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Abstract—Dependability models allow calculating the rate of
events leading to a hazard state – a situation, where safety of the
modeled dependable system is violated, thus the system may cause
material loss, serious injuries or casualties. This paper shows a
method of calculating the hazard rate of the non-homogeneous
Markov chains using different sets of homogeneous differen-
tial equations for several hundreds small time intervals (using
default parameters settings – the number of the intervals can
be adjusted to balance accuracy/time-consumption ratio). The
method is compared to a previous version based on probability
matrices and used to calculate the hazard rate of the hierarchical
Markov chain. The hierarchical Markov chain allows us to
calculate the hazard rates of the blocks independently and the
non-homogeneous approach allows us to use them to calculate
the hazard rate of the whole system. This method will allow us to
calculate the hazard rate of the non-homogeneous Markov chain
very accurately compared to methods based on homogeneous
Markov chains.

Index Terms—Fault tolerant systems, Hierarchical systems,
Reliability, Reliability engineering.

I. INTRODUCTION

State-based dependability models (Markov chains, Petri

nets, etc.) are able to model online (self-)repairing capabilities

of the mission-critical systems (hot-swap modular systems, re-

configurable FPGAs, etc.) easily, but the disadvantage of these

models is state-explosion leading to difficulties in construction,

and consequently leading to the inability to compute realistic

values of dependability characteristics.

The presented method is used to compute failure distribution

function of the time-continuous Markov chains. The previous

method presented in [1], [2] is focused on computations

of state-based dependability models by probability matrix

multiplications with non-homogeneous failure parameters. The

method is used to compute complex systems by creating

hierarchical model and we use the method repeatedly for

each part of the model. The disadvantage of this method is

complication that we must transfer the hazard rate matrix into

probability matrix in every step to use this method.

The method proposed in this paper is not based on matrix

multiplication, instead we use differential equations to com-

pute the failure distribution function F (t).
The proposed method is demonstrated on a case study

containing multiple (up to 9) identical dependable blocks

configured as an N-modular redundant system (NMR). Models

of the internal block redundancy used in the study systems are

used as dependability models of railway/subway interlocking

equipment used in Czech Republic. The case study is used to

calculate the total hazard rate of the system and to demonstrate

the dependencies of time-consumption and accuracy on the

parameters of the proposed method. The models we use in

this paper are same as in [1], [2] to compare both methods of

computing.
The paper is organized as follows: Section II provides

the theoretical background and introduces Markov chains.

Section III describes the proposed method. The results are

shown in Section IV and Section V concludes the paper.

II. THEORETICAL BACKGROUND

The proposed method is used to calculate the sam-

ples of failure distribution function using non-homogeneous

continuous Markov chains, thus both homogeneous and

non-homogeneous Markov chains are introduced in this sec-

tion. The first part of this section also contains description

of differences between computing Markov chains by matrix

multiplications and solving differential equations. The calcu-

lation of failure distribution function and its discrete samples

is summarized in the second part of this section.

A. The Continuous Time Markov Chains
The continuous time Markov chains are defined by the

hazard rate matrix Q. The matrix Q have elements qij that

are describing the intensity of transition from state i to state

j. The elements qii are defined as a complement of the sum

of other elements in the row i (the sum of all elements in the

row i is 0).
We have two ways to work with hazard rate matrix Q:

• Matrix Multiplication – This method described in [1],

[2] is based on converting the matrix Q into P by the

equation:

P = I +
1

Δ
Q (1)

where Q is the hazard rate matrix, P is final probability

matrix, I is identical matrix and Δ is the highest value

of diagonal elements qii in matrix Q.

• Differential equations – The hazard rate matrix Q can

be converted to the system of differential equations:

p′i(t) = −qii ∗ pi(t) +
j∑

qji ∗ pj(t) (2)
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where p′i(t) is probability to transition to state i in time

t, qii is the hazard rate in matrix Q on diagonal, that

marks the hazard rate of transition from state i, qji is

the hazard rate of transition from state j to state i and

pj(t) is probability of being in the state j in time t. For

this equation hold that i, j ∈ 0, . . . , n; i �= j, where n is

number of state in Markov chain.

