
An Approach to Cost-Efficient Fault Tolerance in
Inherently Redundant Fail-Operational Systems

Tobias Dörr∗, Timo Sandmann∗, Patrick Friederich†, Arnd Leitner‡, and Jürgen Becker∗
∗Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Email: {tobias.doerr, sandmann, becker}@kit.edu
†Vector Informatik GmbH, Stuttgart, Germany

‡Schaeffler Automotive Buehl GmbH & Co. KG, Bühl, Germany

Abstract—Embedded systems in safety-critical environments
are often subject to strict reliability requirements. This holds
particularly true for modern fail-operational systems. In order
to deliver a guaranteed minimum functionality at all times, these
systems are often based on expensive fault tolerance mechanisms.
In this work, we consider fail-operational systems with inherent
redundancy. This property describes the presence of multiple
hardware components, each of which is underutilized to a certain
degree and thus able to serve as a fallback for one of the other
components. We propose an off-chip fault tolerance mechanism
for a pair of inherently redundant execution units that requires
no further replication of these expensive resources. The key
component of this concept is a lightweight proxy unit that
handles faults of one execution unit by dynamically migrating
the safety-critical portion of its functionality to its redundant
counterpart. We present a prototypical implementation of this
concept and evaluate the fault handling time of the resulting
system experimentally. The results show that for an exemplary,
processor-based control system with 256 bits of internal state,
a cycle time of four milliseconds, and 64 bits of payload data
that are read from or written to attached devices per cycle, the
presented implementation is able to detect the failure of a unit,
activate a fallback functionality on the complementary unit, and
restore the internal state variables within five milliseconds.

Index Terms—Fail-operational systems, embedded processors,
simplex architecture, fault tolerance, dynamic redundancy, emer-
gency operation, FPGA prototype, CAN bus, safety.

I. INTRODUCTION

Since the advent of the first commercially available mi-

croprocessor, the computational power that such integrated

circuits are able to deliver has increased by several orders

of magnitude. This has led to a world in which embedded

systems are ubiquitous and fulfill an ever-increasing number

of functions in the most diverse fields of human life. In

safety-critical environments, however, an embedded system

must also meet certain dependability requirements. A common

example of such an environment is the automotive domain, in

which the increasing popularity of drive-by-wire systems [1]

and trends such as autonomous driving [2] require the electri-

cal/electronic (E/E) architecture of modern vehicles to exhibit

both a high performance and fail-operational behavior.

Fail-operational behavior refers to the property that even

if a considered system is affected by errors, it remains able

to deliver a certain minimum level of functionality [2], [3].

We refer to a system that is free of catastrophic conse-

quences on users or the environment as safe [4] and define

a fail-operational system as a system that can be safe only

if it exhibits fail-operational behavior. It is important to note

that for fail-operational systems, it is not possible to identify

a safe state that can simply be entered in response to a fault.

Therefore, they are generally more challenging to design than

conventional, more manageable fail-safe systems.

To achieve fail-operational behavior, suitable fault toler-

ance techniques must be applied. A fault tolerance technique

handles faults of the system in such a way that a specified

functionality is maintained [5]. Such a technique is usually

based on hardware redundancy, software redundancy, time re-

dundancy or information redundancy [6]. A popular hardware

redundancy technique that is able to mask single faults is the

triple modular redundancy (TMR) scheme [7]. A drawback of

this approach, however, is its significant hardware overhead.

A cost-efficient alternative to TMR are dynamic hardware

redundancy techniques. They aim to provide fault tolerance by

detecting faults and reconfiguring the system in an appropriate

manner—usually by logically removing faulty components

from the system and activating suitable spares [7].

In this work, we consider fail-operational systems that

comprise a certain degree of inherent redundancy and propose

a system-level concept that utilizes this redundancy to provide

tolerance against a certain kind of permanent, intermittent, and

transient faults. The key aspect of this concept is the intro-

duction of a proxy unit that imposes a dynamic redundancy

scheme upon the existing hardware redundancy.

After a review of previous and related work (Section II),

we describe the considered fault model and define the prob-

lem that this work intends to solve (Section III). Following

this, the system-level concept (Section IV), our prototypical

implementation (Section V), and the results of its experimental

evaluation (Section VI) are presented. As part of the evalua-

tion, we discuss the application of the presented approach to

a particular scenario from the automotive domain.

II. RELATED WORK

The use of dynamic hardware redundancy techniques to tol-

erate permanent, intermittent, and transient faults has already

been studied intensively. The scheme that is presented in [8],

for instance, protects a message-based multiprocessor system

from physical faults of individual processors or their commu-

nication links. The author separates the system’s functional

630

2020 23rd Euromicro Conference on Digital System Design (DSD)

978-1-7281-9535-3/20/$31.00 ©2020 IEEE
DOI 10.1109/DSD51259.2020.00103

layer, which can be viewed as a set of processes and their

interactions, from the underlying hardware. A certain degree

of redundancy is introduced into the latter. When a physical

fault occurs, the affected component is logically removed from

the system and its functionality is distributed among the re-

maining hardware. Therefore, this approach allows the system

to maintain its full functionality even after being affected by

a certain number of permanent faults in its hardware.

