
Data identification and process monitoring for
reproducible earth observation research

Bernhard Gößwein
TU Wien

Vienna, Austria

Tomasz Miksa
TU Wien & SBA Research

Vienna, Austria

Andreas Rauber
TU Wien

Vienna, Austria

Wolfgang Wagner
TU Wien

Vienna, Austria

Abstract—Earth observation researchers use specialised com-
puting services for satellite image processing offered by various
data backends. The source of data is often the same, for example
Sentinel-2 satellites operated by Copernicus, but the way how
data is pre-processed, corrected, updated, and later analysed may
differ among the backends. Backends often lack mechanisms for
data versioning, for example, data corrections are not tracked.
Furthermore, an evolving software stack used for data processing
remains a black box to researchers. Researchers have no means to
identify why executions of the same code deliver different results.
This hinders reproducibility of earth observation experiments. In
this paper, we present how infrastructure of existing earth obser-
vation data backends can be modified to support reproducibility.
The proposed extensions are based on recommendations of the
Research Data Alliance regarding data identification and the
VFramework for automated process provenance documentation.
We implemented these extensions at the Earth Observation Data
Centre, a partner in the openEO consortium. We evaluated
the solution on a variety of usage scenarios, providing also
performance and storage measures to evaluate the impact of
the modifications. The results indicate reproducibility can be
supported with minimal performance and storage overhead.

I. INTRODUCTION

Earth Observation (EO) data consists mostly of satellite

images. Similar to other eScience disciplines, data is too

big to be downloaded for local analysis. The solution is to

store it in high-performance computational backends, process

it there, and browse the results or download resulting figures

or numbers later [1]. Such an approach addresses performance

issues, but does not allow researchers to take full control

over the environment in which their experiments are executed.

The backends act as black boxes to outsiders with no pos-

sibility of getting information on environment configuration,

e.g. software libraries and their versions. Studies in different

domains show that the computational environment can have

impact on reproducibility of scientific experiments and must

be documented in order to ensure reproducibility [2] [3] [4].

Still the vast majority of backend providers do not share such

environment information.

Another problem deals with a precise identification of data

used for processing. EO backends in Europe usually obtain

data from the same source, for example from the services

and data bubs of the European Earth Observation (ESA)

Programme Copernicus. The ESA releases data updates and

corrections in cases when one of the instruments used for

observation was wrongly calibrated or broken and raw data

had to be processed again. This data is then distributed to

backend operators. Usually there is no versioning mechanism

for data. Researchers do not know which version of data was

used in their study, i.e. whether they were using a version

before or after some specific modifications. This leads to

the problem that scientists are not able to precisely identify

and cite the input data of their experiments, which hinders

reproducibility and in turn undermines trust in results. Both

the computational environment and the input data constitute

the context of an experiment. The Research Data Alliance

(RDA) has identified 14 general rules [5] for the identification

of data used in computation that allows to cite and retrieve

the precise subset and version of data that existed at a certain

point in time. The VFramework [4] and context model [6] were

proposed to automatically document environments in which

computational workflows execute and to enable their compar-

ison. The openEO project [7] works on creating a common

EO interface to enable interoperability of EO backends by

allowing researchers to run experiments on different backends

without reimplementing their code. By bringing these three

elements together a scientific infrastructure is created that al-

lows automatically documented and reproducible experiments

to be executed with minimal overhead to the infrastructure and

researchers performing their studies.

In this paper, we present this solution improving repro-

ducibility of EO experiments executed at openEO compliant

backends. We follow the RDA recommendations for data

identification and present how data provided by backends is

made identifiable by assigning identifiers to subset queries

made by researchers. We discuss which specific information

must be captured, which interfaces must be modified, and

which software components must be implemented. We also

show how jobs being executed at backends can be captured and

compared using the VFramework to determine whether any

differences in software dependencies among two executions

exist. We implemented our solution at the Earth Observation

Data Centre for Water Resources Monitoring (EODC), a 20

Petabyte storage infrastructure connected to the Vienna Scien-

tific Cluster1 HPC system. For the evaluation we simulated use

cases representing updates of data and changes in the backend

environment. We also measured the performance and storage

impact on the backend, which turned out to be minimal.