B. Markov Chains and Cumulative Failure Distribution Func-
tion

An absorbing state i is a state that, once entered, cannot

be left. Therefore, the state i is absorbing if the following

condition is met:

pii = 1 and pij = 0 for i �= j (3)

The evolution of the probability distribution of the absorbing

states over time forms the series of the samples of the

cumulative (failure) distribution function F (t) defined as the

probability in a random trial that the random variable is not

greater than t, or

F (t) =

∫ t

−∞
f(t) dt (4)

C. Non-Homogeneous Markov Chains

Both discrete time Markov chains and continuous time

Markov chains can be defined using variable matrix elements.

Such systems are called non-homogeneous Markov Chains.

Most methods used to calculate the probability distribution

of states and their evolution of over time cannot be used in

this case, but there are methods intended for non-homogeneous

Markov chains.

There are many methods based on estimation (e.g. maxi-

mum likelihood) of unknown parameters applied to models

from a wide range of scientific disciplines, e.g. smart-city [3],

ecology [4], medicine [5], and others [6], but their main goal

is similar to the methods referenced in the previous paragraph

– to estimate the unknown parameters (transition rates) of an

Markov chain.

Another method presented in [7] splits a single transition

to several stages (intermediate states and transitions). All

intermediate transitions are exponentially distributed, but their

concatenation can emulate the behavior of another (e.g. Er-

lang) distribution. There are two main disadvantages of this

method: new states have to be added to the Markov chain

and the method can emulate behavior of a limited set of

distributions only.

The principle similar to our method – dividing the time

interval, where the evolution of the probability distribution of

states is calculated, to several “slices” – is presented in [8]–

[10]. Each time-slice has a constant probability/transition

matrix, ie. the Markov chain is homogeneous in this time-slice.

There are two main differences between these and our method:

1) The number of the time-slices – we use more

(several hundreds by default) time-slices, thus

the accuracy is significantly improved and the

accuracy/time-consumption ratio can be controlled

using method parameters.

2) The main goal – the referenced methods are used to

estimate the unknown parameters (transition rates) of

an Markov chain, our method takes an Markov chain

with known parameters and calculate the evolution of

the probability distribution of the states over time and

the failure rate of the Markov chain.

III. PROPOSED METHOD DESCRIPTION

The presented method has the same two parts of evaluating

as the method from [2]:

1) Calculate the failure distribution function of

non-homogeneous model.

2) Calculate the hazard rate for each time-slice (interval

between two consequential samples) calculated in the

previous part.

A. Calculation of the Failure Distribution Function of
Non-homogeneous Model

The flowchart of calculation of this method is shown in

Figure 1.

1) The first step of the computation is initializing the

differential equations and theirs initial conditions. These

conditions are defined in time t = 0. Next step of

the initialization is solving the differential equations by

the NDSolve method in Wolfram Mathematica [11] for

time t ∈ [0; tstart], where tstart = 2expStart is starting

value for our results of this method. Than we set the

initial conditions of the Markov chain to values for time

t = tstart = 2expStart. The method create initial time

variable tcurrent that is used as the main time entry

for computation cycle and also to finish calculating the

values for failure distribution function F (t). The method

already create time-shift variable Δtsample that works as

rising coefficient for variable tcurrent homo end.

2) At the beginning of each cycle the method set new

tcurrent homo end = tcurrent homo end + Δtsample and

get new values of hazard rate parameters to paramsnew.

3) In next step the method check the value of

tcurrent homo end = 2x, x ∈ 1, 2, . . .. In positive situa-

tion the time-shifting coefficient is doubled (Δtsample =
2 ∗Δtsample).

4) In next part of the computation the method compare

current hazard rate parameters in variable paramsnew
with last using value of the parameters in variable

paramscurrent and the final time tcurrent homo end ≥
tfinish. The method has two options:

a) The time tcurrent homo end is not at the end and

values paramsnew and paramscurrent are equal
– the calculation continues to step 2),

b) The values paramsnew and paramscurrent are

not equal – the method use the NDSolve function

for differential equations with initial conditions

pi(tcurrent) and parameters in paramscurrent
for time [tcurrent, tcurrent homo end]. After that
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Fig. 1. Flowchart of calculation of failure distribution function of
non-homogeneous model.

the method gets required values of failure

distribution function F (t) from NDSolve

by setting the values retrospectively as the

tcurrent homo end and Δtsample was. After

that the method set the variables tcurrent =
tcurrent homo end, paramscurrent = paramsnew
and calculates new initialization conditions

pi(tcurrent) for all states. Finally the method goes

to step 2),

c) The time tcurrent homo end is at the end – the

method use the same functionalities as in step 4b)

but at the end it goes to step 5).

