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Abstract—Serverless computing is an emerging cloud comput-
ing paradigm with the goal of freeing developers from resource
management issues. As of today, serverless computing platforms
are mainly used to process computations triggered by events or
user requests that can be executed independently of each other.
These workloads benefit from on-demand and elastic compute re-
sources as well as per-function billing. However, it is still an open
research question to which extent parallel applications, which
comprise most often complex coordination and communication
patterns, can benefit from serverless computing.

In this paper, we introduce serverless skeletons for parallel
cloud programming to free developers from both parallelism and
resource management issues. In particular, we investigate on the
well-known and widely used farm skeleton, which supports the
implementation of a wide range of applications. To evaluate our
concepts, we present a prototypical development and runtime
framework and implement two applications based on our frame-
work: Numerical integration and hyperparameter optimization -
a commonly applied technique in machine learning. We report
on performance measurements for both applications and discuss
the usefulness of our approach.

Index Terms—cloud computing, parallel computing, function
as a service, parallel cloud programming, elasticity

I. INTRODUCTION

Serverless computing is an emerging cloud computing
paradigm that frees users from resource management issues.
Therefore, serverless computing platforms enable the execu-
tion of user code in form of stateless functions. Compute
resources are provisioned on-demand and scaled in an au-
tomated manner leading to two fundamental benefits: Elas-
ticity by design and per-function resource accounting (and
billing). Prominent serverless computing platforms include
AWS Lambda' and Azure Functions? as well as open source
solutions such as Apache OpenWhisk®. Whereas functions are
stateless, serverless computing platforms also provide backend
services to store data [1].

Exemplary applications of serverless computing include
data filtering and transformation, log file analysis, or object
recognition in images [1]. In all these cases, computations
are triggered by an event or user request and can be executed
independently of each other. This enables these applications to
benefit from elastic auto-scaling in a straightforward manner.

More recently, serverless computing platforms have become
of interest for parallel applications, which comprise most
often complex coordination, communication, and synchroniza-
tion patterns [2]-[4]. However, it is still an open research

Uhttps://aws.amazon.com/lambda.
Zhttps://azure.microsoft.com/en-us/services/functions.
3https://openwhisk.apache.org.

question to which extent parallel applications can benefit
from serverless computing in form of on-demand and elastic
compute resources as well as per-function resource accounting.
Moreover, developing serverless parallel applications requires
novel approaches to parallel programming.

In this paper, we introduce the concept of serverless skele-
tons to enable parallel cloud programming. Algorithmic skele-
tons [5], [6] have been introduced to structure parallel com-
putations as a set of higher-level functions that abstract from
complex coordination patterns inherent to parallel processing.
We show how to use serverless skeletons to transparently
ensure parallel coordination and communication based on
serverless computing platforms while developers are able to
implement functional code without considering parallelism
and resource management issues. We specifically address the
farm skeleton, which can be applied to implement a wide range
of applications. We make the following contributions:

o We present a novel approach to parallel cloud program-
ming based on serverless skeletons that enables devel-
opers to benefit from elastic compute resources without
dealing with parallelism and resource management issues.

o We describe the design and implementation of a server-
less farm skeleton and present a prototypical development
and runtime framework based on Apache OpenWhisk.

« We evaluate the serverless farm skeleton with two exam-
ple applications: numerical integration and hyperparame-
ter optimization, which is a commonly applied technique
in machine learning. We report on performance measure-
ments for both applications.

This paper is structured as follows. In Section II, we
discuss related work. In Section III, we present our approach
to parallel cloud programming with serverless skeletons. We
describe a development and runtime framework for the server-
less farm skeleton as well as a corresponding prototypical
implementation in Section IV. In Section V, we describe two
example applications that we employ in our experimental eval-
uation in Section VI for performance measurements. Finally,
in Section VII, we conclude our paper.