1http://vsc.ac.at/systems/vsc-3/

28

2019 15th International Conference on eScience (eScience)

978-1-7281-2451-3/19/$31.00 ©2019 IEEE
DOI 10.1109/eScience.2019.00011



The remainder of this paper is structured as follows: Section

II presents related work that is a basis of our solution and

provides earth observation context. Section III presents the

architecture of the proposed solution. Section IV focuses on

the implementation of the prototype at the EODC backend.

Section V presents methods offered to researchers enhancing

reproducibility. Section VI presents a typical EO workflow

using our implementation. Section VII describes the experi-

mental evaluation followed by conclusions in Section VIII.

II. RELATED WORK

A. Reproducibility in geoscience

In [8] reproducibility of scientific papers in geoscience is

tested by analysing more than 400 papers. Authors conclude

that only for half of the analysed publications identical re-

sults can be achieved. The solution described in this paper

facilitates the assessment of experiments’ reproducibility by

precisely identifying input data used in computation, as well

as automatically documenting the execution environment.

Geoscience Papers of the Future (GPF) [9] is an initiative

to encourage geoscientists to publish papers together with the

associated digital products of their research. This means that

a paper would include:

1) documentation of datasets, including descriptions,

unique identifiers, and availability in public repositories;

2) documentation of software, including pre-processing of

data and visualization steps, described with data unique

identifiers and pointers to public code repositories;

3) documentation of the provenance and workflow for each

figure or result.

Our solution aids in providing information requested above

by precisely identifying datasets and software (including ver-

sion and libraries) used by backends to compute results. This

information is collected automatically and can be accessed

by users any time using the same API as they use for the

implementation of their experiments.

B. Recommendations for data identification

The Research Data Alliance (RDA)2 is an international body

issuing recommendations to help remove barriers in data shar-

ing. Recommendations are based on a community consensus

elaborated within working groups. The Data Citation working

group3 has identified 14 rules [5] for identification of data

used in computation that allows to:

• identify and cite arbitrary views of data, from a sin-

gle record to an entire data set in a precise, machine-

actionable manner,

• cite and retrieve that data as it existed at a certain point

in time, whether the database is static or highly dynamic.

The rules are independent of the implementation technology

and require that:

• data is stored in a versioned and timestamped manner,

2https://rd-alliance.org
3https://rd-alliance.org/groups/data-citation-wg.html

• data is identified by persistent identifiers (PIDs) assigned

to timestamped queries that can be re-executed against

the timestamped data store.

The recommendations provide a generic set of rules inde-

pendent of an application domain. So far they have been

implemented in settings ranging from atomic and molecular

data [10], climate change [11] to health policy planning [12].

We use them also in our solution to make data provided by

backends identifiable, by assigning PIDs to queries identifying

the subsest of data selected by researchers for their analyses.

C. Process execution monitoring

The solution described in this paper follows the VFrame-

work [4] that can verify and validate workflow re-executions.

It allows to identify whether any differences in software de-

pendencies among two executions of the same workflow exist.

The VFramework uses the context model [6] to document

the environment and thus enables a comparison of workflow

executions without having to access both environments at

the same time. We compare context models of workflow

executions (experiments submitted to run on backends) to

verify whether the workflow re-execution was obtained in

a compliant way [13]. Figure 1 gives an overview of the

framework. Context includes not only high level description

of workflow steps and services, but also technical details on

infrastructure, including software and data.

Fig. 1: VFramework: Framework for verification and valida-

tion of re-executed workflows [13].

The importance of preserving software dependencies to en-

able reproducibility of scientific computing was highlighted in

[14]. Similar to the context model, authors propose to capture

software dependencies and provenance of process executions.