The authors of [9] present a fault tolerance approach that

focuses on the uniform treatment of transient and perma-

nent faults in a multiprocessor environment. It is based on

a reliability-aware task scheduler that makes use of spare

resources to ensure the successful execution of the system’s

real-time tasks. Another fault tolerance approach for real-time

tasks is described in [10]. This approach, however, considers

transient faults of homogenous cores in a multicore processor.

It makes use of spare resources to execute critical tasks redun-

dantly and employs checkpointing with a rollback mechanism

for non-critical tasks without real-time requirements.

It is important to note that a fail-operational system does not

necessarily require its full functionality to be maintained after

being affected by a fault. Instead, a degraded functionality

might be sufficient to preserve its safety. The system-level

simplex architecture [11], for instance, makes use of degrada-

tion to achieve fail-operational behavior in a control system

context. It is based on the general idea of “using simplicity

to control complexity” [12] and assumes that two controllers

are available to drive a plant: One of them provides a high

performance, while the other one is very simple and more re-

liable. A decision logic module monitors the plant and, at any

time, selects one of the controllers as the active one. Whenever

the high-performance controller fails to keep the system safe,

the simple controller is activated. This dynamic redundancy

scheme along with a suitable hardware deployment of the con-

trollers ensures that faults of the high-performance controller

cannot impair the safety of the overall system.

Conceptually very similar but defined in the context of au-

tomotive electronics is the fault tolerance approach from [13].

It comprises a self-checking main controller and a so-called

limp-home controller. Failures of the former are handled by

activating a degraded functionality on the latter.

The approach described in [3] is similar to those presented

in [11] and [13] in the sense that a failure of a complex proces-

sor is handled by migrating its safety-critical functionality to a

fallback processor. To reduce the resource consumption of the

overall system, however, this fallback processor is not present

in the fault-free case but introduced on demand by partially

reconfiguring a field-programmable gate array (FPGA).

The formal model described in [14] regards the functionality

of a system as a set of so-called features and its underlying

hardware as a set of homogeneous, interconnected execution

units. The execution units are assumed to contain a certain

amount of spare resources. To a certain degree, the failure

of such units can therefore be tolerated without degradation.

If the available resources are no longer sufficient, individual

features can be replaced by their degraded versions.

Scope of this work

EX0 DEV0

EXn−1 DEVn−1

...
...

Residual
components

Fig. 1. Inherently redundant system with n execution units

III. MOTIVATION AND PROBLEM STATEMENT

This work is focused on fail-operational systems that com-

prise a certain degree of inherent redundancy in their execution

units. We define an execution unit as a processor-based inte-

grated circuit (IC) with all of its internal components (such as

flash memory or an input/output controller) and the off-chip

peripherals that are immediately attached to it (such as

a CAN transceiver). Furthermore, we refer to inherent re-
dundancy as the property that a system comprises n > 1
execution units, each of which with a certain amount of

spare resources that cannot be optimized away and are able

to execute additional tasks in case another unit fails. We

distinguish two manifestations of these resources:

1) The resources are entirely unused during normal oper-

ation of the system, but external factors prevent them

from being removed. An execution unit could, for in-

stance, be a commercial off-the-shelf (COTS) product

whose configuration cannot be influenced by the devel-

oper of the system under consideration.

2) The resources are utilized during normal operation but

fulfill only tasks that can safely be suspended at any

time. An example of such a task is one whose sole pur-

pose it is to fulfill a non-critical convenience application,

such as an infotainment system.

For the purposes of this work, we refer to both of them as spare
resources and assume that they are or can be made available

at any time, especially after the occurrence of a fault.

To fulfill its intended functionality, an execution unit makes

use of its input/output controllers and transceivers to interact

with a set of so-called devices. Some of these devices, such as

sensors or actuators, are assumed to be physically constrained

to certain locations of the system. Without loss of generality,

we assume further that there is a limit to the physical distance

that is permitted between an execution unit and its devices.

An execution unit that is connected to a device via a con-

ventional Serial Peripheral Interface (SPI) bus, for instance,

needs to be within a comparably short distance of the device.

Otherwise, issues such as the clock skew that is induced by

the propagation delays [15] can render the bus unusable.

A system with n redundant execution units and their respec-

tive device sets is shown in Fig. 1. For brevity, the visualization

refers to the i-th execution unit as EXi and to its set of devices

as DEVi. The communication channels shown in gray repre-

sent all connections between an execution unit and the overall

system that are excluded from the following considerations, for

631

example because they are entirely unaffected by the behavior

of an execution unit. Note that the device sets are included in

the scope of this work only due to the fact that their interaction

with the execution units is subject to the physical constraints

described above. The dependability of the devices per se is

again beyond the scope of this work. In the following, we

consider only systems with n = 2 execution units.

