2019 15th International Conference on eScience (eScience)

Data identification and process monitoring for
reproducible earth observation research

Bernhard GoBwein Tomasz Miksa
TU Wien

Vienna, Austria Vienna, Austria

Abstract—Earth observation researchers use specialised com-
puting services for satellite image processing offered by various
data backends. The source of data is often the same, for example
Sentinel-2 satellites operated by Copernicus, but the way how
data is pre-processed, corrected, updated, and later analysed may
differ among the backends. Backends often lack mechanisms for
data versioning, for example, data corrections are not tracked.
Furthermore, an evolving software stack used for data processing
remains a black box to researchers. Researchers have no means to
identify why executions of the same code deliver different results.
This hinders reproducibility of earth observation experiments. In
this paper, we present how infrastructure of existing earth obser-
vation data backends can be modified to support reproducibility.
The proposed extensions are based on recommendations of the
Research Data Alliance regarding data identification and the
VFramework for automated process provenance documentation.
We implemented these extensions at the Earth Observation Data
Centre, a partner in the openEO consortium. We evaluated
the solution on a variety of usage scenarios, providing also
performance and storage measures to evaluate the impact of
the modifications. The results indicate reproducibility can be
supported with minimal performance and storage overhead.

I. INTRODUCTION

Earth Observation (EO) data consists mostly of satellite
images. Similar to other eScience disciplines, data is too
big to be downloaded for local analysis. The solution is to
store it in high-performance computational backends, process
it there, and browse the results or download resulting figures
or numbers later [1]. Such an approach addresses performance
issues, but does not allow researchers to take full control
over the environment in which their experiments are executed.
The backends act as black boxes to outsiders with no pos-
sibility of getting information on environment configuration,
e.g. software libraries and their versions. Studies in different
domains show that the computational environment can have
impact on reproducibility of scientific experiments and must
be documented in order to ensure reproducibility [2] [3] [4].
Still the vast majority of backend providers do not share such
environment information.

Another problem deals with a precise identification of data
used for processing. EO backends in Europe usually obtain
data from the same source, for example from the services
and data bubs of the European Earth Observation (ESA)
Programme Copernicus. The ESA releases data updates and
corrections in cases when one of the instruments used for
observation was wrongly calibrated or broken and raw data

TU Wien & SBA Research

Andreas Rauber
TU Wien
Vienna, Austria

Wolfgang Wagner
TU Wien
Vienna, Austria

had to be processed again. This data is then distributed to
backend operators. Usually there is no versioning mechanism
for data. Researchers do not know which version of data was
used in their study, i.e. whether they were using a version
before or after some specific modifications. This leads to
the problem that scientists are not able to precisely identify
and cite the input data of their experiments, which hinders
reproducibility and in turn undermines trust in results. Both
the computational environment and the input data constitute
the context of an experiment. The Research Data Alliance
(RDA) has identified 14 general rules [5] for the identification
of data used in computation that allows to cite and retrieve
the precise subset and version of data that existed at a certain
point in time. The VFramework [4] and context model [6] were
proposed to automatically document environments in which
computational workflows execute and to enable their compar-
ison. The openEO project [7] works on creating a common
EO interface to enable interoperability of EO backends by
allowing researchers to run experiments on different backends
without reimplementing their code. By bringing these three
elements together a scientific infrastructure is created that al-
lows automatically documented and reproducible experiments
to be executed with minimal overhead to the infrastructure and
researchers performing their studies.

In this paper, we present this solution improving repro-
ducibility of EO experiments executed at openEO compliant
backends. We follow the RDA recommendations for data
identification and present how data provided by backends is
made identifiable by assigning identifiers to subset queries
made by researchers. We discuss which specific information
must be captured, which interfaces must be modified, and
which software components must be implemented. We also
show how jobs being executed at backends can be captured and
compared using the VFramework to determine whether any
differences in software dependencies among two executions
exist. We implemented our solution at the Earth Observation
Data Centre for Water Resources Monitoring (EODC), a 20
Petabyte storage infrastructure connected to the Vienna Scien-
tific Cluster! HPC system. For the evaluation we simulated use
cases representing updates of data and changes in the backend
environment. We also measured the performance and storage
impact on the backend, which turned out to be minimal.

Uhttp://vsc.ac.at/systems/vsc-3/

978-1-7281-2451-3/19/$31.00 ©2019 IEEE
DOI 10.1109/eScience.2019.00011

* @co[r%EEuter
psoaety

The remainder of this paper is structured as follows: Section
II presents related work that is a basis of our solution and
provides earth observation context. Section III presents the
architecture of the proposed solution. Section IV focuses on
the implementation of the prototype at the EODC backend.
Section V presents methods offered to researchers enhancing
reproducibility. Section VI presents a typical EO workflow
using our implementation. Section VII describes the experi-
mental evaluation followed by conclusions in Section VIII.

II. RELATED WORK
A. Reproducibility in geoscience

In [8] reproducibility of scientific papers in geoscience is
tested by analysing more than 400 papers. Authors conclude
that only for half of the analysed publications identical re-
sults can be achieved. The solution described in this paper
facilitates the assessment of experiments’ reproducibility by
precisely identifying input data used in computation, as well
as automatically documenting the execution environment.

Geoscience Papers of the Future (GPF) [9] is an initiative
to encourage geoscientists to publish papers together with the
associated digital products of their research. This means that
a paper would include:

1) documentation of datasets, including descriptions,
unique identifiers, and availability in public repositories;

2) documentation of software, including pre-processing of
data and visualization steps, described with data unique
identifiers and pointers to public code repositories;

3) documentation of the provenance and workflow for each
figure or result.

Our solution aids in providing information requested above
by precisely identifying datasets and software (including ver-
sion and libraries) used by backends to compute results. This
information is collected automatically and can be accessed
by users any time using the same API as they use for the
implementation of their experiments.