They introduce the PRUNE environment that automates this

process and hides its complexity from researchers, but requires

them to change their existing processing pipelines. In our

solution we extend the existing backend infrastructure to add

reproducibility supporting functionality and elaborate client

side interfaces to provide additional functionality. Thus, we

do not change the way how researchers work, but introduce

modifications for existing environments to improve the repro-

ducibility of experiments.

D. Earth observation and openEO

EO data is too big to be downloaded locally for analysis.

The solution is to store this data in computational backends,

process it there, and browse the results or download resulting

29



figures or numbers later. Fig. 2 presents a typical usage

scenario in which an earth observation scientist uses a backend

for processing data in an experiment (hereinafter referred to

as ”job”).

Fig. 2: Typical workflow of an experiment execution on an

EO backend.

The European Commission Horizon 2020 project openEO

[7] works on creating a unified earth observation backend

interface that decouples clients from backends, so that code

written for one backend can be executed on other backends as

well. As a result, researchers can switch between different

backends, without having to re-implement their code. To

describe jobs and input data openEO uses process graphs. They

are defined as JSON objects, that have a tree-like structure to

define the processes that are submitted by the client to the

backend for processing.
Fig. 3 shows an example process graph. In the center of the

figure the process get collection can be seen, which defines

the satellite data that is used. It functions as the input for the

filter processes filter bbox and filter daterange, which define

the temporal and spatial extent. The two outermost processes

NDVI (Normalized Difference Vegetation Index) and min time
(Taking the minimum value of each pixel of the resulting

timeseries) are then applied to the filtered data [7].
The tendency to make experiments FAIR [15] fits with

openEO, since it creates trust and makes the experiments

reuseable. In this paper we describe how we extended the

openEO specification and propose how our solution can be

implemented at an openEO compliant backend, i.e. EODC

backend. Thus, we provide a general solution that can be

adopted by other backends compliant to the openEO standard.

Fig. 3: Example process graph according to the openEO core

API version 0.3.1.

III. ARCHITECTURE

In this section we describe the architecture of our solution,

i.e. components that must be added to the openEO compliant

backends to support data identification and process execution

capturing.

The architecture of openEO has 3 major elements:

• core API – Application Programming Interface which

specifies a common set of methods exposed by backends.

• EO clients – client modules written in different pro-

gramming languages (e.g. Python, R, Java) that allow

researchers to define their processes and execute them

on selected backends.

• backend drivers – software modules implementing the

functionality described by the core API that are deployed

at backends. They act as endpoints to which EO clients

connect.

Our solution adds methods to the EO clients and core API.

It also requires an implementation of additional functionalities

by the backend. Fig. 4 shows a simplified model of a backend –

client communication. White represents existing components.

Green depicts new components added by us to an existing

backend.

A scientist defines an experiment by using a Client appli-

cation. It creates a process graph and transmits it to a selected

backend, where a new job is created. The Client is then used

to start the execution of the job and to retrieve results (cf. Fig.

2).

The Data Query component gets filter arguments of the

process graph and translates them into an internally used data

query language. It executes the query and forwards received

data to the Process Execution component. The Query Handler
receives the query and its resulting data.

30



Fig. 4: Overview of the extensions to the backend.

The Process Execution component receives a process graph

from the Client application and an input data from the Data
Query component and executes the job. It provides the results

to the Result Handling component and provides job environ-

ment data for the Job Capturing component.

The Result Handling component receives results from the

Process Execution component and persists all data about the

job and its result, so that the Result Handler component can

use it. In the meantime it sends results back to the Client
application. The final data is available for a few days, then

the backend erases it. The Query Handler component offers

data identification for the backend. It receives the query and

its result from the Data Query component. It checks if there is

already a persistent identifier (PID, e.g. a DOI or URI) for the

given query and query result combination. If so, it returns the

existing query PID, otherwise a new PID is generated and the

query is stored. It adds the query PID to the Context Model as

persistent input data identifier. Other than the Result Handler
component, the Query Handler manages to have no duplicates

for a query PID, whereas the Result Handler just creates a

checksum of results to make it comparable. Therefore, the

same input data leads to the same query PID, hence we use

the term data PID subsequently.