A. Definition of the Fault Model

The fault model that serves as the basis for the presented

approach can be described as follows: From the system-level

perspective, a fault is the complete failure of an execution

unit. Such a complete failure can be caused by any number

of random and systematic faults within this execution unit.

Random faults affect only the hardware portion of the unit

and can be of permanent, intermittent, or transient nature.

Examples of such random hardware faults are

• the complete and permanent loss of supply voltage,

• a permanent defect of the digital logic within a processing

core that causes all its computations to be incorrect, or

• intermittent single-event upsets that repeatedly cause the

control flow of a processing core to entirely deviate from

its intended execution path.

Systematic faults can affect both the hardware and the software

portion of an execution unit. Examples of such faults are

• a hardware issue that in combination with a specific input

pattern leads to a deadlock within the digital logic or

• a software bug that in combination with a specific input

pattern causes the control flow of a processing core to

entirely deviate from its intended execution path.

A single-event upset that causes an incorrect calculation result

but not a complete failure of an execution unit does not lead

to a system-level fault that this fault model captures. Note that

malicious attacks on an execution unit are also not considered

as part of this work. The fault model assumes that at any

point in time, at most one of the two execution units is

faulty, i.e., suffers from a complete failure according to the

definition above. Components that are explicitly introduced

into the system as part of the proposed concept (such as the

lightweight proxy unit) are assumed to be free of systematic

faults but susceptible to random hardware faults.

B. Definition of the Considered Problem

Based on the previous definitions and assumptions, we

formulate the problem that this work is looking to solve as

follows: Given a fail-operational system with two inherently

redundant execution units, modify the system in such a way

that it exhibits fail-operational behavior with respect to the

complete failure of a single execution unit, does not require

the replication of an execution unit, and is able to handle a

certain number of random hardware faults within the explicitly

introduced components. The second requirement is based on

the observation that increasingly complex execution units are

being employed in modern embedded systems. This makes

their replication more and more expensive. For cost-sensitive

EX0 SL0 IOC0 DEV0
P

S

EX1 SL1 IOC1 DEV1
P

S

Proxy unit of channel 0

Proxy unit of channel 1

CL0 CL1

Fig. 2. Introduction of proxy units

applications, it is therefore interesting to research approaches

that make use of the existing redundancy.

The limitation that only one execution unit can become

faulty at a time is made with a certain kind of scenarios

in mind: In applications in which cost-efficient handling of

hazardous situations is more valuable than maintaining opera-

tional capability over a long period of time, avoiding physical

harm for a short time interval (such as seconds or minutes)

and taking other actions might be favorable over tolerating

a fault and restoring the initial or comparable fault tolerance

characteristics. This kind of fail-operational behavior is similar

to the emergency operation from ISO 26262 [5]. Therefore, the

underlying assumption of this work is that the simultaneous

failure of both execution units is sufficiently unlikely.

IV. SYSTEM-LEVEL CONCEPT

The concept that we propose is based on the idea that

whenever one execution unit fails, the safety-relevant portion

of its functionality can be provided by the spare resources of

the other one. From the perspective of a set of devices, this

is comparable to the system-level simplex architecture: Two

execution units (controllers) are available to control the device

set (plant). If one execution unit becomes faulty, the other one

ensures that the guaranteed minimum functionality is main-

tained. To reuse the inherent redundancy of the execution units,

however, we suggest to superimpose two mirrored instances

of this approach. We refer to one such instance (DEVi, EXi

and EX1−i) as a channel and to the presented concept in its

entirety as the mirrored simplex architecture.
The key component of the mirrored simplex architecture is a

lightweight but sufficiently reliable proxy unit that is inserted

into each channel. This results in the system visualized in

Fig. 2. A channel is numbered according to the device set

that it contains. A proxy unit consists of the so-called simplex
logic (SL) and the I/O components (IOC) that are necessary

to connect to the device set. IOCi logically replaces the

I/O components (such as I/O controllers and transceivers) that

were previously part of EXi. Therefore, the maximum distance

between a set of devices and its proxy unit is limited in

the same way as it was previously limited between the set

of devices and its execution unit. Via its primary port (P)

and its secondary port (S), the simplex logic is connected to

both execution units through communication links (CL) whose
length limitations are negligible in the considered context.

632

(P, P)

Initialization

(S, P) (P, S)

F (EX0) ∨ F (CL0)

R (EX0) ∧R (CL0)

F (EX1) ∨ F (CL1)

R (EX1) ∧R (CL1)

Fig. 3. Transitions between the system modes (m0,m1)

Therefore, the introduction of the proxy unit lifts the restriction

that an execution unit needs to be close to its devices.

