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Abstract—Serverless computing is an emerging cloud comput-
ing paradigm with the goal of freeing developers from resource
management issues. As of today, serverless computing platforms
are mainly used to process computations triggered by events or
user requests that can be executed independently of each other.
These workloads benefit from on-demand and elastic compute re-
sources as well as per-function billing. However, it is still an open
research question to which extent parallel applications, which
comprise most often complex coordination and communication
patterns, can benefit from serverless computing.

In this paper, we introduce serverless skeletons for parallel
cloud programming to free developers from both parallelism and
resource management issues. In particular, we investigate on the
well-known and widely used farm skeleton, which supports the
implementation of a wide range of applications. To evaluate our
concepts, we present a prototypical development and runtime
framework and implement two applications based on our frame-
work: Numerical integration and hyperparameter optimization -
a commonly applied technique in machine learning. We report
on performance measurements for both applications and discuss
the usefulness of our approach.

Index Terms—cloud computing, parallel computing, function
as a service, parallel cloud programming, elasticity

I. INTRODUCTION

Serverless computing is an emerging cloud computing

paradigm that frees users from resource management issues.

Therefore, serverless computing platforms enable the execu-

tion of user code in form of stateless functions. Compute

resources are provisioned on-demand and scaled in an au-

tomated manner leading to two fundamental benefits: Elas-

ticity by design and per-function resource accounting (and

billing). Prominent serverless computing platforms include

AWS Lambda1 and Azure Functions2 as well as open source

solutions such as Apache OpenWhisk3. Whereas functions are

stateless, serverless computing platforms also provide backend

services to store data [1].

Exemplary applications of serverless computing include

data filtering and transformation, log file analysis, or object

recognition in images [1]. In all these cases, computations

are triggered by an event or user request and can be executed

independently of each other. This enables these applications to

benefit from elastic auto-scaling in a straightforward manner.

More recently, serverless computing platforms have become

of interest for parallel applications, which comprise most

often complex coordination, communication, and synchroniza-

tion patterns [2]–[4]. However, it is still an open research

1https://aws.amazon.com/lambda.
2https://azure.microsoft.com/en-us/services/functions.
3https://openwhisk.apache.org.

question to which extent parallel applications can benefit

from serverless computing in form of on-demand and elastic

compute resources as well as per-function resource accounting.

Moreover, developing serverless parallel applications requires

novel approaches to parallel programming.

In this paper, we introduce the concept of serverless skele-

tons to enable parallel cloud programming. Algorithmic skele-

tons [5], [6] have been introduced to structure parallel com-

putations as a set of higher-level functions that abstract from

complex coordination patterns inherent to parallel processing.

We show how to use serverless skeletons to transparently

ensure parallel coordination and communication based on

serverless computing platforms while developers are able to

implement functional code without considering parallelism

and resource management issues. We specifically address the

farm skeleton, which can be applied to implement a wide range

of applications. We make the following contributions:

• We present a novel approach to parallel cloud program-

ming based on serverless skeletons that enables devel-

opers to benefit from elastic compute resources without

dealing with parallelism and resource management issues.

• We describe the design and implementation of a server-

less farm skeleton and present a prototypical development

and runtime framework based on Apache OpenWhisk.

• We evaluate the serverless farm skeleton with two exam-

ple applications: numerical integration and hyperparame-

ter optimization, which is a commonly applied technique

in machine learning. We report on performance measure-

ments for both applications.

This paper is structured as follows. In Section II, we

discuss related work. In Section III, we present our approach

to parallel cloud programming with serverless skeletons. We

describe a development and runtime framework for the server-

less farm skeleton as well as a corresponding prototypical

implementation in Section IV. In Section V, we describe two

example applications that we employ in our experimental eval-

uation in Section VI for performance measurements. Finally,

in Section VII, we conclude our paper.

II. FUNDAMENTALS AND RELATED WORK

In this section, we discuss related work on serverless

computing, parallel processing in the cloud, and skeletons.