The Job Capturing component is responsible for identifying

code (version) and its components used at the backend. It

assigns a PID to code used for processing, which is a result

of translation of the submitted process graph into a code

natively supported by the backend. Additionally, the compo-

nent captures data about the environment in which the job is

executed. The data consists of static and dynamic information.

Static information contains environment information that is

independent of the job definition. Dynamic information is

dependent on the job definition and is collected at runtime.

The following static backend data is collected:

1) Backend version
The version of the backend is used to identify a certain

backend configuration. The configuration contains the

environment information of the backend e.g. docker con-

tainer description files and the executed code inside of

the docker container. It has to be unique and different on

every change of the backend configuration. The backend

version is needed to identify the state of the backend and

therefore the environment of the job execution.

2) Code identification
Identifier of the code deployed at the backend. It is

needed to identify the code used for the execution of

the jobs.

3) API version
Version of openEO API supported by the backend. A

different API version may lead to different results of

job executions and is therefore part of the environment

information.

4) Publication timestamp
Timestamp since when the backend version is in place,

so that the active backend version of a specific time can

be resolved.

The following dynamic data as given below must be cap-

tured:

1) Input data persistent identifier
This element is the output of the Query Handler com-

ponent, the persistent identifier of the used query. The

query represents the input data of the job execution. By

re-executing the same query, the original input data of

the job can be recreated. It is needed to identify the input

data of the job.

2) Backend version of the execution
The version of the backend during the execution of the

job. Connects the dynamic job context model with the

static backend environment. This information is needed

to be able to reconstruct the active backend version

during the job execution.

3) Programming language
Programming language and version used by the job

execution. It gives the scientist transparency about the

execution environment.

4) Dependencies of the programming language
Dependencies of the programming language used in a

job execution (e.g. Python modules), which allow us

to track the impact of the software environment on job

results.

5) Result checksum
Instead of storing the whole result data, a result check-
sum (e.g. hash) is introduced. It describes the job results,

so that a different result can be identified by comparing

31



the checksum to results of other job executions.

The Result Handler component has the responsibility for

creating hashes of computation results which are later used

to validate whether two executions had the same result. The

data created by an EO backend might be too big to store

completely.

The Context Model is used to persist static and dynamic in-

formation collected on the environment and the job execution.

The Context Model has to be integrated into the database of

the backend. Therefore, we recommend to use data formats

that are already used by the backend. The elements of the

context model are static in size (see Section VII-D), hence a

relational database is sufficient.

IV. IMPLEMENTATION

In this section, we describe the prototype implementation at

the EODC backend. The backend is implemented in Python.

The service is hosted using OpenShift4 and Docker technology.

We give an overview of the components as well as the resulting

context model. Fig. 2 shows the general workflow of a job

execution at an EO backend.

A. Query Handler - Component

We implemented the Query Handler as an additional com-

ponent that gets executed after the input data query execution.

Fig. 5 gives an overview of the structure of the Query Handler
implementation. The internal query language of the backend

is CSW5, which uses XML queries. The centerpiece of the

RDA recommendations is the implementation of a query store,

which is responsible for storing the data needed to make

queries comparable and to re-execute them in the same manner

as the original execution. Queries in the query store have to

be comparable, identifiable and persistent. The execution data

at EODC is persisted in a relational database (PostgreSQL).

To create the query store, we added a query table and a junk

table to enable a many-to-many connection between the query

table and the job table.

The following list summarizes the entries of the Query
Table:

1) Query PID
The recommendation R8 of the RDA requires to create

a unique persistent identifier for each query record.