The purpose of SLi is to orchestrate and enable the dy-

namic behavior of channel i. To achieve this, it activates and

deactivates functions on the execution units, detects faults and

the recovery of EXi, and serves as a buffer for DEVi-related

state variables of the execution units. Furthermore, it forwards

application-specific payload messages between the active ex-

ecution unit and IOCi, thereby enabling an execution unit to

control even distant devices that it would not be able to control

without this eponymous proxy functionality. Since a proxy

unit is in full control of the respective channel, its failure

can easily lead to a violation of the overall system’s safety

requirements. It is therefore necessary to ensure that a proxy

unit itself is sufficiently reliable. As part of this concept, we

propose to implement it using a TMR scheme to ensure that it

is able to mask any kind of single random hardware fault.

Note that depending on the exact safety requirements, the

application of N -modular redundancy schemes with N > 3
is also conceivable. In any case, it is of vital importance to

minimize the complexity of the SL and IOC blocks to keep

the costs of the overall approach at an acceptable level.

A. Dynamics of the Architecture

At any point in time, an SLi block is in one of two

possible modes. They are given by M = {P, S} and can be

described as follows: P refers to the normal mode in which the

simplex logic assumes the execution unit at its primary port

to be free of faults and therefore selects it as the component

to control DEVi. S describes the case in which the simplex

logic recognizes that the execution unit at its primary port is

affected by faults and therefore selects the execution unit at

its secondary port to control DEVi in a degraded manner. The

functionality that this unit delivers in this case will be referred

to as the fallback functionality. A switch to this functionality

corresponds to the activation of an emergency operation.

We use the variable mi ∈ M to refer to the mode that the

simplex logic of channel i is currently in. Fig. 3 shows the

possible mode combinations (m0,m1) of the overall system.

In the figure, F (·) refers to the detection of faults within a

component and R (·) to the recognition that a component is

not or no longer faulty. Self-transitions are hidden for clarity.

In (P, P), the initial mode, every device set is controlled by the

execution unit at the primary port of its proxy unit. Detected

faults within an execution unit or a communication link lead

to the degraded modes (S, P) and (P, S), respectively. In the

first case, for instance, EX1 continues to control DEV1 while

IOCi

P CTRLP CONVP

S CTRLS CONVS

HEALTH

STATE

MODE

Fig. 4. Functional architecture of the simplex logic (SLi)

using its spare resources to deliver a fallback functionality

for DEV0. If these resources are made available by suspending

non-critical tasks, this corresponds to a degradation of the

functionality that EX1 delivers for DEV1. It should be noted

that the mere selection of an execution unit does not mean

that it is actually able to deliver the required functionality.

If, e.g., EX0 is affected by a fault that the simplex logic

cannot detect, DEV0 might be uncontrolled even if m0 = P .

Therefore, the capabilities and a sufficient diagnostic coverage

of the employed fault detection mechanism are of major

importance to achieve fail-operational behavior.

A transition back to (P, P) can restore the initial fault

tolerance characteristics after intermittent and transient ran-

dom or the effects of systematic faults, but it is entirely

optional. The underlying worst-case assumption remains that

faults are permanent and the system is required to deliver only

an emergency operation for a limited amount of time. In such

a case, the respective degraded mode is retained.

In order to handle intermittent, transient, or the effects of

systematic faults, a temporary switch to one of the degraded

modes is not strictly necessary and can create a time overhead.

Nevertheless, this architecture treats all kinds of faults in a

uniform manner: As soon as a fault is detected, a switch to one

of the degraded system modes is performed. This means that

the respective simplex logic will immediately isolate the faulty

execution unit from its device set by no longer forwarding

its messages and request the degraded functionality from the

complementary execution unit. The health of the initial exe-

cution unit is re-examined only after this switch has occurred.

The reason for this procedure is that this health examination

takes a certain amount of time. Checking for a certain kind

of fault before switching to a degraded mode would create

an unnecessary delay in the handling of permanent faults and

might take longer than the set of devices is allowed to be in

an uncontrolled state.

B. Interaction with the Simplex Logic (SL)

The functional architecture of the simplex logic is visu-

alized in Fig. 4. Two main paths can be identified from the

figure: One path leads from the primary port (P) to the STATE

block and the IOC output, respectively. The other one leads

from the secondary port (S) to these destinations. At any point

633

TABLE I
CONTROL MESSAGES ON THE CLS

Message Sender Receiver

RESET SLi EXi

ACTIVATE SLi EXi, EXΦ(i)

DEACTIVATE SLi EXΦ(i)

WDG_CHALLENGE SLi EXi

WDG_RESPONSE EXi SLi

STATE_REQUEST EXi SLi, SLΦ(i)

STATE_RESPONSE SLi EXi, EXΦ(i)

STATE_WRITE EXi SLi, SLΦ(i)

in time, mi decides which of these paths is the active one.

For mi = P , it is the former, and for mi = S, the latter.

Whenever mi = P , CTRLP is in control of channel i. For this
purpose, it periodically reads from and writes to CLi to

1) forward messages between EXi and IOCi,

2) receive internal state variables of EXi, and

3) detect faults of EXi and CLi.