II. FUNDAMENTALS AND RELATED WORK
In this section, we discuss related work on serverless
computing, parallel processing in the cloud, and skeletons.
A. Serverless Computing

Serverless computing can be seen as a natural evolution
of the cloud computing paradigm and is heavily influenced
by microservices, container virtualization, and event-driven
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programming [7]. Whereas the microservices architectural
style propagates the development and operation of fine-grained
services, container virtualization helped to back this trend from
a technological side. Following these developments, server-
less computing enables function-level elasticity by decoupling
compute from storage, which is a common approach to build
cloud-native applications. The compute tier is represented by
stateless FaaS functions* (Function as a Service) and the
storage tier is given by backend services (Backend as a Ser-
vice) such as databases, message queues, and caching systems
[1]. Because FaaS functions themselves are not individually
addressable (point-to-point communication is not supported),
they can only communicate via shared backend services [8].

Typically, each FaaS function is executed in an event-driven
manner, i.e., it is triggered when a specific event occurs or a
user request is received. FaaS functions can also be invoked via
platform-specific APIs. Technically, user code is executed in
a sandboxed environment (such as a container) with a specific
amount of compute resources (CPU, memory). State-of-the-art
serverless computing offerings include AWS Lambda, Azure
Functions®, and Google Cloud Functions®. Moreover, open
source platforms are available to be operated in a private cloud
setting or on top of IaaS cloud offerings. Prominent examples
are Apache OpenWhisk and Fission’.

B. Farallel Processing in the Cloud

Pay-per-use and elasticity are fundamentally new concepts
in the context of parallel applications [9], [10]. In traditional
parallel execution environments such as clusters and grids,
users had no visibility on the monetary costs of a computation
and were not able to make use of elasticity by adapting
the number of processing units at runtime. Existing research
discusses how parallel applications can benefit from these
cloud-specific properties [9]-[13]. More recently, serverless
computing platforms have become of interest for parallel
processing. The authors of [2] present a prototype called
PyWren that enables developers to make use of AWS Lambda
for parallel execution of locally developed code segments.
Whereas they follow a code offloading approach, we deploy
a topology of FaaS functions, which also allows parallel
coordination tasks (captured by skeletons) to be executed on
the serverless computing platform. The authors of [3] describe
how to execute linear algebra algorithms on AWS Lambda.
In [4], serverless computing platforms are evaluated for big
data processing use cases based on a matrix multiplication
application.

C. Algorithmic Skeletons

Algorithmic skeletons [5], [6] provide a method to structure
parallel programs as a set of higher order functions that ab-
stract over common patterns of parallel coordination. Because

“We refer to a function in the serverless computing context with the term
FaaS function not to be confused with programming-level functions, which
are used in the context of skeletons.

Shttps://azure.microsoft.com/en-us/services/functions.

Shttps://cloud.google.com/functions.

7https:/fission.io.
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parallel coordination is captured by the skeleton, developers
are able to implement functional code without considering
parallelism issues. A major benefit of using skeletons is that
coordination (such as orchestration and synchronization) is
transparently handled, which substantially reduces runtime
errors (e.g., due to deadlocks, starvation, and race conditions)
when compared to low-level parallel programming models
(such as MPI). Consequently, one can say that each skeleton
comprises a built-in parallel behavior [14].

Algorithmic skeletons can be classified as either task-
parallel with examples such as pipeline, farm, divide &
conquer, and branch & bound or data-parallel such as map and
fold [14]-[16]. Over the years, many frameworks and libraries
have been developed for a variety of programming languages
and parallel execution environments [17]-[20]. Whereas func-
tional code is implemented by developers, provided compiling
tools take care of automatically generating code for parallel
execution to ease programming. Depending on the execution
environment considered, parallel execution is based on POSIX
threads, OpenMP, MPI, OpenCL, or CUDA. For instance,
Muesli [15], [21] is a C++ template library that supports
parallel execution on top of MPI, OpenMP, and CUDA. During
the last years, skeleton-based programming models have been
widely adopted. Probably the most prominent example is
MapReduce [22], which has been designed to simplify data
processing on large, heterogeneous clusters of commodity
hardware and hides data distribution and parallel execution.

III. PARALLEL CLOUD PROGRAMMING WITH SERVERLESS
SKELETONS

Skeletons capture common parallelism patterns and provide
abstract implementations of these patterns for a parallel ex-
ecution environment. In this work, we specifically address
serverless computing platforms - a novel parallel execution
environment with benefits such as built-in elasticity and per-
function resource accounting. However, in contrast to other
parallel execution environments, the specific characteristics of
serverless computing platforms make the implementation of
parallel coordination as well as the communication across par-
allel processing units challenging. In the following, we present
several concepts and design principles to enable parallel cloud
programming with serverless skeletons.