B. Recommendations for data identification

The Research Data Alliance (RDA)? is an international body
issuing recommendations to help remove barriers in data shar-
ing. Recommendations are based on a community consensus
elaborated within working groups. The Data Citation working
group® has identified 14 rules [5] for identification of data
used in computation that allows to:

o identify and cite arbitrary views of data, from a sin-
gle record to an entire data set in a precise, machine-
actionable manner,

« cite and retrieve that data as it existed at a certain point
in time, whether the database is static or highly dynamic.

The rules are independent of the implementation technology
and require that:

« data is stored in a versioned and timestamped manner,

Zhttps://rd-alliance.org
3https://rd-alliance.org/groups/data-citation-wg.html

29

« data is identified by persistent identifiers (PIDs) assigned
to timestamped queries that can be re-executed against
the timestamped data store.

The recommendations provide a generic set of rules inde-
pendent of an application domain. So far they have been
implemented in settings ranging from atomic and molecular
data [10], climate change [11] to health policy planning [12].
We use them also in our solution to make data provided by
backends identifiable, by assigning PIDs to queries identifying
the subsest of data selected by researchers for their analyses.

C. Process execution monitoring

The solution described in this paper follows the VFrame-
work [4] that can verify and validate workflow re-executions.
It allows to identify whether any differences in software de-
pendencies among two executions of the same workflow exist.
The VFramework uses the context model [6] to document
the environment and thus enables a comparison of workflow
executions without having to access both environments at
the same time. We compare context models of workflow
executions (experiments submitted to run on backends) to
verify whether the workflow re-execution was obtained in
a compliant way [13]. Figure 1 gives an overview of the
framework. Context includes not only high level description
of workflow steps and services, but also technical details on
infrastructure, including software and data.

Run dynamic Define validation
7 analysis metrics
=
L]
Validate
workflow
®

Context Model
Fig. 1: VFramework: Framework for verification and valida-

(“\ Yeri(y
~— envwrment
tion of re-executed workflows [13].

O—

Run static
analysis

Original
environment

VFramework

Redeployment
environment

The importance of preserving software dependencies to en-
able reproducibility of scientific computing was highlighted in
[14]. Similar to the context model, authors propose to capture
software dependencies and provenance of process executions.
They introduce the PRUNE environment that automates this
process and hides its complexity from researchers, but requires
them to change their existing processing pipelines. In our
solution we extend the existing backend infrastructure to add
reproducibility supporting functionality and elaborate client
side interfaces to provide additional functionality. Thus, we
do not change the way how researchers work, but introduce
modifications for existing environments to improve the repro-
ducibility of experiments.

D. Earth observation and openEQO

EO data is too big to be downloaded locally for analysis.
The solution is to store this data in computational backends,
process it there, and browse the results or download resulting

figures or numbers later. Fig. 2 presents a typical usage
scenario in which an earth observation scientist uses a backend
for processing data in an experiment (hereinafter referred to
as “job”).

Backend Job Workflow)

Backend Processing

SciePtist Dri‘ver Soft\:\.rare

| define experiment | !

I | !

I . | |

___Jobid____ |

I | !

I | |

! start job L :

! T

' [

' oK |

oo OK_____

' |

' |

' |

[| !

I | !

' fetchresult | !

! T

' [4’[}]

' result URL [=

r{ ___________

I

I

I

Fig. 2: Typical workflow of an experiment execution on an
EO backend.

The European Commission Horizon 2020 project openEO
[7] works on creating a unified earth observation backend
interface that decouples clients from backends, so that code
written for one backend can be executed on other backends as
well. As a result, researchers can switch between different
backends, without having to re-implement their code. To
describe jobs and input data openEQO uses process graphs. They
are defined as JSON objects, that have a tree-like structure to
define the processes that are submitted by the client to the
backend for processing.

Fig. 3 shows an example process graph. In the center of the
figure the process get_collection can be seen, which defines
the satellite data that is used. It functions as the input for the
filter processes filter_bbox and filter_daterange, which define
the temporal and spatial extent. The two outermost processes
NDVI (Normalized Difference Vegetation Index) and min_time
(Taking the minimum value of each pixel of the resulting
timeseries) are then applied to the filtered data [7].

The tendency to make experiments FAIR [15] fits with
openEO, since it creates trust and makes the experiments
reuseable. In this paper we describe how we extended the
openEO specification and propose how our solution can be
implemented at an openEO compliant backend, i.e. EODC
backend. Thus, we provide a general solution that can be
adopted by other backends compliant to the openEO standard.

30

"process_graph":{
imagery":{
"imagery":{
"extent":[
"2017-81-61"
"2017-81-31"
1,
"imagery” :{
"extent":{
"north"

EPSG:32632"

crs

},

“imagery":{
"process_id":"get_collection"”

"name":"s2a_prd_msilic"
I
"process_id":"filter_bbox"

"ﬁrocess_id":'filter_dateranqe"

"nir":"geg"
"process_id":"NDVI",
"red":"B@4"

I
process_id":"min_time"

Fig. 3: Example process graph according to the openEO core
API version 0.3.1.

III. ARCHITECTURE

In this section we describe the architecture of our solution,
i.e. components that must be added to the openEO compliant
backends to support data identification and process execution
capturing.

The architecture of openEO has 3 major elements:

e core API — Application Programming Interface which
specifies a common set of methods exposed by backends.

e EO clients — client modules written in different pro-
gramming languages (e.g. Python, R, Java) that allow
researchers to define their processes and execute them
on selected backends.

o backend drivers — software modules implementing the
functionality described by the core API that are deployed
at backends. They act as endpoints to which EO clients
connect.

Our solution adds methods to the EO clients and core API.
It also requires an implementation of additional functionalities
by the backend. Fig. 4 shows a simplified model of a backend —
client communication. White represents existing components.
Green depicts new components added by us to an existing
backend.