We generate the persistent identifier using the Python

library uuid6. EODC is using it to generate unique job

identifiers, so we use it also for the query PID.

2) Dataset PID
The dataset PID is the identifier of the satellite product

at EODC used in the process graph and according to R3

of the RDA recommendations added to the query record.

3) Original Query
The original query [recommendation R3] is the XML

query following the CSW standard, executed by the

EODC backend.

4https://www.openshift.com/
5http://cite.opengeospatial.org/pub/cite/files/edu/cat/text/main.html
6https://docs.python.org/3/library/uuid.html

Fig. 5: Overview of the Query Handler implementation at the

backend.

4) Unique Query
The unique query [recommendation R4] is the restruc-

tured query that is comparable to other unique queries.

The EODC backend parses the filter arguments into a

JSON object. Since the order of the filters makes no

difference in the outcome of the query execution, we

alphabetically sort the elements of the original query by

the JSON keys to generate the unique query.

5) Unique Query Hash
We create the unique query hash [recommendation R3],

by applying the SHA-256 hash function (using the

Python module ”hashlib”) on the unique query as input,

after removing characters that are irrelevant.

6) Result Hash
The result of the query is a list of alphabetically sorted

files. We create the result hash [recommendation R6]

by the calculation of the SHA-256 hash function of the

result file list, after irrelevant characters are removed.

7) Execution Timestamp
The execution timestamp [recommendation R7] is taken

from the Query Execution component of the EODC

backend.

8) Additional Data
There is an additional data column in the Query Table
to give EODC the opportunity to store additional data

about a query. The column is defined as a JSON object.

We added the number of result files to the ”meta data”

column.

Example: ”{ ”number of files”: 10}”

The Query Handler takes the input data of the EODC query

execution and adds the input data PID to the job context model.

For every executed job the Query Handler has to check if there

is already a query with the same combination of unique query

hash and result hash. If the combination exists, it adds the

32



existing query PID (aka data PID) to the context model, else

it creates a new query entry and adds the new query PID to

the context model.

B. Result Handler - Component

We implemented the Result Handler as an additional Python

component of the backend, which is executed after the execu-

tion of a job finished. In the version 0.3.1 of the openEO

API the output of the job execution is limited to a single

output image. We implemented the result checksum by using

the SHA-256 hash function on the resulting output file.

C. Job Capturing - Component

Fig. 6 gives an overview of the added components to capture

the environment of an executed job. The job capturing is

separated in static and dynamic data. Therefore, the static data

of the backend versioning has to be introduced to the backend,

and is described in the following list:

1) Backend version and code identification
We use the GitHub repository of the backend7 as ver-

sioning tool for the backend. The latest commit identifier

of the master branch is the current version of the back-

end. Past versions are identifyable, either by the commit

identifier or by timestamp. Other backends might use

different version-control systems for this purpose.

2) API version
EODC manually updates the core API version in the

GitHub repository.

3) Publication timestamp
The publication timestamp of a backend version is

defined by the GitHub commit timestamp.

The dynamic job capturing during the job execution is

done by adding logging messages to transfer the needed data

from the Process Execution component to the Job Capturing
component. The captured elements are described in the next

section.

D. Context Model - Data Record

Each executed job creates a context model. We store the

context model in an additional column of the job table in the

format of a JSON object. The following list shows the data

stored in the context model:

1) Input data persistent identifier
The source input data identifier is the PID of the query

provided by the EODC query store described in Section

IV-A.

2) Backend version
To identify the version of the backend during the exe-

cution of the job, the commit identifier of the backend

during the execution is persisted in the context model.

3) Programming language and dependencies of the
programming language
The Process Execution module uses the installed Python

module pip to list all installed packages with their

7https://github.com/Open-EO/openeo-openshift-driver

Fig. 6: Overview of the implementation components used by

the Job Capturing component.

versions. The Job Capturing component uses the tool

to capture the installed Python modules and the Python

version.