Skeleton-based Development with User- and Framework
Functions: Algorithmic skeletons make use of the separation
of concerns principle to free developers from parallelism con-
cerns: Only the functional code is implemented by developers
while code required for parallel coordination is provided by
the skeleton itself. In the following, we refer to a code segment
implemented by developers with the term user function and to
a code segment provided by the skeleton with the term frame-
work function. A user function essentially captures application-
specific processing logic. Each skeleton declares the user
functions, which have to be implemented by developers. A
framework function implements a certain parallel coordination
task such as task distribution or termination detection. By



following the serverless computing paradigm, parallel coordi-
nation has to be implemented based on backend services. This
requires particular attention because the required consistency
guarantees might not be provided by all backend services. We
discuss several examples of user and framework functions in
more detail for a serverless farm skeleton (cf. Section 1V-A).

FaaS Function Topology Mapping: For parallel execution,
each skeleton instance requires a specific number of FaaS
functions that have to be deployed to the target serverless
computing platform. To create these FaaS functions, one has
to map user and framework functions to FaaS functions, i.e.,
functions as seen by the serverless computing platform. As
shown in Fig. 1, we distinguish between a skeleton function
topology and a FaaS function topology. Each skeleton has a
specific skeleton function topology consisting of connected
user and framework functions, which is mapped to a FaaS
function topology for deployment. Mapping two user / frame-
work functions to the same FaaS function means that they
are executed sequentially by a single FaaS function. This
separation enables flexibility with respect to the deployment
of a skeleton instance: On the one hand, by mapping each user
/ framework function to an independent FaaS function, devel-
opers have the ability to fine-tune the resource requirements
of each individual user and framework function, which can
be scaled-out independently. On the other hand, by grouping
user / framework functions and mapping them to the same
FaaS function, developers can minimize various sources of
overhead. Two major sources of overhead are (1) system
overhead because, technically, a container is started for each
FaaS function and (2) communication overhead because FaaS
functions communicate via backend services as described in
the following. We discuss several mappings to FaaS function
topologies and their characteristics in the context of the
serverless farm skeleton in Section I'V-B.

Communication via Backend Services: Whereas user and
framework functions that have been mapped to the same FaaS
function can communicate via shared memory, communica-
tion across FaaS functions requires additional effort. Because
point-to-point communication is not supported on serverless
computing platforms, communication has to be implemented
based on shared backend services (cf. Section II-A). To relieve
developers of the burden of implementing and adapting code
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Fig. 1. For deployment, the skeleton function topology of a skeleton instance
has to be mapped to a FaaS function topology.
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Fig. 2. FaaS functions can be automatically generated by combining user
and framework functions according to the selected FaaS function topology.
Generated wrapper code handles the communication via backend services as
well as the serialization and deserialization of data.

for communication via backend services, the required wrapper
code can be automatically generated per FaaS function. By
following this approach, the interaction with backend ser-
vices as well as the serialization and deserialization of data
is transparent to developers and provided by the generated
wrapper code. The internal structure of a generated FaaS
function is depicted in Fig. 2. To support different backend
services, we introduce a backend service access layer, which
employs the adapter pattern. Backend services can thus be
selected based on application-specific requirements and easily
replaced. The selection of backend services largely depends
on the type and size of data structures stored by a serverless
skeleton instance as well as their access frequency. In general,
frequently accessed, small data structures benefit from in-
memory data stores with low access latency, whereas for huge
communication volumes object storage services are a good
choice.

Automated Delivery and Deployment: Delivery and de-
ployment automation are integral concepts related to cloud
programming and have been shown to effectively shorten soft-
ware release cycles [23]. A system that automates the delivery
process is called continuous delivery pipeline [24]. Fig. 3
summarizes the integration of the aforementioned concepts
to create a continuous delivery pipeline for parallel cloud
programming with serverless skeletons. Whereas developers
have to implement the user functions required by a particular
skeleton, all other steps shown in Fig. 3 can be automated
including the compilation of a serverless skeleton instance
(which includes the generation of wrapper code) and the
deployment to a serverless computing platform by means of
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Fig. 3. A continuous delivery pipeline complements our approach for parallel cloud programming with serverless skeletons.

deployment packages. The specification of a skeleton-specific
custom configuration is optional (zero configuration approach).