A scientist defines an experiment by using a Client appli-
cation. It creates a process graph and transmits it to a selected
backend, where a new job is created. The Client is then used
to start the execution of the job and to retrieve results (cf. Fig.
2).

The Data Query component gets filter arguments of the
process graph and translates them into an internally used data
query language. It executes the query and forwards received
data to the Process Execution component. The Query Handler
receives the query and its resulting data.

Client

Process Graph j coreAPl
%
Data Query%—[%
E

Result Data j

Backend

[w] &l

A 1A E
Process Result Handling
Execution

E E

v

(]

coreAP| coreAP|
A

1V}

Query Handler Result Handler

v v
Data PID EL“
v

s
s

Job Capturing

(v}

Job PID
Environment
Data

Context Model

Fig. 4: Overview of the extensions to the backend.

The Process Execution component receives a process graph
from the Client application and an input data from the Data
Query component and executes the job. It provides the results
to the Result Handling component and provides job environ-
ment data for the Job Capturing component.

The Result Handling component receives results from the
Process Execution component and persists all data about the
job and its result, so that the Result Handler component can
use it. In the meantime it sends results back to the Client
application. The final data is available for a few days, then
the backend erases it. The Query Handler component offers
data identification for the backend. It receives the query and
its result from the Data Query component. It checks if there is
already a persistent identifier (PID, e.g. a DOI or URI) for the
given query and query result combination. If so, it returns the
existing query PID, otherwise a new PID is generated and the
query is stored. It adds the query PID to the Context Model as
persistent input data identifier. Other than the Result Handler
component, the Query Handler manages to have no duplicates
for a query PID, whereas the Result Handler just creates a
checksum of results to make it comparable. Therefore, the
same input data leads to the same query PID, hence we use
the term data PID subsequently.

The Job Capturing component is responsible for identifying
code (version) and its components used at the backend. It
assigns a PID to code used for processing, which is a result
of translation of the submitted process graph into a code
natively supported by the backend. Additionally, the compo-
nent captures data about the environment in which the job is

31

executed. The data consists of static and dynamic information.
Static information contains environment information that is
independent of the job definition. Dynamic information is
dependent on the job definition and is collected at runtime.
The following static backend data is collected:

1) Backend version

The version of the backend is used to identify a certain
backend configuration. The configuration contains the
environment information of the backend e.g. docker con-
tainer description files and the executed code inside of
the docker container. It has to be unique and different on
every change of the backend configuration. The backend
version is needed to identify the state of the backend and
therefore the environment of the job execution.

2) Code identification
Identifier of the code deployed at the backend. It is
needed to identify the code used for the execution of
the jobs.

3) API version
Version of openEO API supported by the backend. A
different API version may lead to different results of
job executions and is therefore part of the environment
information.

4) Publication timestamp

Timestamp since when the backend version is in place,
so that the active backend version of a specific time can
be resolved.

The following dynamic data as given below must be cap-
tured:

1) Input data persistent identifier

This element is the output of the Query Handler com-
ponent, the persistent identifier of the used query. The
query represents the input data of the job execution. By
re-executing the same query, the original input data of
the job can be recreated. It is needed to identify the input
data of the job.

Backend version of the execution

The version of the backend during the execution of the
job. Connects the dynamic job context model with the
static backend environment. This information is needed
to be able to reconstruct the active backend version
during the job execution.

Programming language

Programming language and version used by the job
execution. It gives the scientist transparency about the
execution environment.

Dependencies of the programming language
Dependencies of the programming language used in a
job execution (e.g. Python modules), which allow us
to track the impact of the software environment on job
results.

Result checksum

Instead of storing the whole result data, a result check-
sum (e.g. hash) is introduced. It describes the job results,
so that a different result can be identified by comparing

2)

3)

4)

5)

the checksum to results of other job executions.

The Result Handler component has the responsibility for
creating hashes of computation results which are later used
to validate whether two executions had the same result. The
data created by an EO backend might be too big to store
completely.

The Context Model is used to persist static and dynamic in-
formation collected on the environment and the job execution.
The Context Model has to be integrated into the database of
the backend. Therefore, we recommend to use data formats
that are already used by the backend. The elements of the
context model are static in size (see Section VII-D), hence a
relational database is sufficient.

IV. IMPLEMENTATION

In this section, we describe the prototype implementation at
the EODC backend. The backend is implemented in Python.
The service is hosted using OpenShift* and Docker technology.
We give an overview of the components as well as the resulting
context model. Fig. 2 shows the general workflow of a job
execution at an EO backend.

A. Query Handler - Component

We implemented the Query Handler as an additional com-
ponent that gets executed after the input data query execution.
Fig. 5 gives an overview of the structure of the Query Handler
implementation. The internal query language of the backend
is CSW?°, which uses XML queries. The centerpiece of the
RDA recommendations is the implementation of a query store,
which is responsible for storing the data needed to make
queries comparable and to re-execute them in the same manner
as the original execution. Queries in the query store have to
be comparable, identifiable and persistent. The execution data
at EODC is persisted in a relational database (PostgreSQL).
To create the query store, we added a query table and a junk
table to enable a many-to-many connection between the query
table and the job table.

The following list summarizes the entries of the Query
Table:

1) Query PID
The recommendation R8 of the RDA requires to create
a unique persistent identifier for each query record.
We generate the persistent identifier using the Python
library uuid®. EODC is using it to generate unique job
identifiers, so we use it also for the query PID.
Dataset PID
The dataset PID is the identifier of the satellite product
at EODC used in the process graph and according to R3
of the RDA recommendations added to the query record.
Original Query
The original query [recommendation R3] is the XML
query following the CSW standard, executed by the
EODC backend.