A. Serverless Computing

Serverless computing can be seen as a natural evolution

of the cloud computing paradigm and is heavily influenced

by microservices, container virtualization, and event-driven
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programming [7]. Whereas the microservices architectural

style propagates the development and operation of fine-grained

services, container virtualization helped to back this trend from

a technological side. Following these developments, server-

less computing enables function-level elasticity by decoupling

compute from storage, which is a common approach to build

cloud-native applications. The compute tier is represented by

stateless FaaS functions4 (Function as a Service) and the

storage tier is given by backend services (Backend as a Ser-

vice) such as databases, message queues, and caching systems

[1]. Because FaaS functions themselves are not individually

addressable (point-to-point communication is not supported),

they can only communicate via shared backend services [8].

Typically, each FaaS function is executed in an event-driven

manner, i.e., it is triggered when a specific event occurs or a

user request is received. FaaS functions can also be invoked via

platform-specific APIs. Technically, user code is executed in

a sandboxed environment (such as a container) with a specific

amount of compute resources (CPU, memory). State-of-the-art

serverless computing offerings include AWS Lambda, Azure

Functions5, and Google Cloud Functions6. Moreover, open

source platforms are available to be operated in a private cloud

setting or on top of IaaS cloud offerings. Prominent examples

are Apache OpenWhisk and Fission7.

B. Parallel Processing in the Cloud

Pay-per-use and elasticity are fundamentally new concepts

in the context of parallel applications [9], [10]. In traditional

parallel execution environments such as clusters and grids,

users had no visibility on the monetary costs of a computation

and were not able to make use of elasticity by adapting

the number of processing units at runtime. Existing research

discusses how parallel applications can benefit from these

cloud-specific properties [9]–[13]. More recently, serverless

computing platforms have become of interest for parallel

processing. The authors of [2] present a prototype called

PyWren that enables developers to make use of AWS Lambda

for parallel execution of locally developed code segments.

Whereas they follow a code offloading approach, we deploy

a topology of FaaS functions, which also allows parallel

coordination tasks (captured by skeletons) to be executed on

the serverless computing platform. The authors of [3] describe

how to execute linear algebra algorithms on AWS Lambda.

In [4], serverless computing platforms are evaluated for big

data processing use cases based on a matrix multiplication

application.

C. Algorithmic Skeletons

Algorithmic skeletons [5], [6] provide a method to structure

parallel programs as a set of higher order functions that ab-

stract over common patterns of parallel coordination. Because

4We refer to a function in the serverless computing context with the term
FaaS function not to be confused with programming-level functions, which
are used in the context of skeletons.

5https://azure.microsoft.com/en-us/services/functions.
6https://cloud.google.com/functions.
7https://fission.io.

parallel coordination is captured by the skeleton, developers

are able to implement functional code without considering

parallelism issues. A major benefit of using skeletons is that

coordination (such as orchestration and synchronization) is

transparently handled, which substantially reduces runtime

errors (e.g., due to deadlocks, starvation, and race conditions)

when compared to low-level parallel programming models

(such as MPI). Consequently, one can say that each skeleton

comprises a built-in parallel behavior [14].

Algorithmic skeletons can be classified as either task-
parallel with examples such as pipeline, farm, divide &

conquer, and branch & bound or data-parallel such as map and

fold [14]–[16]. Over the years, many frameworks and libraries

have been developed for a variety of programming languages

and parallel execution environments [17]–[20]. Whereas func-

tional code is implemented by developers, provided compiling

tools take care of automatically generating code for parallel

execution to ease programming. Depending on the execution

environment considered, parallel execution is based on POSIX

threads, OpenMP, MPI, OpenCL, or CUDA. For instance,

Muesli [15], [21] is a C++ template library that supports

parallel execution on top of MPI, OpenMP, and CUDA. During

the last years, skeleton-based programming models have been

widely adopted. Probably the most prominent example is

MapReduce [22], which has been designed to simplify data

processing on large, heterogeneous clusters of commodity

hardware and hides data distribution and parallel execution.

III. PARALLEL CLOUD PROGRAMMING WITH SERVERLESS

SKELETONS

Skeletons capture common parallelism patterns and provide

abstract implementations of these patterns for a parallel ex-

ecution environment. In this work, we specifically address

serverless computing platforms - a novel parallel execution

environment with benefits such as built-in elasticity and per-

function resource accounting. However, in contrast to other

parallel execution environments, the specific characteristics of

serverless computing platforms make the implementation of

parallel coordination as well as the communication across par-

allel processing units challenging. In the following, we present

several concepts and design principles to enable parallel cloud

programming with serverless skeletons.