CONVP is an adapter for the forwarded messages. The

received state variables are written into the STATE block,

whose purpose it is to prevent the loss of the internal state

of EXi when it or its CL becomes faulty. The fault detection

is performed by the HEALTH block. This block triggers

watchdog challenges that EXi has to respond to in a certain

manner and within a specified deadline. The execution unit

receives a token as part of the challenge and, to determine

the correct response, has to perform a pre-defined sequence

of computational steps on it. These steps should be simple

but involve all the components (such as the arithmetic logic

units of all involved processing cores) that are relevant for the

detection of a fault according to the fault model.

The detection of a fault activates the secondary path. CTRLS

will then request the EX at the secondary port, EX1−i, to

launch the fallback functionality of the channel. For brevity,

we define Φ (i) := 1 − i and refer to this EX as EXΦ(i).

After this request, EXΦ(i) will read the most recently saved

state from the STATE block and start to deliver the fallback

functionality of channel i. Note that this fallback functionality

continues to update the STATE block to allow for a possible

switch back. As soon as EXΦ(i) controls the channel, CTRLP

resets EXi and uses the HEALTH block to check if this

eliminates the fault that caused the mode transition. In this

case, it can switch back to mi = P by requesting EXi to

resume the full functionality. EXi will then once again read the

most recently saved state from STATE and do so. At the same

time, CTRLS notifies EXΦ(i) that it is no longer required to de-

liver the fallback functionality. After this, (m0,m1) = (P, P)
and both execution units communicate with the SL block of

their corresponding channel only.

C. Signals on the Communication Link (CL)

From the perspective of an application, the CL serves

as the communication path that it needs to read from and

write to its devices. However, a CL also transmits the eight

AURIX0 Zynq0 P

S

AURIX1 Zynq1 P

S

CAN0
CAN1

RST0

RST1

Fig. 5. Prototypical implementation of the proposed concept

architecture-specific control signals shown in Table I. Using

the RESET message, the SL block resets the EX at its primary

port after switching to the fallback functionality. ACTIVATE

refers to the message that SLi sends to EXi or EXΦ(i) to

request the delivery of the respective functionality for DEVi.

DEACTIVATE is sent to EXΦ(i) to terminate its fallback

functionality. WDG_CHALLENGE and WDG_RESPONSE transmit

the watchdog interactions. STATE_REQUEST requests the most

recently saved state from an SL block. After receiving such

a request, the SL block uses the STATE_RESPONSE message

to return this state. State variables are written to an SL block

using the STATE_WRITE message. Note that an EX needs to

be able to distinguish if a message originates from a primary

or a secondary port to determine its exact meaning.

V. PROTOTYPICAL IMPLEMENTATION

For a practical implementation of the concept, the execution

units of the original system need to be modified in such

a way that they are connected to the CLs and conform to

the protocol that the mirrored simplex architecture imposes

upon them. Furthermore, the proxy units have to be designed

and manufactured using a suitable technology. Due to its

application-specific nature and the requirement to be both

cost-efficient and reliable, we propose to implement a proxy

unit as an application-specific integrated circuit (ASIC) in

a TMR arrangement with attached I/O transceivers. This way,

it can be optimized for reliability while keeping the production

costs small—especially for large quantities.

As part of this work, we performed a prototypical im-

plementation of the concept. It is based on the following

example scenario from the automotive domain: A front-wheel

drive vehicle with electric wheel hub motors comprises an

electronic control unit (ECU) for each of the two motors.

Each of the ECUs receives an individual setpoint such as

the target rotation speed, reads in measurement values from

the sensors of its respective motor, and transmits pulse-width

modulation (PWM) signals to the power electronics of its re-

spective motor. Note that this setup is symmetrical in the sense

that both ECUs perform the same functionality with respect to

the motor they control. To avoid faults of an ECU leading to

catastrophic consequences, the mirrored simplex architecture

shall be applied. In this scenario, the ECUs correspond to

the execution units, while the protected devices are the power

electronics and sensors on either side of the vehicle. The

architecture of our implementation is visualized in Fig. 5.

We employed an AURIX microcontroller from Infineon as

634

execution unit and the FPGA portion of a Zynq-7000 device

from Xilinx as the platform to realize the TMR arrangement

of proxy units.1 A reset wire and its corresponding CAN bus

represent a CL. Note that the Zynq itself is a system on

chip (SoC) that comprises not only the FPGA. Its hard-wired

processor will be used during the experimental evaluation.

We used the above-mentioned example scenario as a starting

point and extended the generic framework with the following

application-specific functionality: Each proxy unit’s IOC block

consists of a PWM controller and a set of general-purpose

inputs. Both the full and the degraded AURIX applications

run with a period of Tcycle to repeatedly

1) read 32 bits of payload data from their IOC block,

2) write 32 bits of payload data to their IOC block, and

3) write Nstate variables (32 bit) to their STATE block.