2)

3)

“https://www.openshift.com/
Shttp://cite.opengeospatial.org/pub/cite/files/edu/cat/text/main.html
Shttps://docs.python.org/3/library/uuid.html

32

Query Quel S
Generation Execution

Query Handler

=]
Data Handler 5 |

Data Hash
Timestam,
Number of Files

i

Query
v

{v]

List of Resultfiles
Execution Timestamp
v

8]

Query @
Processor

Unique Query
Hash Query
Original Query
Data PID

Job
Query Record E Context Model

Handler

HON 50N

Query PID [

Landing Page

Query Record 1
Query PID

sqL
Query Table

g]

Fig. 5: Overview of the Query Handler implementation at the
backend.

4) Unique Query

The unique query [recommendation R4] is the restruc-
tured query that is comparable to other unique queries.
The EODC backend parses the filter arguments into a
JSON object. Since the order of the filters makes no
difference in the outcome of the query execution, we
alphabetically sort the elements of the original query by
the JSON keys to generate the unique query.

Unique Query Hash

We create the unique query hash [recommendation R3],
by applying the SHA-256 hash function (using the
Python module "hashlib”) on the unique query as input,
after removing characters that are irrelevant.

Result Hash

The result of the query is a list of alphabetically sorted
files. We create the result hash [recommendation R6]
by the calculation of the SHA-256 hash function of the
result file list, after irrelevant characters are removed.
Execution Timestamp

The execution timestamp [recommendation R7] is taken
from the Query Execution component of the EODC
backend.

Additional Data

There is an additional data column in the Query Table
to give EODC the opportunity to store additional data
about a query. The column is defined as a JSON object.
We added the number of result files to the “meta_data”
column.

Example: ”{ "number_of files”: 10}”

The Query Handler takes the input data of the EODC query
execution and adds the input data PID to the job context model.
For every executed job the Query Handler has to check if there
is already a query with the same combination of unique query
hash and result hash. If the combination exists, it adds the

6)

7

8)

existing query PID (aka data PID) to the context model, else
it creates a new query entry and adds the new query PID to
the context model.

B. Result Handler - Component

We implemented the Result Handler as an additional Python
component of the backend, which is executed after the execu-
tion of a job finished. In the version 0.3.1 of the openEO
API the output of the job execution is limited to a single
output image. We implemented the result checksum by using
the SHA-256 hash function on the resulting output file.

C. Job Capturing - Component

Fig. 6 gives an overview of the added components to capture
the environment of an executed job. The job capturing is
separated in static and dynamic data. Therefore, the static data
of the backend versioning has to be introduced to the backend,
and is described in the following list:

1) Backend version and code identification

We use the GitHub repository of the backend’ as ver-
sioning tool for the backend. The latest commit identifier
of the master branch is the current version of the back-
end. Past versions are identifyable, either by the commit
identifier or by timestamp. Other backends might use
different version-control systems for this purpose.

API version

EODC manually updates the core API version in the
GitHub repository.

Publication timestamp

The publication timestamp of a backend version is
defined by the GitHub commit timestamp.

2)

3)

The dynamic job capturing during the job execution is
done by adding logging messages to transfer the needed data
from the Process Execution component to the Job Capturing
component. The captured elements are described in the next
section.

D. Context Model - Data Record

Each executed job creates a context model. We store the
context model in an additional column of the job table in the
format of a JSON object. The following list shows the data
stored in the context model:

1) Input data persistent identifier

The source input data identifier is the PID of the query
provided by the EODC query store described in Section
IV-A.

Backend version

To identify the version of the backend during the exe-
cution of the job, the commit identifier of the backend
during the execution is persisted in the context model.
Programming language and dependencies of the
programming language

The Process Execution module uses the installed Python
module pip to list all installed packages with their

2)

3)

Thttps://github.com/Open-EO/openeo-openshift-driver

33

Process Execution 3 | Result Provider 53 |

Processing Cleanup
v

~~ [togging B
E Path

v
Tch Capturing E
Logging E

Parser

4

Backend End Provenance
Handler

+—-0

Result D ,
Path v
v

{v}

g]

Result Handler

Hashing Eﬂ

Process

=

1 l

’ =

/
/ (O——J» = Context Model &—Tpynen python —

Creator
Back End
Environment
i Context Model™

job Table 5 |

Fig. 6: Overview of the implementation components used by
the Job Capturing component.

versions. The Job Capturing component uses the tool
to capture the installed Python modules and the Python
version.

Result checksum

The result checksum is the output of the Result Handler
component described in Section IV-B.

4)

V. USER SERVICES

We extended the core API (version 0.3.1) of openEO, so
that we were able to implement our concept at the backend.
To make the internal extensions of the backend available for
the users, we defined user services into the core API. The new
endpoints are added to the openEO Python client as well as to
the backend driver. These extensions and their implementation
are described as below:

1) Backend Version

We added a new end point to the core API to give
the user the opportunity to retrieve the current and past
backend versions. The new endpoint is a request called
GET /version/<timestamp> and no authentication is
needed to access it. The response of the version endpoint
is the whole job independent provenance information of
the backend. It gives the scientist the opportunity to get
environment information of the current backend version
and from past versions.

Detailed Job Information

In the openEO core API there is an endpoint to get
detailed information about the job status. The endpoint
path is GET /jobs/<job_id>, which only contains the
execution state of the job and the job id. We add
the whole context model of the job to this endpoint
in the implementation to provide scientists with the
environment information and the input data PID of the
job execution.

2)

3) Data Identifier Landing Page
We implemented the landing page of the data PID into
an additional endpoint of the openEO core API. We
introduce the "GET /data/<data-pid>" endpoint, which
returns a description of the data type and the resolvable
data PID. The landing page contains a link to another
page with the file list after a query re-execution ("GET
/data/<data-pid>/result” endpoint). If the result file list
differs from the original execution, there is a list of the
files that differ, otherwise it states that the file list is
equal to the original execution. This helps scientists to
reconstruct the input data used by a cited data PID.