Skeleton-based Development with User- and Framework
Functions: Algorithmic skeletons make use of the separation

of concerns principle to free developers from parallelism con-

cerns: Only the functional code is implemented by developers

while code required for parallel coordination is provided by

the skeleton itself. In the following, we refer to a code segment

implemented by developers with the term user function and to

a code segment provided by the skeleton with the term frame-
work function. A user function essentially captures application-

specific processing logic. Each skeleton declares the user

functions, which have to be implemented by developers. A

framework function implements a certain parallel coordination

task such as task distribution or termination detection. By
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following the serverless computing paradigm, parallel coordi-

nation has to be implemented based on backend services. This

requires particular attention because the required consistency

guarantees might not be provided by all backend services. We

discuss several examples of user and framework functions in

more detail for a serverless farm skeleton (cf. Section IV-A).

FaaS Function Topology Mapping: For parallel execution,

each skeleton instance requires a specific number of FaaS

functions that have to be deployed to the target serverless

computing platform. To create these FaaS functions, one has

to map user and framework functions to FaaS functions, i.e.,

functions as seen by the serverless computing platform. As

shown in Fig. 1, we distinguish between a skeleton function
topology and a FaaS function topology. Each skeleton has a

specific skeleton function topology consisting of connected

user and framework functions, which is mapped to a FaaS

function topology for deployment. Mapping two user / frame-

work functions to the same FaaS function means that they

are executed sequentially by a single FaaS function. This

separation enables flexibility with respect to the deployment

of a skeleton instance: On the one hand, by mapping each user

/ framework function to an independent FaaS function, devel-

opers have the ability to fine-tune the resource requirements

of each individual user and framework function, which can

be scaled-out independently. On the other hand, by grouping

user / framework functions and mapping them to the same

FaaS function, developers can minimize various sources of

overhead. Two major sources of overhead are (1) system

overhead because, technically, a container is started for each

FaaS function and (2) communication overhead because FaaS

functions communicate via backend services as described in

the following. We discuss several mappings to FaaS function

topologies and their characteristics in the context of the

serverless farm skeleton in Section IV-B.

Communication via Backend Services: Whereas user and

framework functions that have been mapped to the same FaaS

function can communicate via shared memory, communica-

tion across FaaS functions requires additional effort. Because

point-to-point communication is not supported on serverless

computing platforms, communication has to be implemented

based on shared backend services (cf. Section II-A). To relieve

developers of the burden of implementing and adapting code
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Fig. 1. For deployment, the skeleton function topology of a skeleton instance
has to be mapped to a FaaS function topology.
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Fig. 2. FaaS functions can be automatically generated by combining user
and framework functions according to the selected FaaS function topology.
Generated wrapper code handles the communication via backend services as
well as the serialization and deserialization of data.

for communication via backend services, the required wrapper

code can be automatically generated per FaaS function. By

following this approach, the interaction with backend ser-

vices as well as the serialization and deserialization of data

is transparent to developers and provided by the generated

wrapper code. The internal structure of a generated FaaS

function is depicted in Fig. 2. To support different backend

services, we introduce a backend service access layer, which

employs the adapter pattern. Backend services can thus be

selected based on application-specific requirements and easily

replaced. The selection of backend services largely depends

on the type and size of data structures stored by a serverless

skeleton instance as well as their access frequency. In general,

frequently accessed, small data structures benefit from in-

memory data stores with low access latency, whereas for huge

communication volumes object storage services are a good

choice.

Automated Delivery and Deployment: Delivery and de-

ployment automation are integral concepts related to cloud

programming and have been shown to effectively shorten soft-

ware release cycles [23]. A system that automates the delivery

process is called continuous delivery pipeline [24]. Fig. 3

summarizes the integration of the aforementioned concepts

to create a continuous delivery pipeline for parallel cloud

programming with serverless skeletons. Whereas developers

have to implement the user functions required by a particular

skeleton, all other steps shown in Fig. 3 can be automated

including the compilation of a serverless skeleton instance

(which includes the generation of wrapper code) and the

deployment to a serverless computing platform by means of
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Fig. 3. A continuous delivery pipeline complements our approach for parallel cloud programming with serverless skeletons.

deployment packages. The specification of a skeleton-specific

custom configuration is optional (zero configuration approach).