IV. DESIGN AND IMPLEMENTATION OF A SERVERLESS
FARM SKELETON FRAMEWORK

In this section, we discuss a serverless version of the well-
known farm skeleton, which can be used in any pipeline
to speed up the computation [25]. Many pleasingly paral-
lel applications can be implemented based on this skeleton.
Prominent examples include frame rendering in computer
graphics, brute-force search in cryptography, and Monte Carlo
simulation. To validate the concepts proposed in Section III,
we present a Java-based development and runtime framework
for the serverless farm skeleton. The remainder of this section
is structured as follows. First, we describe the serverless
computing platform addressed upon which we built our proto-
typical implementation. Subsequently, we discuss (1) the user
and framework functions of our serverless farm skeleton as
well as their implementations, (2) potential mappings of the
skeleton function topology to FaaS function topologies, (3)
the communication via shared backend services, as well as
(4) debugging, delivery, and deployment aspects.

Serverless Computing Platform: The serverless computing
platform addressed is Apache OpenWhisk - an open source
serverless computing platform that executes FaaS functions
based on events from external sources or API calls. Tech-
nically, functions are deployed as Docker containers. The
functional logic implemented by developers is called Action
in OpenWhisk jargon and can be written in one of the
following programming languages: NodelJS, Swift, Java, Go,
Scala, Python, PHP, Ruby, or Ballerina. In addition, we employ
two backend services: MinIO and Redis. MinIO? is an open
source object storage that provides an Amazon S3° compatible
API for data access. Redis!® is an in-memory data store that
can be used as database, cache, or message broker.

A. User and Framework Functions
In this section, we describe the user and framework func-

tions of a serverless farm skeleton (depicted in Fig. 4) and

Shttps://min.io.
“https://aws.amazon.com/s3.
Ohttps://redis.io.
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discuss related design considerations. Function naming is
inspired by [25]. The signatures of user functions are declared
by Java interface methods, which have to be implemented by
developers. These Java interface methods are shown in Fig. 5.
Note that framework functions are transparent to developers.

Predecessor (User) Function: The predecessor function
receives a set of input key-value pairs and initiates the farm
skeleton by creating a set of tasks. Each task is described by
a set of key-value pairs with the key being a String and
the value being an Object. Finally, the predecessor function
returns the tasks that should be processed in parallel.

Dispatcher (Framework) Function: The dispatcher func-
tion is provided by the framework and enacts task distribution.
Therefore, it invokes the implemented worker function once
per task created by the predecessor.

Worker (User) Function: A worker function receives a
task defined as a set of key-value pairs as input and computes
a result value being an Object. Developers are free to
implement any application-specific processing logic that maps
the input to a result value.

Termination Detection (Framework) Function: To detect
the termination [26] of all worker functions, the termination
detection function is invoked by each worker function when
its computation has been completed. Because point-to-point
communication is not supported by serverless computing plat-
forms and FaaS functions are stateless, termination detection
has to be implemented based on a shared backend service. As
termination is a persistent property of the global system state,
which means that once detected it should never be changed
again, the implementation of termination detection based on a
backend service requires particular attention. False positive or
false negative termination detection signals can compromise
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Fig. 4. User and framework functions of the serverless farm skeleton.



Predecessor Function:
Worker Function:
Collector Function:

Successor Function:

Iterable<HashMap<String, Object>> predecessor(HashMap<String, Object> input);
Object worker(HashMap<String, Object> task);

Object collector(HashMap<String, Object> input, Iterator workerResults);
HashMap<String, Object> successor(HashMap<String, Object> input, Object result);

Fig. 5. Signatures of the serverless farm skeleton user functions declared by Java interface methods.
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Fig. 6. Four alternative mappings of the serverless farm skeleton function
topology to FaaS function topologies for deployment.

the execution by detecting termination more than once or
never. Our implementation is based on Redis. We employ
Redis’ atomic increment operations to implement a counter,
which is incremented atomically once per completed worker
function. Termination is detected when the counter has reached
the total number of worker functions. In this case, the collector
function is invoked.