4) Re-use of Input Data
We extended the process graph definition of the ope-
nEO core API, by adding an additional filter argument
(data_pid”) to the ”get_collection” process. If a process
graph uses the input data PID, the backend automatically
applies the queries like in the original execution. As a
result, the user is able to make additional experiments on
the same data without additional effort and is informed
if the data changed at the backend.

5) Comparing two Jobs
We have implemented a function at the Python client to
compare two jobs, by comparing the context models of
the jobs. For every item in the context models, the term
“EQUAL”, if the items are the same in both context
models, the difference if the items are not the same
in both context models, or “MISSING” if the item is
missing in one of the context models. Researchers can
compare experiments to see how they were executed and
to be able to explain different outcomes.

VI. USE CASES

This section provides an example on how a typical EO

workflow is executed using our implementation.

1) Researcher A runs job A at the backend.
Listing 1 shows the code to run a job at the backend.
First we establish the connection to the backend, then the
process graph gets created, by choosing the processes
and arguments. Furthermore the job gets created and
executed.
con = openeo.connect (backend_url)

Choose dataset and filter operations

processes = con.get_processes (

PgA = processes.get_collection(

name="s2a_prd_msillc")

pgA = processes.filter_daterange (pgA,

extent=["2017-05-01",
"2017-05-31"1)

pgA = processes.filter_bbox (pgA,
west=10.288696, south=45.935871,
east=12.189331, north=46.90524¢6,
crs="EPSG:4326"

Choose processes

PgA = processes.ndvi (pghA, nir="B08", red="B04")

PgA = processes.min_time (pgA)

reate and s

job A out of the
pr (pgA)
jobA = con.create_job (pgA.graph)
jobA.start_Jjob ()

cess grap.

Listing 1: Researcher initializes and runs jobA.
2) Researcher A retrieves the used input data PID of
job A.
Researcher A wants to receive the used data PID, so
that he can cite the input data of the experiment in the
resulting paper. Listing 2 shows the code to retrieve the
query pidA of jobA.

Get data PID

e.g. qu-a3bbedal-a875-468
pidA = jobA.get_data_pid()
Listing 2: Researcher A retrieves the persistent input
data identifier to cite.

3) Researcher A retrieves the experiment environment
identifier.
Researcher A wants to get the environment identifier, so
that he can cite the used environment of the experiment.
Listing 3 shows the code to retrieve the backend version
used when jobA was executed.

Get

e.g. laOce

versionA = jobA.get_backend_version()

4a78cd9445c3c9314eaeb5b

Listing 3: Researcher A retrieves the backend version
used by the execution of jobA.

4) Researcher B uses the same input data, by applying
the data PID of job A for job B.
Researcher B is a reviewer and wants to check the
experiment of researcher A by running the same process
graph on the same input data of job A. Listing 4 shows
how researcher B can use the same input data PID as
researcher A with jobA. The backend re-executes the
query of pidA with the timestamp stored in the query
store of the solution backend. The updated file has a
creation timestamp after the query timestamp and is not
in the query result of pidA. Therefore, the input data of

as the input data of job A.

¢ to exe e 7 3.
pgB = processes.get_data_by_pid(data_pid=pidA)
Choose processes

pgB = processes.ndvi(pgB, nir="B08", red="B04")
pgB = processes.min_time (pgB)

Create and start Job B

jobB = con.create_job (pgB.graph)
jobB.start_job ()

get pidB of job B and compare it with pidA
pidB = jobB.get_data_pid()
(pidA == pidB) # Returns True

diffAB = jobA.diff (jobB)

Listing 4: Create jobB, which uses the input data iden-
tified by pidA.

Researcher B wants to be sure that the environment
of his replication is the same as the environment of
the analysis of researcher A. The last line of Listing
4 stores the difference between job A and job B into
diffAB. The content of the dictionary is a comparison of
every key of the job context models with each other
and can be viewed in Listing 5. It shows that two
independent researchers ran the same experiment using

TABLE I: Query Table in the beginning of the test case
execution.

Query pidA

Column Value

query_pid | qu-a3bbe4a0-a875-4687-bb78-9457f33134a9
dataset_pid | s2a_prd_msillc

original | <csw:Query...

normalized | {’extend’: {"crs’:...
norm_hash | 0917c7a21cec960b8a66. ..
result_hash | abf43f519007050cbaeb59a067a2226d6. ..
updated_at | 2019-03-31 17:36:44.613893

meta_data | {’result_files’: 51}

created_at | 2019-03-31 17:36:43.064445

identical environments. Hence, we can conclude that
experiment was replicable.

{'input_data': 'EQUAL', 'output_data': 'EQUAL',
'process_graph': 'EQUAL', 'openeo_api': 'EQUAL',
'interpreter': 'EQUAL', 'code_env': 'EQUAL',
'different':

{'back_end_timestamp':'20190417194702.496810"',
'job_id': 'jb-b92c688c-7fdc-4126...",
'start_time': '2019-04-17 19:47:02.496810"',
'end_time': '2019-04-17 19:47:03.258261"'}}

Listing 5: Content of the job comparison diffAB.

VII. EVALUATION

The evaluation is two part: first we simulate different sce-
narios to test if the proposed solution detects typical changes
in data and the software environment. Second, we evaluate
the performance and storage impact of the solution on the
EODC backend. The Python client, the solution backend and
the code for the evaluation is available and further described
on GitHub®.

A. Evaluation Setup

In the evaluation we used a test environment that ran on
a local machine which is identical to production environment
of the EODC. The difference is in the performance of the
hardware. Since the data querying service of EODC is publicly
available, we used the actual data that EODC provides for
openEO users to test the data identification part of the solution.
Changes on the data (like removed files or updated files) are
simulated by changing the output of the query directly after
execution in the test environment.