IV. DESIGN AND IMPLEMENTATION OF A SERVERLESS

FARM SKELETON FRAMEWORK

In this section, we discuss a serverless version of the well-

known farm skeleton, which can be used in any pipeline

to speed up the computation [25]. Many pleasingly paral-

lel applications can be implemented based on this skeleton.

Prominent examples include frame rendering in computer

graphics, brute-force search in cryptography, and Monte Carlo

simulation. To validate the concepts proposed in Section III,

we present a Java-based development and runtime framework

for the serverless farm skeleton. The remainder of this section

is structured as follows. First, we describe the serverless

computing platform addressed upon which we built our proto-

typical implementation. Subsequently, we discuss (1) the user

and framework functions of our serverless farm skeleton as

well as their implementations, (2) potential mappings of the

skeleton function topology to FaaS function topologies, (3)

the communication via shared backend services, as well as

(4) debugging, delivery, and deployment aspects.
Serverless Computing Platform: The serverless computing

platform addressed is Apache OpenWhisk - an open source

serverless computing platform that executes FaaS functions

based on events from external sources or API calls. Tech-

nically, functions are deployed as Docker containers. The

functional logic implemented by developers is called Action

in OpenWhisk jargon and can be written in one of the

following programming languages: NodeJS, Swift, Java, Go,

Scala, Python, PHP, Ruby, or Ballerina. In addition, we employ

two backend services: MinIO and Redis. MinIO8 is an open

source object storage that provides an Amazon S39 compatible

API for data access. Redis10 is an in-memory data store that

can be used as database, cache, or message broker.

A. User and Framework Functions
In this section, we describe the user and framework func-

tions of a serverless farm skeleton (depicted in Fig. 4) and

8https://min.io.
9https://aws.amazon.com/s3.
10https://redis.io.

discuss related design considerations. Function naming is

inspired by [25]. The signatures of user functions are declared

by Java interface methods, which have to be implemented by

developers. These Java interface methods are shown in Fig. 5.

Note that framework functions are transparent to developers.

Predecessor (User) Function: The predecessor function

receives a set of input key-value pairs and initiates the farm

skeleton by creating a set of tasks. Each task is described by

a set of key-value pairs with the key being a String and

the value being an Object. Finally, the predecessor function

returns the tasks that should be processed in parallel.

Dispatcher (Framework) Function: The dispatcher func-

tion is provided by the framework and enacts task distribution.

Therefore, it invokes the implemented worker function once

per task created by the predecessor.

Worker (User) Function: A worker function receives a

task defined as a set of key-value pairs as input and computes

a result value being an Object. Developers are free to

implement any application-specific processing logic that maps

the input to a result value.

Termination Detection (Framework) Function: To detect

the termination [26] of all worker functions, the termination

detection function is invoked by each worker function when

its computation has been completed. Because point-to-point

communication is not supported by serverless computing plat-

forms and FaaS functions are stateless, termination detection

has to be implemented based on a shared backend service. As

termination is a persistent property of the global system state,

which means that once detected it should never be changed

again, the implementation of termination detection based on a

backend service requires particular attention. False positive or

false negative termination detection signals can compromise

Predecessor
Function

Dispatcher
Function

Worker
Functions

TD
Function

Collector
Function

Successor
Function

Tasks
Worker Results

Final
ResultTasksInput

Input

Fig. 4. User and framework functions of the serverless farm skeleton.
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Predecessor Function:  Iterable<HashMap<String, Object>> predecessor(HashMap<String, Object> input);

Worker Function: Object worker(HashMap<String, Object> task);

Collector Function: Object collector(HashMap<String, Object> input, Iterator workerResults);

Successor Function: HashMap<String, Object> successor(HashMap<String, Object> input, Object result);

Fig. 5. Signatures of the serverless farm skeleton user functions declared by Java interface methods.
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Fig. 6. Four alternative mappings of the serverless farm skeleton function
topology to FaaS function topologies for deployment.

the execution by detecting termination more than once or

never. Our implementation is based on Redis. We employ

Redis’ atomic increment operations to implement a counter,

which is incremented atomically once per completed worker

function. Termination is detected when the counter has reached

the total number of worker functions. In this case, the collector

function is invoked.