Collector (User) Function: The collector function receives
a set of result values, where each result value has been
computed by one worker function. Additionally, we pass the
set of input key-value pairs, originally received by the pre-
decessor function. This is required by applications for which
the implementation of the collector function depends on the
original input. Developers implement any application-specific
aggregation logic that merges together these result values, e.g.,
summing up all values. The aggregated result value computed
by the collector function is an arbitrary Object.

Successor (User) Function: The successor function re-
ceives the result value computed by the collector function.
Developers are free to implement any application-specific re-
sult handling such as storing the result in a database or sending
an email to inform a user about the completed computation.
A successor function can also invoke other FaaS functions.
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B. FaaS Function Topologies

Fig. 6 shows potential mappings of user and framework
functions to FaaS functions. The first mapping offers the
highest flexibility, whereas the last mapping is designed to
minimize overhead (cf. Section III). Mapping #4 (cf. Fig. 6)
has the least achievable overhead. Further reduction of FaaS
functions is not possible because worker functions have to be
scaled out to make use of parallel processing. Our framework
provides a YAML configuration file that exposes different FaaS
function topology mappings as configuration options. Mapping
#4 is selected by default. Other mappings should only be
selected if more flexibility is actually required.

C. Communication via Backend Services

Based on the communication concept described in Sec-
tion IIT and depicted in Fig. 2, our framework transparently
ensures the communication across FaaS functions. Our pro-
totypical implementation of the backend service access layer
supports two different backend services, namely MinlO and
Redis. To implement the MinlO adapter, we rely on the MinIO
client Java SDK!! version 5.0.6. To implement the Redis
adapter, we rely on the Redis Java client jedis'? version 3.0.1.
More adapters can be easily added.

Note that the framework transparently allocates and releases
data stored in backend services and thus ensures that these
services are only used when they are actually required. In
contrast, programming serverless parallel applications in an
ad hoc manner can lead to huge waste of costs: For instance,
if developers forget to free allocated storage resources, which
are payed per time unit.

D. Debugging, Delivery, and Deployment

For debugging purposes, we developed a testing tool, which
can be used to test an implemented farm skeleton. The testing
tool runs the farm skeleton on the developer’s local machine
and does not require a serverless computing platform to be
installed. Therefore, we provide shared memory implementa-
tions of all framework functions and utilize multiple threads
for parallel execution. Note that the physical parallelism and
thus also the performance obtained heavily depends on the pro-
cessors / cores available locally. However, we found the testing
tool to be an adequate means to validate the implementation
of user functions with small input data before deploying the
skeleton instance to a serverless computing platform.

To deliver and deploy a serverless farm skeleton instance,
we implemented a delivery pipeline as depicted in Fig. 3:

Mhttps://github.com/minio/minio-java.
12https://github.com/xetorthio/jedis.



Compile Serverless Skeleton: User and framework func-
tions are automatically grouped according to the FaaS function
topology mapping selected. To enable communication across
FaaS functions, we automatically generate the required wrap-
per code for each FaaS function. Note that communication via
backend services requires the objects that should be stored
to be serializable. Depending on the selected FaaS function
topology, we automatically check if this is the case before
deploying a skeleton instance to avoid runtime errors.

Create Deployment Packages: A deployment package in
form of a JAR (Java Archive) file is created per FaaS function.
Deployment packages contain all required dependencies of
included user and framework functions as well as their third-
party dependencies such as libraries used by the developer to
implement user functions or libraries used by the provided
framework functions. Moreover, the generated wrapper code
is contained.

Deploy Serverless Skeleton: In the last step, deployment
packages are used to automatically deploy the developed skele-
ton instance via the OpenWhisk API. To access OpenWhisk,
we created a wrapper library that provides simple operations
such as createFaaS, deleteFaaS, and invokeFaaS
upon which our framework manages the lifecycle of a server-
less skeleton instance or FaaS functions, respectively.

V. CASE STUDIES

In this section, we present two prototypical applications that
can be easily developed and deployed with our framework:
Numerical integration and hyperparameter optimization for an
artificial neural network. We describe the implementation of
each application based on our framework in detail.