5) The result of this method is the list of the failure distri-

bution function F (t) values for time t ∈ [tstart; tfinish].

B. Calculate the Hazard Rate for Each Time-slice

We use the same equation to computing the failure rate λ
as in [1], [2]:

λi =
loge(1− F (ti))− loge(1− F (ti+1))

ti+1 − ti
(5)

We also use same methods as we use in mentioned papers.

We can compute the failure distribution function F (t) univer-

sal in both methods – the matrix multiplication and presented

method.

C. Parameters using in presented method

In Figure 2 we can se all parameters we defined as param-

eters of the presented method:

• s – parameter to set the number of using values in time

t ∈ [2x; 2x+1),
• epsilon – parameter to set the maximal value of the

failure distribution function F (t) in the computation,

• tstart – this parameter sets the starting time t for the

method. The method set initialization until this time t
and than start the main cycle from this time,

• tend – this parameter sets the final time t for the method.

In main cycle if we reach this time, the method is

finalizing the results and end.

t t

s

s

epsilon

Fig. 2. Dependability model of Two-out-of-two block.

We can use similar parameter to filter values at the start of

the method such as parameter epsilon at the end the method.
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The parameter epsilon is defined that the value from failure

distribution function F (t), that are less then 1 − epsilon,

are important for the method. We can define parameter xi
and every value from failure distribution function F (t) that is

bigger than this xi value, are important for our method.

In this paper, we use kind of this parameter xi in Section IV

to filtered results of failure distribution function F (t) that are

less then xi = 10−6. These values are very small and in

relative errors comparison create significant differences.

IV. RESULTS

A. Case Study Description

The proposed method is demonstrated on a case study

containing multiple (up to 9) identical dependable blocks

configured as an N-modular redundant system (NMR). Models

of the internal block redundancy used in the study systems are

used as dependability models of railway/subway interlocking

equipment used in Czech Republic. The case study is used

to demonstrate the dependencies of time-consumption and

accuracy on the parameters of the proposed method. Wolfram

Mathematica [11] tool is used to perform the calculations. The

models using for testing are same as in [1], [2] to compare

both methods.

The dependable blocks used in the case study system use

Two-out-of-two (2oo2) redundancy [12], [13]. Each depend-

able block contains two independent copies of functional

modules, thus the safety of the blocks using these redundancies

cannot be violated by a single fault. The detailed description

of the system and its model follows and can be found in [1],

[2].

The model shown in Figure 3 is used to calculate the failure

distribution function F (t) of the 2oo2 block.

Fig. 3. Dependability model of Two-out-of-two block.

The probability of detection of a fault, the fault rate, and

the block-lock rate of the block form the following parameters

values. The values have been taken from [13].

μ = 24−1 [hours−1] – the repair rate

λ = 10−5 [hours−1] – the fault rate

δ = 10−1 [hours−1] – the block-lock rate

c = 0.6 – the probability of detecting a fault by the

block-lock

γ = 10−3 [hours−1] – the backup/emergency method

hazard rate

N-modular Redundancy (NMR) is based on N identical

blocks and a voter. This voter is able to compare all outputs of

the blocks. It uses majority voting to produce a single output.

If less than half of the blocks fail, the voter is able to produce

correct output. If more than half of the blocks fail, the voter

will produce an incorrect output – this situation is considered

as a hazard state. The erroneous blocks cannot be identified,

thus there is no restoration/repair possibility.

The model shown in Figure 4 is used to calculate the failure

distribution function of a generic NMR system. The NMR

system containing N blocks will contain
⌊
N
2

⌋
transient states.

These states correspond to the blocks that are in the hazard

state. NMR systems consisting of 3 to 9 blocks are used in

this paper.

B. Method Parameters Impact

The 3-MR (TMR) system based on 2oo2 blocks is used

to demonstrate the impact of method s parameters. The

model of this system is made as the Cartesian product of the

dependability models of three identical 2oo2 blocks and the

model of the TMR. The model contains 34 states.