Collector (User) Function: The collector function receives

a set of result values, where each result value has been

computed by one worker function. Additionally, we pass the

set of input key-value pairs, originally received by the pre-

decessor function. This is required by applications for which

the implementation of the collector function depends on the

original input. Developers implement any application-specific

aggregation logic that merges together these result values, e.g.,

summing up all values. The aggregated result value computed

by the collector function is an arbitrary Object.

Successor (User) Function: The successor function re-

ceives the result value computed by the collector function.

Developers are free to implement any application-specific re-

sult handling such as storing the result in a database or sending

an email to inform a user about the completed computation.

A successor function can also invoke other FaaS functions.

B. FaaS Function Topologies

Fig. 6 shows potential mappings of user and framework

functions to FaaS functions. The first mapping offers the

highest flexibility, whereas the last mapping is designed to

minimize overhead (cf. Section III). Mapping #4 (cf. Fig. 6)

has the least achievable overhead. Further reduction of FaaS

functions is not possible because worker functions have to be

scaled out to make use of parallel processing. Our framework

provides a YAML configuration file that exposes different FaaS

function topology mappings as configuration options. Mapping

#4 is selected by default. Other mappings should only be

selected if more flexibility is actually required.

C. Communication via Backend Services

Based on the communication concept described in Sec-

tion III and depicted in Fig. 2, our framework transparently

ensures the communication across FaaS functions. Our pro-

totypical implementation of the backend service access layer

supports two different backend services, namely MinIO and

Redis. To implement the MinIO adapter, we rely on the MinIO

client Java SDK11 version 5.0.6. To implement the Redis

adapter, we rely on the Redis Java client jedis12 version 3.0.1.

More adapters can be easily added.

Note that the framework transparently allocates and releases

data stored in backend services and thus ensures that these

services are only used when they are actually required. In

contrast, programming serverless parallel applications in an

ad hoc manner can lead to huge waste of costs: For instance,

if developers forget to free allocated storage resources, which

are payed per time unit.

D. Debugging, Delivery, and Deployment

For debugging purposes, we developed a testing tool, which

can be used to test an implemented farm skeleton. The testing

tool runs the farm skeleton on the developer’s local machine

and does not require a serverless computing platform to be

installed. Therefore, we provide shared memory implementa-

tions of all framework functions and utilize multiple threads

for parallel execution. Note that the physical parallelism and

thus also the performance obtained heavily depends on the pro-

cessors / cores available locally. However, we found the testing

tool to be an adequate means to validate the implementation

of user functions with small input data before deploying the

skeleton instance to a serverless computing platform.

To deliver and deploy a serverless farm skeleton instance,

we implemented a delivery pipeline as depicted in Fig. 3:

11https://github.com/minio/minio-java.
12https://github.com/xetorthio/jedis.
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Compile Serverless Skeleton: User and framework func-

tions are automatically grouped according to the FaaS function

topology mapping selected. To enable communication across

FaaS functions, we automatically generate the required wrap-

per code for each FaaS function. Note that communication via

backend services requires the objects that should be stored

to be serializable. Depending on the selected FaaS function

topology, we automatically check if this is the case before

deploying a skeleton instance to avoid runtime errors.

Create Deployment Packages: A deployment package in

form of a JAR (Java Archive) file is created per FaaS function.

Deployment packages contain all required dependencies of

included user and framework functions as well as their third-

party dependencies such as libraries used by the developer to

implement user functions or libraries used by the provided

framework functions. Moreover, the generated wrapper code

is contained.

Deploy Serverless Skeleton: In the last step, deployment

packages are used to automatically deploy the developed skele-

ton instance via the OpenWhisk API. To access OpenWhisk,

we created a wrapper library that provides simple operations

such as createFaaS, deleteFaaS, and invokeFaaS
upon which our framework manages the lifecycle of a server-

less skeleton instance or FaaS functions, respectively.