We assume that the computational effort of the degraded

functionality is considerably smaller than that of the full one

and, therefore, that an execution unit is able to deliver both

functionalities at the same time. For the implementation, this

means that if a proxy unit requests the degraded functionality

from its complementary AURIX, this execution unit continues

to deliver the full functionality for its primary device set.

The employed AURIX is a multicore platform that comprises

three processing cores. On such a platform, it is conceivable

to execute the two functionalities truly in parallel. In this

implementation, however, they share the same core.

Except for the RESET message, all control messages from

Table I as well as the application-specific payload messages

are exchanged using one of the CAN buses. The message IDs

have been chosen so that transmissions between SLi and EXi

take precedence over transmissions between SLi and EXΦ(i).

The watchdog challenges that a processor has to respond to

are issued by the HEALTH block with a configurable period

of Twdg ≤ Tcycle. Such a challenge consists of a randomly

generated 8-bit token that the processor needs to modify in

a predefined way. After issuing a challenge, the HEALTH

block expects to receive the modified token from the processor

within a specified deadline. If this deadline is missed or

the HEALTH block receives an incorrect response, a fault of

the processor or the CAN bus that it connects to is assumed.

As soon as SLi requests a degraded functionality from

the execution unit at its secondary port, the load on CLΦ(i)

increases significantly. For the implementation, we assume that

within one Tcycle-interval, CANΦ(i) is able to transmit

1) all the messages between EXΦ(i) and SLΦ(i) that are

nominally scheduled for this interval,

2) the messages that EXΦ(i) and SLi exchange solely for

the purpose of the mode transition, and

3) the first sequence of payload and state messages that are

exchanged between EXΦ(i) and SLi.

According to [16], the maximum transmission time of

a CAN message with an 11-bit identifier and s data bytes

1The execution and proxy units comprise not only these ICs but also their
directly attached components (such as I/O transceivers). For brevity, these
components are regarded as logically belonging to the ICs.

TABLE II
LOAD FACTOR VALUES FOR DIFFERENT CONFIGURATIONS

Number of 32-bit state variables (Nstate)

Tcycle Twdg 1 2 4 8 16

1 ms 1 ms 0.92 1.20 1.77 2.91 5.19

2 ms 1 ms 0.52 0.67 0.95 1.52 2.66
2 ms 2 ms 0.46 0.60 0.89 1.46 2.60

4 ms 1 ms 0.33 0.40 0.54 0.83 1.40
4 ms 2 ms 0.26 0.33 0.48 0.76 1.33
4 ms 4 ms 0.23 0.30 0.44 0.73 1.30

is given by Cm(s) := (55 + 10s) τbit, where τbit describes

the transmission time of one bit. Since the implementation

uses 11-bit identifiers, this formula can be used to calculate

the portion of the considered Tcycle-interval with messages

on CANΦ(i). With kwdg := �Tcycle/Twdg� watchdog challenges

during the interval and under the assumption that no messages

need to be retransmitted, the utilized time is given by

τsum = τwdg + τstate + τpayload
︸ ︷︷ ︸

(1)

+ τactivation + τstate
︸ ︷︷ ︸

(2)

+ τpayload + τstate
︸ ︷︷ ︸

(3)

= 2Cm(1) · kwdg + 3Cm(4) ·Nstate + 4Cm(4)

+ Cm(1) + Cm(0)

= (130kwdg + 285Nstate + 500) τbit.

This corresponds to a relative utilization or a load factor of

η =
τsum
Tcycle

=
(130kwdg + 285Nstate + 500) τbit

Tcycle

.

Table II shows the load factor for a CAN frequency of 1MHz
and various combinations of Tcycle, Twdg, and Nstate. Scenarios

with a load factor of η > 1 are grayed out as they violate the

requirement defined above and are considered infeasible.

VI. EVALUATION AND RESULTS

To evaluate the prototypical implementation, we created a

setup based on two TriBoards and two ZedBoards. Each of

the TriBoards was mounted with an AURIX of type TC277,

while the ZedBoards featured a Zynq device of type XC7Z020.

Synthesizing the RTL description of a single proxy unit for

the FPGA portion of an XC7Z020 leads to the resource

utilization values shown in Table III. As shown in the table,

the CAN controllers for the primary and secondary ports are

the most resource-intensive components of this design. The

actual simplex logic consumes less than half of the total

number of required LUTs, registers, and BRAMs. Note that

the “interconnections” category comprises the logic that serves

as an adapter between the custom modules and the IP cores

that implement the primary and secondary CAN ports.

In the evaluation setup, an FPGA comprises a TMR ar-

rangement of proxy units and a fault injection module. The

resource utilization of one such FPGA is shown in Table IV.