For testing presented method we use only the parameter s,

that is the same in matrix multiplication method [1], [2].

The other parameters values are as follows:

tstart = 1 [hour] – time, where the first sample of the

failure distribution function F (t) is stored

tend = 220
.
= 106 [hours] – time of the “hard” end

SoftEndEnabled = false

Table I shows the impact of the s parameter on both methods

– matrix multiplication method in [1], [2] and presented

method.1

The size of s is shown in the first column, the Initialization
CPU-time2 spent on is shown in the second and fourth column.

The third and fifth column shows Main loop CPU-time.

The initialization time of matrix multiplication method and

the differential equations method in Table I are not same

times. The initialization time in matrix multiplication method

is computing by calling the method CreateInitMatrix,

that is described in [1], [2]. In presented method the initial-

ization time only compute the first initialization of differential

equations between time t = 0 and t = tstart. In our testing

we set the parameter tstart to value 1.

C. Time Non-Homogeneity Impact

The values in Table I are based on the fact, that

the testing model is homogeneous (all the fault param-

eters are constant in time t). In this section we will

show the time-computing and accuracy differences between

the homogeneous and non-homogeneous type of presented

method. The body of this method has no differences, but

in every time-slice we shut down the control condition

1The method presented in [2] contained a bug: The interval could
be doubled at the beginning of the failure distribution function F (t)
(tcurrent == tstart). This bug cut the number of the time-slices
(s parameter) by half. All results presented in this paper have been corrected
– all time and error values are kept, but the values of the s parameter have
been lowered.

2Running on Intel Core i5-7300HQ @2.5 GHz, OS: Win10 64-bit, Math-
ematica 12.1.
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Fig. 4. Dependability model of generic N-modular redundant system.

TABLE I
COMPARISON OF CPU-TIMES OF THE METHOD WITH RESPECT

TO THE s PARAMETER.

Matrix Multiplication Differential Equations

s [-] Init. Main loop Init. Main loop
time [s] time [s] time [s] time [s]

21 0.130 0.210 0.031 0.516

22 0.130 0.330 0.031 0.531

23 0.130 0.560 0.031 0.656

24 1) 0.130 0.962 0.031 0.875
25 0.125 1.840 0.031 1.266

. . .

210 0.126 57.40 0.031 32.81

1) Default value used in [2] and this paper.

params(tcurrent) �= params(tlast). By canceling this

condition the final part of the method in Figure 1 is processing

in each time slice.

We can compare the accuracy differences between matrix

multiplication method and the presented method only in

Section IV-D. There is a comparison between MMm, DEm

and the analytical solution of the NMR blocks. In other

sections we can compare the computing-time of both methods.

The accuracy differences are compared only in differential

equations method. We can not compare both methods in other

sections because the missing analytic solution for NMR system

of two-out-of-two blocks.

Table II shows comparison of computing speed of presented

method and matrix multiplication method for TMR (3-MR)

Markov chain based on three two-out-of-two blocks. In first

column we see the type of system. In second column we see

the time to evaluate the matrix multiplication method. The

time of differential equations method is in the last column.

TABLE II
COMPARISON OF CPU-TIMES OF HOMOGENEOUS AND

NON-HOMOGENEOUS CASE.

Case type Matrix Multiplication Differential Equations
Method time [s] Method time [s]

Homogeneous 1.160 0.920

Non-Homogeneous 17.97 11.25

In Table III we see relative errors of the non-homogeneous

solution and the homogeneous option. In first column we see

number of two-out-of-two blocks in the system, in second col-

umn we see the worst relative error of the failure distribution

function F (t) of non-homogeneous option from homogeneous

model. The average relative error of this function we see in

the last column.

TABLE III
COMPARISON OF RELATIVE ERRORS OF HOMOGENEOUS AND

NON-HOMOGENEOUS CASE WITHOUT USING FILTER xi.

NMR Worst Average
blocks rel. error [-] rel. error [-]

3-MR 2.49× 10−2 1.52× 10−3

5-MR 1.28× 10−1 7.28× 10−3

7-MR 2.67× 10−1 1.36× 10−2

9-MR 3.28 4.70× 10−2

The plot shown in Figure 5 shows the relative errors of all

samples between the homogeneous and the non-homogeneous

case. The horizontal axis represents the time of operation

measured in hours, the vertical axis represents the size of the

relative error.

x

Fig. 5. Relative errors of all samples between homogeneous and
non-homogeneous case without using filter xi.