A. Numerical Integration

Our numerical integration application computes the numeri-
cal value of a definite integral of a user-defined function f(z).
We employ a commonly used technique for approximating the
definite integral: The trapezoidal rule from the closed Newton-
Cotes formulas [27]. Therefore, the region under the graph
f(z) is approximated as a trapezoid of which the area can be
easily calculated:

fla) + £(b)

5 ey

b

[ o b-a).
A better approximation can be achieved by partitioning
the integration interval [a,b] and applying the trapezoidal
rule to each subinterval. This procedure is also called the
composite trapezoidal rule. Therefore, the closed interval [a, b]
is partitioned into N equally spaced subintervals, where each
subinterval has a length of Ax = b’T‘l. Increasing the number
of subintervals makes the approximation more accurate. The
numerical value of a definite integral can be calculated based

on the composite trapezoidal rule as follows:
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where the values x¢ and z are equal to a and b, respec-
tively.

Implementation: A developer has to implement the parti-
tioning of the integration integral as part of the predecessor
function, which is automatically dispatched by the dispatcher
(framework) function. Each subinterval is calculated inde-
pendently by a worker function. Termination is transparently
detected by the termination detection (framework) function.
Thereafter, the collector function calculates the final value of
a definite integral based on Equation 2, which is relayed to
the successor function accordingly.

B. Hyperparameter Optimization

Many machine learning techniques are configured by means
of parameters that have to be manually selected. These param-
eters are called hyperparameters. A prime example are artifi-
cial neural networks, which can be configured by a multitude
of hyperparameters that influence their network architecture
(number of layers, layer size) or the learning process (learning
rate). The optimal configuration has to be selected from a
(most often) highly multi-dimensional hyperparameter space.
Finding the optimal configuration is a non-trivial process
referred to as hyperparameter optimization [28].

A commonly used approach for hyperparameter optimiza-
tion is grid search, which we employ in our case study.
However, note that also other approaches such as random
search [29] can be easily implemented based on our frame-
work because hyperparameter configurations can be evaluated
independently of each other and can thus be farmed out for
distributed computation.

Our hyperparameter optimization application considers a
simple artificial neural network following the multilayer per-
ceptron (MLP) architecture and is designed to optimize the
layer size of a hidden layer. The goal is to find the layer
size with the highest prediction accuracy (for the data set
employed). The network architecture comprises three layers:
An input layer, a hidden layer, and an output layer. To train
the network, we use the well-known MNIST'? data set, a
large collection of handwritten digits that is commonly used
to benchmark classification techniques. The input layer of
the network has a fixed size of 784, which corresponds to
the number of pixels of MNIST images (28 - 28 = 784).
The fully connected hidden layer uses Rectified Linear Units
(ReLU) activation functions. The output layer has a fixed size
of 10 (representing the 10 possible numbers of the MNIST
data set), uses softmax activation functions, and a multi-class
cross entropy loss function. The learning algorithm employed
is stochastic gradient descent.

Implementation: A developer has to implement (1) the
generation of hyperparameter configurations as part of the
predecessor function, (2) the training and evaluation of an arti-
ficial neural network based on a hyperparameter configuration
for the worker function, and (3) the aggregation of results
for the collector function. In this case, the collector function

Bhttp://yann.lecun.com/exdb/mnist.



selects the hyperparameter configuration that produced the
best accuracy. The successor function writes the output to the
console. Task distribution and termination detection are trans-
parently handled by framework functions. Our implementation
of hyperparameter optimization is based on Deeplearning4j'*
- a deep learning framework for the Java Virtual Machine
(JVM). We employ the ND4J'3 scientific library for linear
algebra operations.

VI. EXPERIMENTAL EVALUATION

To evaluate our serverless farm skeleton framework, we
measured the speedups that can be obtained by means of
parallel execution for both applications described in Section V.
Moreover, we compare the execution time with respect to the
two different backend services supported by our prototypical
implementation and the different FaaS function topologies
depicted in Fig. 6. All our measurements were executed
based on an Apache OpenWhisk installation hosted in our
OpenStack-based private cloud environment. Our OpenWhisk
cluster is operated on two Ubuntu 16.04 virtual machines
(VM) with 14 vCPUs clocked at 2.6 GHz, 20 GB RAM, and
40 GB disk each. MinlO and Redis are operated on a single
Ubuntu 16.04 VM with 2 vCPUs clocked at 2.6 GHz, 8 GB
RAM, and 40 GB disk.