4) Result checksum
The result checksum is the output of the Result Handler
component described in Section IV-B.

V. USER SERVICES

We extended the core API (version 0.3.1) of openEO, so

that we were able to implement our concept at the backend.

To make the internal extensions of the backend available for

the users, we defined user services into the core API. The new

endpoints are added to the openEO Python client as well as to

the backend driver. These extensions and their implementation

are described as below:

1) Backend Version
We added a new end point to the core API to give

the user the opportunity to retrieve the current and past

backend versions. The new endpoint is a request called

GET /version/<timestamp> and no authentication is

needed to access it. The response of the version endpoint

is the whole job independent provenance information of

the backend. It gives the scientist the opportunity to get

environment information of the current backend version

and from past versions.

2) Detailed Job Information
In the openEO core API there is an endpoint to get

detailed information about the job status. The endpoint

path is GET /jobs/<job id>, which only contains the

execution state of the job and the job id. We add

the whole context model of the job to this endpoint

in the implementation to provide scientists with the

environment information and the input data PID of the

job execution.

33



3) Data Identifier Landing Page
We implemented the landing page of the data PID into

an additional endpoint of the openEO core API. We

introduce the ”GET /data/<data-pid>” endpoint, which

returns a description of the data type and the resolvable

data PID. The landing page contains a link to another

page with the file list after a query re-execution (”GET

/data/<data-pid>/result” endpoint). If the result file list

differs from the original execution, there is a list of the

files that differ, otherwise it states that the file list is

equal to the original execution. This helps scientists to

reconstruct the input data used by a cited data PID.

4) Re-use of Input Data
We extended the process graph definition of the ope-

nEO core API, by adding an additional filter argument

(”data pid”) to the ”get collection” process. If a process

graph uses the input data PID, the backend automatically

applies the queries like in the original execution. As a

result, the user is able to make additional experiments on

the same data without additional effort and is informed

if the data changed at the backend.

5) Comparing two Jobs
We have implemented a function at the Python client to

compare two jobs, by comparing the context models of

the jobs. For every item in the context models, the term

“EQUAL”, if the items are the same in both context

models, the difference if the items are not the same

in both context models, or “MISSING” if the item is

missing in one of the context models. Researchers can

compare experiments to see how they were executed and

to be able to explain different outcomes.

VI. USE CASES

This section provides an example on how a typical EO

workflow is executed using our implementation.

1) Researcher A runs job A at the backend.
Listing 1 shows the code to run a job at the backend.

First we establish the connection to the backend, then the

process graph gets created, by choosing the processes

and arguments. Furthermore the job gets created and

executed.
con = openeo.connect(backend_url)
# Choose dataset and filter operations
processes = con.get_processes()
pgA = processes.get_collection(

name="s2a_prd_msil1c")
pgA = processes.filter_daterange(pgA,

extent=["2017-05-01",
"2017-05-31"])

pgA = processes.filter_bbox(pgA,
west=10.288696, south=45.935871,
east=12.189331, north=46.905246,
crs="EPSG:4326")

# Choose processes
pgA = processes.ndvi(pgA, nir="B08", red="B04")
pgA = processes.min_time(pgA)
# Create and start job A out of the
# process graph A (pgA)
jobA = con.create_job(pgA.graph)
jobA.start_job()

Listing 1: Researcher initializes and runs jobA.

2) Researcher A retrieves the used input data PID of
job A.
Researcher A wants to receive the used data PID, so

that he can cite the input data of the experiment in the

resulting paper. Listing 2 shows the code to retrieve the

query pidA of jobA.
# Get data PID of jobA
# e.g. qu-a3bbe4a0-a875-4687-bb78-9457f33134a9
pidA = jobA.get_data_pid()

Listing 2: Researcher A retrieves the persistent input

data identifier to cite.

3) Researcher A retrieves the experiment environment
identifier.
Researcher A wants to get the environment identifier, so

that he can cite the used environment of the experiment.

