriting parquet files due to
immutable format. It is a larger operation even in this
experiment. However, it is much easier to write an impala
query to update metric in mid-tier model- daily_sales_fact.
Similarly, traditional models needs reprocessing data in
case of issues. If someone has reported an issue with source
data and there is a need to reprocess. It is much costly to
reprocess using traditional processing than doing it in
mid-tier model. Mid-tier model can also be refreshed for
just affected metrics. It doesn’t need to reprocess all
metrics.

VI. FUTURE WORK
Mid-tier model is breaking processing and joins in

smaller batches which will resolve few issues. It also
proposes mutable storage for HDFS and that is one of the
evolving space in big data platform. Partitioning of data is a
major factor in achieving good performance. As mid-tier
models are intended to use further, query response time
should be low. Partitioning really depends on the nature of
data and source applications. Partitions on transaction date
should be enough for most use cases. Hash and Range
partitions should be considered as needed. However,
recommendations for better partitioning scheme is left for
future research.

VII. CONCLUSION
Organizing big data is not an easy task. This paper

proposed an overview of mid-tier data models which can
help alleviate certain issues with current data modeling
techniques. It discussed approach to build a mid-tier model
and how it can solve some of the challenges in big data
environments. Mid-tier model is an effective way to
organize facts in a big data environment. With evolving
tools and processes, there will be further enhancements in
how data is stored in big data platforms to enhance decision

support systems.

REFERENCES
[1] R. Kimball, M. Ross, "The Data Warehouse Toolkit" in The

definitive Guide to Dimensional Modelling in Depth, Indianapolis,
IN:Wiley Publishing.

[2] B. Inmon, "The Single Version of The Truth", Business Intelligence
Network (Powell Media LLC), 2004, [online] Available:
http://www.b-eye-network.com/view/282.

[3] V. Jovanovic, D. Subotic and S. Mrdalj, "Data modeling styles in
data warehousing," 2014 37th International Convention on
Information and Communication Technology, Electronics and
Microelectronics (MIPRO), Opatija, 2014, pp. 1458-1463.

[4] W. Inmon, D. Strauss, G. Neushloss, DW 2.0-the architecture for the
next generation of data warehousing, Morgan Kaufmann, 2008.

[5] I. Bojičić, Z. Marjanović, N. Turajlić, M. Petrović, M. Vučković and
V. Jovanović, "A comparative analysis of data warehouse data
models," 2016 6th International Conference on Computers
Communications and Control (ICCCC), Oradea, 2016, pp. 151-159.

[6] T. Lipcon, D. Alves, D. Burkert, J.-D. Cryans, A. Dembo, M. Percy,
S. Rus, D. Wang, M. Bertozzi, C. P. McCabe, and A. Wang. Kudu:
Storage for fast analytics on fast data. Technical report, Cloudera,
Inc., 2015.

[7] Alexander Böhm , Jens Dittrich , Niloy Mukherjee , Ippokratis
Pandis , Rajkumar Sen, Operational analytics data management
systems, Proceedings of the VLDB Endowment, v.9 n.13,
p.1601-1604, September 2016.

[8] Apache Kudu. https://kudu.apache.org/.
[9] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,X.

Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
Spark: a unified engine for big data processing,” Communications of
the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[10] H. Fang, "Managing data lakes in big data era: What's a data lake and
why has it became popular in data management ecosystem," 2015
IEEE International Conference on Cyber Technology in Automation,
Control, and Intelligent Systems (CYBER), Shenyang, 2015, pp.
820-824.

[11] W. Zhang, X. Wang, J. Yan and H. Zha, "A Divide-and-Conquer
Approach for Large-Scale Multi-label Learning," 2017 IEEE Third
International Conference on Multimedia Big Data (BigMM), Laguna
Hills, CA, 2017, pp. 398-401.

[12] R. Kimball. 2012. The evolving role of the enterprise data warehouse
in the era of big data analytics. White paper, Kimball Group, pages
1–31.

[13] J. Chen, Y. Chen, X. Du, C. Li, J. Lu, S. Zhao, and X. Zhou. 2013.
“Big Data Challenge: A Data Management Perspective.” Frontiers of
Computer Science 7 (2): 157–164.

[14] A. Gandomi, and M. Haider. 2015. Beyond the hype: Big data
concepts, methods, and analytics. International Journal of
Information Management, 35(2), 137-144.
http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007

[15] U. Sivarajah, M. M. Kamal, Z. Irani, & V. Weerakkody. 2017.
Critical analysis of Big Data challenges and analytical methods.
Journal of Business Research, 70 (2017), pp. 263-286.
https://doi.org/10.1016/j.jbusres.2016.08.001

[16] A. Sebaa, F. Chick, A. Nouicer, and A. Tari. 2017. Research in Big
Data Warehousing using Hadoop. Journal of Information Systems
Engineering & Management, 2(2), 10. doi: 10.20897/jisem.201710

[17] M. E. Houari, M. Rhanoui, and B. E. Asri. 2017. Hybrid big data
warehouse for on-demand decision needs. 2017 International
Conference on Electrical and Information Technologies (ICEIT), 1-6.

[18] M. Golfarelli, and S. Rizzi. 2018. From Star Schemas to Big Data: 20
$$+$$ Years of Data Warehouse Research, Cham:Springer, pp.
93-107.

[19] Cloudera QuickStart VM.
https://www.cloudera.com/documentation/enterprise/5-13-x/topics/qu
ickstart_vm_administrative_information.html

228

[20] Data.iowa.gov. (2019). [online] Available at:
https://data.iowa.gov/Sales-Distribution/Iowa-Liquor-Sales/m3tr-qhg
y

Jayesh Patel became a member of IEEE in 2019 and a Senior Member in
2019. Born in 1983 in western part of India, he completed his Bachelors of
Engineering from Nirma University, Ahmedabad, Gujarat, India in 2005
and Masters of Business Administration from San Diego State University,
San Diego, California, US in 2009. His major was information systems.

He currently work as SR DATA ENGINEER for Rockstar
Games in Carlsbad, CA. He architects and develops scalable data-driven
decision-making processes on Big Data Platform for Rockstar Games. He
has successfully built machine learning pipelines and architected big data
analytics solutions for more than 12 years. He is passionate about
researching data integration and information management.

229