B. Data Updates

In this section we evaluate the behavior of the solution on
data updates at EODC. In the beginning of each test case there
is one job entry and one query entry in the database. Table I
shows the content of the Query Table of the database.

1) Test Case 1: Is it possible to re-execute a query after a
file is updated?: 1f a file is updated at the EODC backend,
the new file gets a different file name than the original one
and the creation timestamp is updated. If a new job is executed
using the same process graph as the first job, the resulting files
are different than in the original execution. Table II shows
the Query Table after the second job execution. In Table II

8https://github.com/bgoesswein/dataid_openeo

35

TABLE 1II: Query Table after the execution of the second job.
Important elements are highlighted blue if they are the same
and red if they are different.

Query pidA (full entry in Table I)

Column Value

query_pid | qu-a3bbe4a0-a875-4687-bb78-9457f33134a9
norm_hash | 0917c7a21cec960b8a66b. ..
result_hash | abf43f519007050cbaeb59a067a2226d6. ..
meta_data | {’result_files’: 51}

Query pidB

Column Value

query_pid qu-23f5a313-e804-4faa-aa33-60ed lac69e2d
dataset_pid | s2a_prd_msillc

norm_hash | 0917c7a21cec960b8a66. ..
result_hash | 28088d113del9ce037¢9651...

updated_at | 2019-03-31 18:01:49.214956

meta_data | {’result_files’: 51}

created_at | 2019-03-31 18:01:47.695042

the important differences are marked red. There is a different
result hash, since the new job uses the updated file instead
of the original one. The normalized query is still the same,
but since the result of the query changed a new data PID is
generated. Next, we executed a third job, which is the same as
the second, but uses the input data PID of the first job (pidA)
(see Listing 4). The execution timestamp is part of the query
in pidA and the third job executes the original query of the
first job. Therefore, it uses the same data PID as the first job.

2) Test Case 2: Is it possible to re-execute a query after a
file is updated with the original one deleted?: This test case
shows how the solution behaves if a file is updated, but the
original file is deleted at the same time. The re-execution of
the query pidA results in a file list without the deleted file.
Since files are filtered out by the query using the execution
time-stamp, the new file does not appear in the result file list. If
the re-execution results not in the same file list, the response
of the backend contains a “state” attribute, which contains
the replaced files. The backend returns the most recent file
version, even if there are versions between the original and
the most recent file available. Users can see the alternatives
for the original file, but not the missing original file. This is
because the full file list is not persisted in the query store,
but the number of result files. We made the decision of not
storing the complete file list, because of the deletion policy
of the backend provider, which do not delete files without
replacing it with an updated version.

If the researcher runs a second job with pidA as input data, he
gets a warning message that the query result is different from
the original execution.

3) Test Case 3: Is it possible to re-execute a query after a
data file is deleted?: The deletion of a file without a new file
replacing it, is not within the policies of EODC, since they
would restrict their range on available data. If this happens
nevertheless, there is when using the solution proposed by this
paper no possibility to get the exact files that were removed.

4) Test Case 4: Is it possible to recreate an older version
of the backend?: The aim of the implementation is to capture
enough data to make it possible to re-run the same job.
The backend is created directly by its GitHub repository. To
recreate an old version of the backend, the GitHub repository
URL and the commit identifier of the original set up is
needed. The timestamp of the job execution is persisted in
the context model of the original job execution. The original
GitHub repository and commit can be resolved by the backend
provenance. Unfortunately, in the current solution there is no
automatic way of setting a version of the EODC backend. If
an older version of the backend has to be activated, the EODC
needs to be contacted and asked to load a new instance of the
backend with the old version in place.

C. Performance and Storage impact

This section evaluates the performance and storage impact

of the implementation on the backend. To achieve this, we
define 18 test cases with input process graphs derived from 9
publications ([16][17][18][19][20][21][22][23][24]) that used
data provided by EODC from the last two years. Every input
process graph is executed 50 times and after each iteration
the duration and the used storage size is captured. After each
execution the backend gets cleaned up, so that every iteration
happens in the same backend conditions. The elements of the
Query Handler component, the Job Capturing component and
the Result Handler component are measured.
The Query Handler component is responsible of creating a
new query entry in the query table. Therefore, it generates
the hash of the query result, normalized query and the hash
value of it, the number of input files, the dataset PID and the
original query. The hash over the query result has a complexity
of O(n), where n is the size of the query result. Hence, the
performance of the query result hash calculation is dependent
on the size of the query result and for the test cases it is visual-
ized in Fig. 8. The duration of the other elements of the Query
Handler are independent of the amount of processes defined in
the job or the size of the input data. Therefore, the calculations
of these elements are constant in duration throughout the test
case executions and are visualized in Fig. 7. The test cases
are sorted in ascending order by the size of the query result.
The standard deviation of the elements (normalized: 19.35us,
norm_hash: 5.89us, file_number: 3.98us, dataset_pid: 2.50us
and orig_query: 5.34us) over all test cases is minimal. It shows
that the duration of the calculation for these elements are not
dependent on the size of the query result.

The performance of the Job Capturing component is in-
dependent on the job complexity, except for the result hash
provided by the Result Handler component, which is depend-
ing on the size of the result image of the job. Fig. 9 shows
the duration of the result hash calculation. The duration of the
result hash calculation is direct proportional to the result size
of the job execution. This is due to the complexity of the hash
function of O(n), where n is the size of the result file.

We summarize the performance of the implementation by
the mean value of all constant elements of the test case

36

W normalized
®norm_hash
file_number
u dataset_pid
W orig_query

Duration [ps]

i

13 18 14 16 11 9

WA

4 7 5 6 8 3 12 1 15 17 1.0 2

Testcase

Fig. 7: Duration of the constant Query Handler elements of
the test cases executions sorted by query result size. Time of
the normalized query calculations are blue, time of hashing
the normalized queries are red. Yellow bars show the time of
calculating the number of result files, whereas green bars the
time of fetching dataset identifiers. Storing and fetching the
original queries are brown bars.