635

TABLE III
RESOURCE UTILIZATION OF THE PROXY UNIT

Resource type

Module LUTs Registers BRAMs

CANi controller 659 536 2
CANλ(i) controller 661 536 2

CTRLP, CONVP, HEALTH 333 348 0
CTRLS, CONVS 124 246 0
STATE 69 3 1

PWM controller 28 22 0
Interconnections 108 121 0

Total 1,982 1,812 5

TABLE IV
RESOURCE UTILIZATION IN THE EVALUATION SETUP

Resource type

Module LUTs Registers BRAMs

TMR arrangement 6,037 5,538 15
Fault injection module 904 1,875 0

Total 6,941 7,413 15

It corresponds to 13.05% of the LUTs, 6.97% of the registers,

and 10.71% of the BRAM tiles available on the XC7Z020.

When the concept was described in Section IV, we referred

to the modes that an SL block can be in as P and S. It
is important to understand, however, that when a channel

experiences a transition from P to S or vice versa, there is

a certain amount of time in which neither the full nor the

degraded functionality of the channel is delivered. We refer to

such an interval as a mode transition. The duration of these

transitions is crucial when deciding whether a system meets its

fail-operational requirements. This is especially true for a tran-

sition from P to S, most importantly because random or the

effects of systematic faults appear unexpectedly and require

immediate initiation of such a transition. Transitions into the

opposite direction, i.e., after the recovery of an execution unit,

can be performed in a more controlled manner. We therefore

focused on the P → S transition of the implementation and

performed an experimental evaluation of its duration.

Fig. 6 illustrates the steps that constitute a mode transition of

channel i in the P → S direction. A fault occurring at t = t0
must first be detected by the HEALTH block of the respective

simplex logic (SLi). As soon as this has happened, from t = t1
onwards, SLi stops to react to messages from EXi and requests

the fallback functionality from EXΦ(i). Then, from t = t2
to t = t3, it transfers the most recently written set of state

variables to EXΦ(i). Based on the definitions from [5], we

refer to the duration of the first interval as fault detection time,
to the combined duration of the latter two intervals as fault
reaction time, and to their sum as fault handling time.
Due to symmetry in the setup, our evaluation focused

on the fault handling characteristics of only one channel.

More specifically, we used the hard-wired processor of and

t

�

t0 t1 t2 t3

Detection of
the EXi fault

Activation of the
fallback system
on EXΦ(i)

Transfer of state
variables from
SLi to EXΦ(i)

Fault reaction time

P Mode transition (P → S) S

Fig. 6. Schematic visualization of the P → S mode transition intervals

1 2 4 8

0

1

2

3

4

5

Number of 32-bit state variables (Nstate)

T
im

e
in

m
s

Fault detection time

Twdg = 1ms 2ms 4ms

1 2 4 8

0

1

2

3

Number of 32-bit state variables (Nstate)

T
im

e
in

m
s

Fault reaction time

Twdg = 1ms 2ms 4ms

Fig. 7. Measured fault handling times for a system with Tcycle = 4ms

the fault injection module implemented on the Zynq0 device

to temporarily interrupt the supply voltage of AURIX0 and

perform an automated measurement of the individual fault

handling intervals. For every combination of Tcycle, Tperiod,

and Nstate that is not grayed out in Table II, 300 independent

measurements of this kind were performed. In all cases, a

watchdog tolerance of 500 μs was used. For the sake of brevity,
only the results for a cycle time of Tcycle = 4ms will be

considered in the following. These results are shown in Fig. 7,

where square markers indicate the average values and vertical

bars represent the measured range of values.

636

As shown in the first plot, the fault detection times did not

exceed 1.5ms for Twdg = 1ms, 2.5ms for Twdg = 2ms, and
4.5ms for Twdg = 4ms. Furthermore, the plot demonstrates

that the size of the synchronized internal state of an application

had no significant influence on the fault detection time.

The second plot shows that the average fault reaction time

increased with the size of the synchronized internal state. This

is not only due to the increased number of messages that

are necessary to read the state from SLi but also due to the

fact that for higher Nstate values, more state messages will be

exchanged between EXΦ(i) and SLΦ(i). Since they belong to

the primary port of SLΦ(i), they have a higher priority than

the messages between EXΦ(i) and SLi. For the same reason,

an increase of Twdg, i.e., issuing watchdog challenges less

frequently, resulted in less messages with a higher priority and,

therefore, decreased the average fault reaction time slightly.

In a realistic implementation of the wheel hub motor con-

trol, the payload data that is exchanged between an EX and its

IOC amounts to approximately 32 bits per cycle and direction.

The internal state variables that need to be repeatedly written

to the SL block do not exceed 256 bits, which corresponds

to Nstate = 8. Such a system can operate with Tcycle = 4ms
and Tperiod = 1ms. During the evaluation, it showed a maxi-

mum fault detection time of 1.380ms as well as a maximum

fault reaction time of 3.187ms. This corresponds to a fault

handling time of no more than 4.567ms. The length of the

example scenario’s fault tolerant time interval (FTTI), which

is defined as the “minimum time-span from the occurrence of

a fault in an item to a possible occurrence of a hazardous

event, if the safety mechanisms are not activated” in [5],

ranges between 50ms and 100ms. Therefore, we consider the
achieved fault handling time to be sufficiently small to achieve

fail-operational behavior in this specific context.