FaaS Function Topologies: First, we compare the different
FaaS function topologies depicted in Fig. 6. Therefore, we
measured the execution time of a numerical integration appli-
cation instance with a sequential runtime 7 of 89.28 seconds.
We measured an execution time of 99.21 seconds for topology
#1, 96.41 seconds for topology #2, 96.35 seconds for topology
#3, and 93.78 seconds for topology #4 with Redis as backend
service and one worker FaaS function. As expected, topology
#1 has the highest and topology #4 has the lowest overhead.
This is related to the number of FaaS functions employed:
Topology #1 employs 5 FaaS functions whereas topology #4
employs only 3 FaaS functions. Topology #2 and #3 both
employ 4 FaaS functions thus leading to similar execution
times. Technically, every FaaS function is executed in a Docker

14https://github.com/deeplearning4j/deeplearning4;.
I5https://github.com/deeplearning4j/nddj.
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191

14

Linear

Speedup

Instance 1

Ts=1.02[s]
—A— |nstance 2

Ts=978[s]
——|nstance 3

Ts =89.28 [s]
—8— |nstance 4

Ts =879.27 [s]

Speedup [#]

O —
4 6 8 10 12
Worker FaaS Functions [#]

14

Fig. 8. Measured speedups of the numerical integration application with FaaS
function topology #4 and Redis backend service.
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Fig. 9. Measured speedups of the hyperparameter optimization application
with FaaS function topology #4 and Redis backend service.

container that has to be started. However, note that topology
#1 offers the highest flexibility (cf. Section III).

Backend Services: To compare the performance of the
two backend services supported by our prototypical imple-
mentation, namely MinlO and Redis, we executed the afore-
mentioned instance of the numerical integration application
(T, = 89.28 seconds) with different degrees of parallelism.
Fig. 7 compares the measured execution times based on MinlO
and Redis and shows how the difference of both execution
times evolves for an increasing degree of parallelism. The
execution based on Redis is faster because it stores all data in
memory.

Parallel Performance: We measured the parallel execution
time for four instances of the numerical integration application
(with different sequential runtimes) with respect to different
degrees of parallelism. Fig. 8 shows the achieved speedups.
For larger workloads, we achieved close to linear speedups.
For small workloads, the overhead outweighs the utility of
parallel execution. Speedups measured for the hyperparameter



optimization application are shown in Fig. 9. All parallel
performance measurements were executed with FaaS function
topology #4 and Redis backend service. To ensure reliable
measurements, we executed less worker FaaS functions in
parallel then vCPUs available. Moreover, we ensure that FaaS
functions executed simultaneously are distributed across the
OpenWhisk cluster by limiting the invoker user memory.

VII. CONCLUSION

In this work, we present a novel approach to parallel cloud
programming that enables elastic parallel processing without
considering parallelism or resource management issues. Based
on the well-known concept of algorithmic skeletons, we are
able to demonstrate that also parallel applications, which
require coordination, communication, and synchronization,
can benefit from serverless computing platforms. Serverless
skeletons do not only ease parallel cloud programming, they
can also save monetary costs by employing compute resources
only when they are efficiently used. For instance, with respect
to the farm skeleton, not all workers might complete their com-
putation at the same time, which typically results from non-
uniform task distribution or heterogeneous processing speeds
of processing units (which is the common case in standard
cloud environments). By executing workers as independent
FaaS functions, we ensure that compute resources are not
allocated after the computation has been completed.

Whereas our experimental evaluation shows very promising
results for applications implemented based on the farm skele-
ton, also note that many other parallel execution models (and
corresponding skeletons) heavily rely on the consideration of
data locality to efficiently exploit compute resources, which
is not supported by current serverless computing platforms.
This issue should be further investigated in future work. For
instance, to retain the strict separation of stateless FaaS func-
tions and backend services, locality-aware backend services
can be offered by cloud providers, which store data in close
physical proximity to FaaS functions (e.g., on the same rack).
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