As we see in the Figure 5, the highest peaks of differences

in the results are in time-slices that the failure distribution

function F (t) value is less then 10−6. In this case are the

relative errors very big even when the absolute error can be

only in 10−7.

The Table IV is close to the Table III, but we filtered the

values of failure distribution function F (t) that are less the

parameter xi, that has value xi = 10−6.

The plot shown in Figure 6 shows the relative errors of all

samples between the homogeneous and the non-homogeneous

case. The horizontal axis represents the time of operation

measured in hours, the vertical axis represents the size of the

relative error. In this plot we use the filtered data (by filtering

values that are lower than xi = 10−6).
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Fig. 6. Relative errors of all samples between homogeneous and non-homogeneous case using filter xi.

TABLE IV
COMPARISON OF RELATIVE ERRORS OF HOMOGENEOUS AND

NON-HOMOGENEOUS CASE WITH USING FILTER xi.

NMR Worst Average
blocks rel. error [-] rel. error [-]

3-MR 9.04× 10−6 7.59× 10−7

5-MR 9.71× 10−6 1.20× 10−6

7-MR 3.94× 10−6 6.29× 10−7

9-MR 3.52× 10−6 7.41× 10−7

D. Comparison to Analytical Solution

The direct comparison of accuracy for both methods is

comparing to analytical solution. We compare the NMR model

by the presented method, the matrix multiplication model and

the analytical solution in this section. The failure distribution

function of the NMR system can be calculated using the

following equation

FNMR(t) = 1−
N∑

i=M

(
N

i

)
F (t)N−i(1− F (t))i (6)

where F (t) is the failure distribution function of the single

block (F (t) = 1 − e(−λ · t) and λ = 10−5 in this case), N is

(odd) number of blocks used in the system, and M is number

of blocks required to be operational (N+1
2 in this case).

Table V shows the relative errors between the presented

method, Matrix Multiplication method from [1], [2] and the

analytical solution. The first column shows the number of the

NMR blocks, the second column shows the relative error of

the first sample of the matrix multiplication method (compared

to the sample taken from the analytical solution). The fourth

column shows the worst relative error of the presented method.

The average of the absolute values of relative errors of all

stored samples is shown in the third and last column.

In Table V in presented method we use filtered data that are

higher than xi = 10−6. In case that we don’t use this filter,

the matrix multiplication method will be distinctly better.

TABLE V
COMPARISON OF RELATIVE ERRORS OF PRESENTED METHOD, MATRIX

MULTIPLICATION METHOD AND ANALYTICAL SOLUTION.

Matrix Multiplication Differential Equations
NMR Rel. error of Average Worst Average
blocks the first sample [-] rel. error [-] rel. error [-] rel. error [-]

3-MR −2.98× 10−8 1.69× 10−8 4.49× 10−6 3.47× 10−7

5-MR −8.94× 10−8 4.92× 10−8 2.81× 10−4 1.67× 10−5

7-MR −1.79× 10−7 9.76× 10−8 5.41× 10−5 2.55× 10−6

9-MR −2.98× 10−7 1.62× 10−7 7.00× 10−5 2.81× 10−6

The plot shown in Figure 7 shows the relative errors of

the samples between the presented method and the analytical

solution. The horizontal axis represents the time of operation

measured in hours, the vertical axis represents the size of

the relative error. Please note that only each third sample is

shown – the plot would be hard to read when all samples were

present.

x

Fig. 7. Relative errors of samples between presented method and Analytical
solution using filter by the parameter xi.

669



x

x

x

x

x

x
x

x

xx
x

xx
xxx

xxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

+
+
+
+
+
++
+++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

**
**
****
***

*******************************************************************************

n03 + n07

x n05 * n09

5000 1×10
4

5×10
4

1×10
5

5×10
5

1×10
6
t [hours]-0.00001

-8.×10
-6

-6.×10
-6

-4.×10
-6

-2.×10
-6

0.00000

2.×10
-6

4.×10
-6

Relative error [-]

Fig. 8. Relative errors of samples between exact and hierarchical case using filtered data by parameter xi.