10000
9000
8000
7000
6000

5000

Duration [us]

4000
3000
2000

1000

Testcase

Fig. 8: Execution duration of the result hash by running the
test cases, sorted by query result size in ascending order.

executions. The result is an average of about 20 ms plus the
additional time of the result hash of both the Query Handler
and Result Handler. This results in an execution time range
between 20ms and 170ms per job execution. Compared to
the estimated computation time of the test cases between 10
seconds and 20 minutes at the production version of the EODC
backend, we conclude that the impact of the Query Handler
is negligible.

The storage impact of the solution is constant per job
execution. The solution added a query table and a column at
the job table to the EODC backend. Both have only elements
of fixed size. If a job execution creates a new query entry,
the additional storage needed is 2.677 kB. If the job execution
uses an already existent input data PID, only the context model
needs an additional storage of 1.043 kB. We conclude that the
additional needed storage is insignificant due to the size of the
storage infrastructure of EODC.

Duration[ms]
@
&

100 ‘
o
.
:-------------IIII

17 15 15 14 11 16

Fig. 9: Execution duration of the Result Handler component
by running the test cases, sorted by job result size in ascending
order.

D. Evaluation Summary

The evaluation showed how the implementation on the
EODC backend tackles the issues of reproducibility in the
earth observation sciences. The data identification implemen-
tation is tested against special test cases regarding data updates
and data deletions. The evaluation shows that the solution
can re-execute queries properly by returning old versions of
updated files. The test cases underline that the usage of the
data PID as input data of a new job is superior to the current
way of re-executing a job with the same process graph. That’s
because the process graph does not have the original execution
timestamp and therefore does not use the same input data
after an update occurs. In the evaluation of deleted data at the
backend, the solution happens to be not capable of showing
the exact missing files, since not the whole file list result of
the query is persisted. We decided to tolerate this drawback,
because there is no precedent at EODC that a deletion occurred
at the backend before. The test case on job capturing conveyed
that the solution is capable of identifying the backend version
and therefore, the environment of the job execution. Still,
to run a new job on the same environment, EODC has to
manually provide it. We evaluated performance and storage
impact on the backend by running 18 test cases derived from
past publications that used data from EODC. The results show
that, except for the result hashes, the calculation of the data
identification and the context model are independent from the
complexity of the job. The time of the result hashing used for
the data identification is dependent on the size of the query
result and the result hash of the context model is dependent
on the size of the output file of the job execution. Impact of
our solution on the performance of the test case executions
is between 20ms and 170ms. Compared to the estimated
computation time of the test cases between 10 seconds and
20 minutes at the production version of the EODC backend,
we conclude that the impact of our solution is negligible. The
space needed in addition per job is constant and also minimal
compared to the size of data kept at the backend.

37

VIII. CONCLUSION AND FUTURE WORK

In this paper we dealt with the problem of lack of repro-
ducibility of many EO experiments executed using specialised
computing backends. Considered scenarios and problems can
be observed in other e-Science disciplines as well.

We presented how infrastructure of existing backends can be
modified to support precise data identification by following the
Research Data Alliance recommendations. We described how
jobs can be captured and compared using the VFramework
to identify whether any differences in computational environ-
ments exist. The proposed solution was implemented at Earth
Observation Data Centre in Vienna which is a member of
the openEO consortium that develops a common interface for
interoperability of EO backends. The implementation involved
extending the backend to add reproducibility supporting func-
tionality, as well as, extending client side interfaces to provide
additional functionality. Thus, we did not change the way
researchers work, but introduced changes to existing envi-
ronments to improve reproducibility of experiments executed
using them.

To evaluate our solution, we simulated use cases represent-
ing updates of data and changes in the backend environment.
We also measured the performance and storage impact on the
backend. We conclude that the solution is capable of making
the input data, code and the environment identifiable and
reproducible. Impact on backend’s performance is minimal.

Future work will focus on implementing the solution on
further backend types, e.g. backends with non-file-based result
sets. The openEO project is an ongoing project, hence the
common API may evolve and our work will have to be adapted
to new releases of the APL

ACKNOWLEDGMENT

openEO - This project has received funding from the
European Unions Horizon 2020 research and innovation pro-
gramme under grant agreement No 776242.

The authors wish to thank the team of EODC, especially
Luca Foresta and Thomas Mistelbauer, for the support on
implementing the concept into the EODC backend.

REFERENCES

[11 M. Ramamurthy, “Geoscience cyberinfrastructure in the cloud: Data-
proximate computing to address big data and open science challenges,”
in 2017 IEEE 13th International Conference on e-Science (e-Science),
Oct 2017, pp. 444-445.

E. H. B. M. Gronenschild, P. Habets, H. I. L. Jacobs, R. Mengelers,
N. Rozendaal, J. van Os, and M. Marcelis, “The effects of freesurfer
version, workstation type, and macintosh operating system version
on anatomical volume and cortical thickness measurements,” PLOS
ONE, vol. 7, no. 6, pp. 1-13, 06 2012. [Online]. Available:
https://doi.org/10.1371/journal.pone.0038234

M. Konkol, C. Kray, and M. Pfeiffer, “Computational reproducibility in
geoscientific papers: Insights from a series of studies with geoscientists
and a reproduction study,” International Journal of Geographical
Information Science, vol. 33, no. 2, pp. 408-429, 2019. [Online].
Available: https://doi.org/10.1080/13658816.2018.1508687

[2]

[3]

4] T. Miksa, A. Rauber, and E. Mina, “Identifying
impact of software dependencies on replicability of
biomedical ~workflows,” Journal of Biomedical Informatics,
vol. 64, pp. 232 - 254, 2016. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1532046416301484

[51

[6]

[71

[8]

[91

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

A. Rauber, A. Asmi, D. V. Uytvanck, and S. Proll, “Identification of
reproducible subsets for data citation, sharing and re-use,” IEEE TCDL,
vol. 12, 2016.