Listing 3 shows the code to retrieve the backend version

used when jobA was executed.
# Get backend version of jobA
# e.g. 1a0cefd25c2a0fbb64a78cd9445c3c9314eaeb5b
versionA = jobA.get_backend_version()

Listing 3: Researcher A retrieves the backend version

used by the execution of jobA.

4) Researcher B uses the same input data, by applying
the data PID of job A for job B.
Researcher B is a reviewer and wants to check the

experiment of researcher A by running the same process

graph on the same input data of job A. Listing 4 shows

how researcher B can use the same input data PID as

researcher A with jobA. The backend re-executes the

query of pidA with the timestamp stored in the query

store of the solution backend. The updated file has a

creation timestamp after the query timestamp and is not

in the query result of pidA. Therefore, the input data of

job B is the same as the input data of job A.
# Take input data of job A by using
# the input data PID A
# to execute jobB.
pgB = processes.get_data_by_pid(data_pid=pidA)
# Choose processes
pgB = processes.ndvi(pgB, nir="B08", red="B04")
pgB = processes.min_time(pgB)
# Create and start Job B
jobB = con.create_job(pgB.graph)
jobB.start_job()
# get pidB of job B and compare it with pidA
pidB = jobB.get_data_pid()
(pidA == pidB) # Returns True
diffAB = jobA.diff(jobB)

Listing 4: Create jobB, which uses the input data iden-

tified by pidA.

Researcher B wants to be sure that the environment

of his replication is the same as the environment of

the analysis of researcher A. The last line of Listing

4 stores the difference between job A and job B into

diffAB. The content of the dictionary is a comparison of

every key of the job context models with each other

and can be viewed in Listing 5. It shows that two

independent researchers ran the same experiment using

34



TABLE I: Query Table in the beginning of the test case

execution.

Query pidA
Column Value
query pid qu-a3bbe4a0-a875-4687-bb78-9457f33134a9

dataset pid s2a prd msil1c
original <csw:Query. . .

normalized {’extend’: {’crs’:. . .
norm hash 0917c7a21cec960b8a66. . .
result hash abf43f519007050cbaeb59a067a2226d6. . .
updated at 2019-03-31 17:36:44.613893
meta data {’result files’: 51}
created at 2019-03-31 17:36:43.064445

identical environments. Hence, we can conclude that

experiment was replicable.
{'input_data': 'EQUAL','output_data': 'EQUAL',
'process_graph': 'EQUAL','openeo_api': 'EQUAL',
'interpreter': 'EQUAL', 'code_env': 'EQUAL',
'different':
{'back_end_timestamp':'20190417194702.496810',
'job_id': 'jb-b92c688c-7fdc-4126...',
'start_time': '2019-04-17 19:47:02.496810',
'end_time': '2019-04-17 19:47:03.258261'}}

Listing 5: Content of the job comparison diffAB.

VII. EVALUATION

The evaluation is two part: first we simulate different sce-

narios to test if the proposed solution detects typical changes

in data and the software environment. Second, we evaluate

the performance and storage impact of the solution on the

EODC backend. The Python client, the solution backend and

the code for the evaluation is available and further described

on GitHub8.

A. Evaluation Setup

In the evaluation we used a test environment that ran on

a local machine which is identical to production environment

of the EODC. The difference is in the performance of the

hardware. Since the data querying service of EODC is publicly

available, we used the actual data that EODC provides for

openEO users to test the data identification part of the solution.

Changes on the data (like removed files or updated files) are

simulated by changing the output of the query directly after

execution in the test environment.

B. Data Updates

In this section we evaluate the behavior of the solution on

data updates at EODC. In the beginning of each test case there

is one job entry and one query entry in the database. Table I

shows the content of the Query Table of the database.