VII. CONCLUSION AND FUTURE WORK

In this work, we focused on fail-operational systems with

a certain degree of inherent redundancy and proposed the

concept of the mirrored simplex architecture. It makes use

of spare resources in a pair of redundant execution units

and dynamically migrates essential functions of a completely

failed unit to its redundant counterpart. Our prototypical

implementation of the concept shows that it exhibits short

fault handling times and—given that at most one unit fails

at a time and that the employed challenge-response watchdog

exhibits a sufficient diagnostic coverage with respect to the

relevant safety requirements—eliminates the need to replicate

the execution units in order to achieve fail-operational behav-

ior. Therefore, the presented approach is particularly suited to

meet fault tolerance requirements of fail-operational systems

in cost-sensitive fields such as the automotive domain.

A possible starting point for further research activities is

the question of how to scale this approach up to an arbitrary

number of channels. A scalable concept with n > 2 channels

could, most importantly, remove the current limitation that

only one execution unit at a time may fail. Furthermore,

adapting the concept to handle certain types of transient and

intermittent faults more efficiently or replacing the CAN bus

of the current implementation with different alternatives to

optimize the achievable throughput and to provide rigorous

real-time guarantees are further topics for future work.

ACKNOWLEDGMENT

This work was funded by the German Federal Min-

istry of Education and Research (BMBF) under grant num-

ber 01IS16025 (ARAMiS II). The responsibility for the con-

tent of this publication lies with the authors.

REFERENCES

[1] S. Shreejith, S. A. Fahmy, and M. Lukasiewycz, “Reconfigurable
Computing in Next-Generation Automotive Networks,” IEEE Embedded
Systems Letters, vol. 5, no. 1, pp. 12–15, Mar. 2013.

[2] R. Ernst, “Automated Driving: The Cyber-Physical Perspective,” Com-
puter, vol. 51, no. 9, pp. 76–79, Sep. 2018.

[3] T. Dörr, T. Sandmann, F. Schade, F. K. Bapp, and J. Becker, “Leveraging
the Partial Reconfiguration Capability of FPGAs for Processor-Based
Fail-Operational Systems,” in Applied Reconfigurable Computing (ARC
2019), C. Hochberger, B. Nelson, A. Koch, R. Woods, and P. Diniz,
Eds. Cham: Springer International Publishing, 2019, pp. 96–111.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[5] ISO 26262-1:2018, “Road vehicles — Functional safety — Part 1:
Vocabulary,” Geneva, Dec. 2018.

[6] N. R. Storey, Safety-critical computer systems. Addison-Wesley, 1996.
[7] V. B. Prasad, “Fault tolerant digital systems,” IEEE Potentials, vol. 8,

no. 1, pp. 17–21, Feb. 1989.
[8] S. M. Ellis, “Dynamic software reconfiguration for fault-tolerant

real-time avionic systems,” Proceedings of the 1996 Avionics Conference
and Exhibition, vol. 21, no. 1, pp. 29–39, Jul. 1997.

[9] J. Huang, J. O. Blech, A. Raabe, C. Buckl, and A. Knoll, “Analysis
and Optimization of Fault-Tolerant Task Scheduling on Multiprocessor
Embedded Systems,” in Proceedings of the Seventh IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis, Taipei, Taiwan, 2011, p. 247.

[10] M. H. Mottaghi and H. R. Zarandi, “DFTS: A dynamic fault-tolerant
scheduling for real-time tasks in multicore processors,” Microprocessors
and Microsystems, vol. 38, no. 1, pp. 88–97, Feb. 2014.

[11] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo,
and L. Sha, “The System-Level Simplex Architecture for Improved
Real-Time Embedded System Safety,” in 15th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS 2009). San
Francisco, CA, USA: IEEE, Apr. 2009, pp. 99–107.

[12] L. Sha, “Using Simplicity to Control Complexity,” IEEE Software,
vol. 18, no. 4, pp. 20–28, Aug. 2001.

[13] M. Ghadhab, M. Kuntz, D. Kuvaiskii, and C. Fetzer, “A Controller
Safety Concept Based on Software-Implemented Fault Tolerance for
Fail-Operational Automotive Applications,” in Formal Techniques for
Safety-Critical Systems (FTSCS 2015). Cham: Springer International
Publishing, 2016, pp. 189–205.

[14] K. Becker and S. Voss, “A Formal Model and Analysis of Feature
Degradation in Fault-Tolerant Systems,” in Formal Techniques for
Safety-Critical Systems (FTSCS 2015), C. Artho and P. C. Ölveczky,
Eds. Cham: Springer International Publishing, 2016, pp. 139–154.

[15] T. Kugelstadt, “Extending the SPI bus for long-distance communication,”
Texas Instruments, Analog Applications Journal, vol. Q4 2011, 2011.

[16] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, Apr. 2007.

637