V. CASE STUDIES

In this section, we present two prototypical applications that

can be easily developed and deployed with our framework:

Numerical integration and hyperparameter optimization for an

artificial neural network. We describe the implementation of

each application based on our framework in detail.

A. Numerical Integration

Our numerical integration application computes the numeri-

cal value of a definite integral of a user-defined function f(x).
We employ a commonly used technique for approximating the

definite integral: The trapezoidal rule from the closed Newton-

Cotes formulas [27]. Therefore, the region under the graph

f(x) is approximated as a trapezoid of which the area can be

easily calculated:

∫ b

a

f(x)dx ≈ (b− a) · f(a) + f(b)

2
(1)

A better approximation can be achieved by partitioning

the integration interval [a, b] and applying the trapezoidal

rule to each subinterval. This procedure is also called the

composite trapezoidal rule. Therefore, the closed interval [a, b]
is partitioned into N equally spaced subintervals, where each

subinterval has a length of Δx = b−a
N . Increasing the number

of subintervals makes the approximation more accurate. The

numerical value of a definite integral can be calculated based

on the composite trapezoidal rule as follows:

∫ b

a

f(x)dx ≈ Δx

2
·
(
f(x0) + f(xN ) +

N−1∑
k=1

2 · f(xk)

)
, (2)

where the values x0 and xN are equal to a and b, respec-

tively.

Implementation: A developer has to implement the parti-

tioning of the integration integral as part of the predecessor

function, which is automatically dispatched by the dispatcher

(framework) function. Each subinterval is calculated inde-

pendently by a worker function. Termination is transparently

detected by the termination detection (framework) function.

Thereafter, the collector function calculates the final value of

a definite integral based on Equation 2, which is relayed to

the successor function accordingly.

B. Hyperparameter Optimization

Many machine learning techniques are configured by means

of parameters that have to be manually selected. These param-

eters are called hyperparameters. A prime example are artifi-

cial neural networks, which can be configured by a multitude

of hyperparameters that influence their network architecture

(number of layers, layer size) or the learning process (learning

rate). The optimal configuration has to be selected from a

(most often) highly multi-dimensional hyperparameter space.

Finding the optimal configuration is a non-trivial process

referred to as hyperparameter optimization [28].

A commonly used approach for hyperparameter optimiza-

tion is grid search, which we employ in our case study.

However, note that also other approaches such as random

search [29] can be easily implemented based on our frame-

work because hyperparameter configurations can be evaluated

independently of each other and can thus be farmed out for

distributed computation.

Our hyperparameter optimization application considers a

simple artificial neural network following the multilayer per-

ceptron (MLP) architecture and is designed to optimize the

layer size of a hidden layer. The goal is to find the layer

size with the highest prediction accuracy (for the data set

employed). The network architecture comprises three layers:

An input layer, a hidden layer, and an output layer. To train

the network, we use the well-known MNIST13 data set, a

large collection of handwritten digits that is commonly used

to benchmark classification techniques. The input layer of

the network has a fixed size of 784, which corresponds to

the number of pixels of MNIST images (28 · 28 = 784).

The fully connected hidden layer uses Rectified Linear Units

(ReLU) activation functions. The output layer has a fixed size

of 10 (representing the 10 possible numbers of the MNIST

data set), uses softmax activation functions, and a multi-class

cross entropy loss function. The learning algorithm employed

is stochastic gradient descent.

Implementation: A developer has to implement (1) the

generation of hyperparameter configurations as part of the

predecessor function, (2) the training and evaluation of an arti-

ficial neural network based on a hyperparameter configuration

for the worker function, and (3) the aggregation of results

for the collector function. In this case, the collector function

13http://yann.lecun.com/exdb/mnist.
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selects the hyperparameter configuration that produced the

best accuracy. The successor function writes the output to the

console. Task distribution and termination detection are trans-

parently handled by framework functions. Our implementation

of hyperparameter optimization is based on Deeplearning4j14

- a deep learning framework for the Java Virtual Machine

(JVM). We employ the ND4J15 scientific library for linear

algebra operations.

VI. EXPERIMENTAL EVALUATION

To evaluate our serverless farm skeleton framework, we

measured the speedups that can be obtained by means of

parallel execution for both applications described in Section V.