R. Mayer, T. Miksa, and A. Rauber, “Ontologies for describing the con-
text of scientific experiment processes,” in 2014 IEEE 10th International
Conference on e-Science, vol. 1, Oct 2014, pp. 153-160.

E. Pebesma, W. Wagner, M. Schramm, (...), and P. Soille, “OpenEO -
a Common, Open Source Interface Between Earth Observation Data
Infrastructures and Front- End Applications,” 2017. [Online]. Available:
https://doi.org/10.5281/zenodo.1065474

F. O. Ostermann and C. Granell, “Advancing science with vgi: Repro-
ducibility and replicability of recent studies using vgi,” Transactions in
GIS, vol. 21, pp. 224-237, 2017.

Y. Gil, C. H. David, I. Demir, B. T. Essawy, R. W. Fulweiler, J. L.
Goodall, L. Karlstrom, H. Lee, H. J. Mills, J.-H. Oh, S. A. Pierce,
A. Pope, M. W. Tzeng, S. R. Villamizar, and X. Yu, “Toward the
geoscience paper of the future: Best practices for documenting and
sharing research from data to software to provenance,” Earth and
Space Science, vol. 3, no. 10, pp. 388—415, 2016. [Online]. Available:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015SEA000136
C. M. Zwlf, N. Moreau, and M.-L. Dubernet, “New model for
datasets citation and extraction reproducibility in vamdc,” Journal
of Molecular Spectroscopy, vol. 327, pp. 122 — 137, 2016, new
Visions of Spectroscopic Databases, Volume II. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022285216300613

B. H. Schubert C., “Handling continuous streams for meteorological
mapping,” in Lecture Notes in Geoinformation and Cartography, vol.
8628. Springer Verlag, 2019.

S. Prell, R. Mayer, and A. Rauber, “Data access and reproducibility in
privacy sensitive escience domains,” in 2015 IEEE 11th International
Conference on e-Science, Aug 2015, pp. 255-258.

T. Miksa and A. Rauber, “Using ontologies for verification
and validation of workflow-based experiments,” Journal of Web
Semantics, vol. 43, pp. 25 - 45, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570826817300112

P. Ivie and D. Thain, “Prune: A preserving run environment for
reproducible scientific computing,” in 2016 IEEE 12th International
Conference on e-Science (e-Science), Oct 2016, pp. 61-70.

M. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton,
A. Baak, N. Blomberg, J.-W. Boiten, L. O. Bonino da Silva Santos,
P. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, 1. Dillo,
O. Dumon, S. Edmunds, C. Evelo, R. Finkers, and B. Mons, “The
fair guiding principles for scientific data management and stewardship,”
Scientific Data, vol. 3, 03 2016.

M. Callegari, L. Carturan, C. Marin, C. Notarnicola, P. Rastner, R. Seppi,
and F. Zucca, “A pol-sar analysis for alpine glacier classification and
snowline altitude retrieval,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 9, no. 7, pp. 3106-3121,
2016.

S. Schlaffer, M. Chini, D. Dettmering, and W. Wagner, “Mapping
wetlands in zambia using seasonal backscatter signatures derived from
envisat asar time series,” Remote Sensing, vol. 8, no. 5, 2016. [Online].
Available: http://www.mdpi.com/2072-4292/8/5/402

S. Schlaffer, P. Matgen, M. Hollaus, and W. Wagner, “Flood detection
from multi-temporal sar data using harmonic analysis and change
detection,” International Journal of Applied Earth Observation and
Geoinformation, vol. 38, pp. 15 — 24, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0303243414002645
S. Schlaffer, M. Chini, L. Giustarini, and P. Matgen, “Probabilistic
mapping of flood-induced backscatter changes in sar time
series,” International Journal of Applied Earth Observation and
Geoinformation, vol. 56, pp. 77 — 87, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0303243416301994

F. Vuolo, M. tak, C. Pipitone, L. Zappa, H. Wenng, M. Immitzer,
M. Weiss, F. Baret, and C. Atzberger, “Data service platform for
sentinel-2 surface reflectance and value-added products: System use and
examples,” Remote Sensing, vol. 8, no. 11, 2016. [Online]. Available:
http://www.mdpi.com/2072-4292/8/11/938

D. B. Nguyen, A. Gruber, and W. Wagner, “Mapping rice extent
and cropping scheme in the mekong delta using sentinel-la data,”
Remote Sensing Letters, vol. 7, no. 12, pp. 1209-1218, 2016. [Online].
Available: https://doi.org/10.1080/2150704X.2016.1225172

B. Bauer-Marschallinger, V. Freeman, S. Cao, C. Paulik, S. Schaufler,
T. Stachl, S. Modanesi, C. Massari, L. Ciabatta, L. Brocca, and W. Wag-

38

[23]

[24]

ner, “Toward global soil moisture monitoring with sentinel-1: Harnessing
assets and overcoming obstacles,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 57, no. 1, pp. 520-539, 2019.

A. Dostlov, W. Wagner, M. Milenkovi, and M. Hollaus, “Annual
seasonality in sentinel-1 signal for forest mapping and forest
type classification,” International Journal of Remote Sensing,
vol. 39, mno. 21, pp. 7738-7760, 2018. [Online]. Available:
https://doi.org/10.1080/01431161.2018.1479788

B. Bauer-Marschallinger, C. Paulik, S. Hochstger, T. Mistelbauer,
S. Modanesi, L. Ciabatta, C. Massari, L. Brocca, and W. Wagner, “Soil
moisture from fusion of scatterometer and sar: Closing the scale gap
with temporal filtering,” Remote Sensing, vol. 10, no. 7, 2018. [Online].
Available: http://www.mdpi.com/2072-4292/10/7/1030