E. Difference between Cartesian-product and Hierarchical
Approach

The hierarchical dependability model of the NMR system

based on 2oo2 blocks is used in this case. The model of a

2oo2 block is created, the samples of the F (t) function are

calculated, and the hazard (failure) rate result is taken as the

fault rate (λ) of the NMR model.

The results of the hierarchical approach are compared to

the results of the exact model (the model generated by the

Cartesian product of the dependability models of the 2oo2

blocks and the model of the NMR).

Table VI shows the comparison of the CPU-times and the

relative errors of the hierarchical and the exact solutions.

The first column shows the number of the 2oo2 blocks, the

second column shows the CPU-time spent on exact model

solution (sum of Initialization and Main loop CPU-times).

The CPU-time spent on hierarchical method (Initialization and

Main loop CPU-times for the 2oo2 model and the same times

spent on the NMR model) is shown in the third column. The

relative error of the first sample (compared to the sample taken

from the exact case) is shown in the third column. The average

of the absolute values of relative errors of all stored samples

is shown in the last column.

TABLE VI
COMPARISON OF RELATIVE ERRORS OF EXACT AND HIERARCHICAL CASE

USING FILTERED DATA BY THE PARAMETER xi.

NMR Exact Hierarchical The Worst Average
blocks time [s] time [s] rel. error [-] rel. error [-]

n03 0.922 1.422 9.05× 10−6 5.54× 10−7

n05 4.343 1.610 3.26× 10−6 2.71× 10−7

n07 20.44 1.828 3.07× 10−6 1.61× 10−7

n09 102.0 1.968 3.18× 10−6 2.12× 10−7

The plot shown in Figure 8 shows the relative errors of

the samples between the exact and the hierarchical case. The

horizontal axis represents the time of operation measured in

hours, the vertical axis represents the size of the relative error.

Please note that only each third sample is shown – the plot

would be hard to read when all samples were present.

The CPU-time spent on solving the exact model solution

grows rapidly with increasing number of the blocks, but the

CPU-time spent on hierarchical method is below 1 second in

all presented cases.

The maximal value of the relative error is slowly increasing

with increasing number of the blocks, but it remains very low

in all presented cases (ca. 10−7).

For example, in Table VII we have computing-time of 9-MR

block by the matrix multiplication method and the presented

method.

TABLE VII
COMPARISON OF CPU-TIMES OF EXACT AND HIERARCHICAL CASE OF

BOTH METHODS FOR 9-MR BLOCK.

Total Exact Hierarchical
Time Time [s] Time [s]

Matrix Multiplication 5,938 0.225

Differential Equations 102.0 1.968

From Table VII the presented method have better

computing-time for more complex exact models than the

matrix multiplication method.

V. CONCLUSIONS

This paper is about new method for evaluating the Failure

Distribution Function F (t) from non-homogeneous Markov

chains. This method is using differential equations for com-

puting time-slices with set of adjustable parameters. The

method can also compute with different values of Markov

chain parameters in each time-slice. New method have a lot

in common with the method presented in [1], [2], which

was based by probability matrix multiplication instead the

differential equations.

The presented method has similar calculation time to the

matrix multiplication method in case of homogeneous model.

In that case we use two intervals only, the values of failure

distribution function F (t) are find out at the end of calculation.
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In case of non-homogeneous model the method is more time-

consuming because each time-slice is calculated separately.

Despite this time consuption this method has similar time

results as the matrix multiplication method.

The accuracy of the calculation is worse if we compare the

whole failure distribution function F (t). The highest peaks of

the errors are in the area, where the function value is less than

xi = 10−6. In the other part of this function, the relative errors

are approx 10−7.

The s parameter has influence to number of resulting values.

If we want the failure distribution function F (t) more accurate,

we need bigger value of parameter s. Bigger value of s
parameter also leads to longer evaluation time.

The proposed method is less accurate then the matrix multi-

plication method. It is using interpolation functions computing,

so we can have all of function values over time interval t that

we defined at the beginning. The matrix multiplication method

computes only isolated points.

Method presented in this paper may be more preferable for

evaluating bigger and more complicated systems. With rising

number of states of Markov chain, the computing time in

presented method has slight growth than matrix multiplication

method. The computing time in hierarchical case has very

good progress to reduce time to evaluate more complex

systems.
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