Moreover, we compare the execution time with respect to the

two different backend services supported by our prototypical

implementation and the different FaaS function topologies

depicted in Fig. 6. All our measurements were executed

based on an Apache OpenWhisk installation hosted in our

OpenStack-based private cloud environment. Our OpenWhisk

cluster is operated on two Ubuntu 16.04 virtual machines

(VM) with 14 vCPUs clocked at 2.6 GHz, 20 GB RAM, and

40 GB disk each. MinIO and Redis are operated on a single

Ubuntu 16.04 VM with 2 vCPUs clocked at 2.6 GHz, 8 GB

RAM, and 40 GB disk.

FaaS Function Topologies: First, we compare the different

FaaS function topologies depicted in Fig. 6. Therefore, we

measured the execution time of a numerical integration appli-

cation instance with a sequential runtime Ts of 89.28 seconds.

We measured an execution time of 99.21 seconds for topology

#1, 96.41 seconds for topology #2, 96.35 seconds for topology

#3, and 93.78 seconds for topology #4 with Redis as backend

service and one worker FaaS function. As expected, topology

#1 has the highest and topology #4 has the lowest overhead.

This is related to the number of FaaS functions employed:

Topology #1 employs 5 FaaS functions whereas topology #4

employs only 3 FaaS functions. Topology #2 and #3 both

employ 4 FaaS functions thus leading to similar execution

times. Technically, every FaaS function is executed in a Docker

14https://github.com/deeplearning4j/deeplearning4j.
15https://github.com/deeplearning4j/nd4j.
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Fig. 7. Measured execution time of numerical integration application instance
with FaaS function topology #4 based on MinIO / Redis backend service.
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Fig. 9. Measured speedups of the hyperparameter optimization application
with FaaS function topology #4 and Redis backend service.

container that has to be started. However, note that topology

#1 offers the highest flexibility (cf. Section III).

Backend Services: To compare the performance of the

two backend services supported by our prototypical imple-

mentation, namely MinIO and Redis, we executed the afore-

mentioned instance of the numerical integration application

(Ts = 89.28 seconds) with different degrees of parallelism.

Fig. 7 compares the measured execution times based on MinIO

and Redis and shows how the difference of both execution

times evolves for an increasing degree of parallelism. The

execution based on Redis is faster because it stores all data in

memory.

Parallel Performance: We measured the parallel execution

time for four instances of the numerical integration application

(with different sequential runtimes) with respect to different

degrees of parallelism. Fig. 8 shows the achieved speedups.

For larger workloads, we achieved close to linear speedups.

For small workloads, the overhead outweighs the utility of

parallel execution. Speedups measured for the hyperparameter
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optimization application are shown in Fig. 9. All parallel

performance measurements were executed with FaaS function

topology #4 and Redis backend service. To ensure reliable

measurements, we executed less worker FaaS functions in

parallel then vCPUs available. Moreover, we ensure that FaaS

functions executed simultaneously are distributed across the

OpenWhisk cluster by limiting the invoker user memory.

VII. CONCLUSION

In this work, we present a novel approach to parallel cloud

programming that enables elastic parallel processing without

considering parallelism or resource management issues. Based

on the well-known concept of algorithmic skeletons, we are

able to demonstrate that also parallel applications, which

require coordination, communication, and synchronization,

can benefit from serverless computing platforms. Serverless

skeletons do not only ease parallel cloud programming, they

can also save monetary costs by employing compute resources

only when they are efficiently used. For instance, with respect

to the farm skeleton, not all workers might complete their com-

putation at the same time, which typically results from non-

uniform task distribution or heterogeneous processing speeds

of processing units (which is the common case in standard

cloud environments). By executing workers as independent

FaaS functions, we ensure that compute resources are not

allocated after the computation has been completed.

Whereas our experimental evaluation shows very promising

results for applications implemented based on the farm skele-

ton, also note that many other parallel execution models (and

corresponding skeletons) heavily rely on the consideration of

data locality to efficiently exploit compute resources, which

is not supported by current serverless computing platforms.

This issue should be further investigated in future work. For

instance, to retain the strict separation of stateless FaaS func-

tions and backend services, locality-aware backend services

can be offered by cloud providers, which store data in close

physical proximity to FaaS functions (e.g., on the same rack).
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