1) Test Case 1: Is it possible to re-execute a query after a
file is updated?: If a file is updated at the EODC backend,

the new file gets a different file name than the original one

and the creation timestamp is updated. If a new job is executed

using the same process graph as the first job, the resulting files

are different than in the original execution. Table II shows

the Query Table after the second job execution. In Table II

8https://github.com/bgoesswein/dataid openeo

TABLE II: Query Table after the execution of the second job.

Important elements are highlighted blue if they are the same

and red if they are different.

Query pidA (full entry in Table I)
Column Value
query pid qu-a3bbe4a0-a875-4687-bb78-9457f33134a9

norm hash 0917c7a21cec960b8a66. . .
result hash abf43f519007050cbaeb59a067a2226d6. . .
meta data {’result files’: 51}

Query pidB
Column Value
query pid qu-23f5a313-e804-4faa-aa33-60ed1ac69e2d

dataset pid s2a prd msil1c
norm hash 0917c7a21cec960b8a66. . .
result hash 28088d113de19ce037e9651. . .
updated at 2019-03-31 18:01:49.214956
meta data {’result files’: 51}
created at 2019-03-31 18:01:47.695042

the important differences are marked red. There is a different

result hash, since the new job uses the updated file instead

of the original one. The normalized query is still the same,

but since the result of the query changed a new data PID is

generated. Next, we executed a third job, which is the same as

the second, but uses the input data PID of the first job (pidA)

(see Listing 4). The execution timestamp is part of the query

in pidA and the third job executes the original query of the

first job. Therefore, it uses the same data PID as the first job.

2) Test Case 2: Is it possible to re-execute a query after a
file is updated with the original one deleted?: This test case

shows how the solution behaves if a file is updated, but the

original file is deleted at the same time. The re-execution of

the query pidA results in a file list without the deleted file.

Since files are filtered out by the query using the execution

time-stamp, the new file does not appear in the result file list. If

the re-execution results not in the same file list, the response

of the backend contains a ”state” attribute, which contains

the replaced files. The backend returns the most recent file

version, even if there are versions between the original and

the most recent file available. Users can see the alternatives

for the original file, but not the missing original file. This is

because the full file list is not persisted in the query store,

but the number of result files. We made the decision of not

storing the complete file list, because of the deletion policy

of the backend provider, which do not delete files without

replacing it with an updated version.

If the researcher runs a second job with pidA as input data, he

gets a warning message that the query result is different from

the original execution.

3) Test Case 3: Is it possible to re-execute a query after a
data file is deleted?: The deletion of a file without a new file

replacing it, is not within the policies of EODC, since they

would restrict their range on available data. If this happens

nevertheless, there is when using the solution proposed by this

paper no possibility to get the exact files that were removed.

35



4) Test Case 4: Is it possible to recreate an older version
of the backend?: The aim of the implementation is to capture

enough data to make it possible to re-run the same job.

The backend is created directly by its GitHub repository. To

recreate an old version of the backend, the GitHub repository

URL and the commit identifier of the original set up is

needed. The timestamp of the job execution is persisted in

the context model of the original job execution. The original

GitHub repository and commit can be resolved by the backend

provenance. Unfortunately, in the current solution there is no

automatic way of setting a version of the EODC backend. If

an older version of the backend has to be activated, the EODC

needs to be contacted and asked to load a new instance of the

backend with the old version in place.

C. Performance and Storage impact

This section evaluates the performance and storage impact

of the implementation on the backend. To achieve this, we

define 18 test cases with input process graphs derived from 9

publications ([16][17][18][19][20][21][22][23][24]) that used

data provided by EODC from the last two years. Every input

process graph is executed 50 times and after each iteration

the duration and the used storage size is captured. After each

execution the backend gets cleaned up, so that every iteration

happens in the same backend conditions. The elements of the

Query Handler component, the Job Capturing component and

the Result Handler component are measured.

The Query Handler component is responsible of creating a

new query entry in the query table. Therefore, it generates

the hash of the query result, normalized query and the hash

value of it, the number of input files, the dataset PID and the

original query. The hash over the query result has a complexity

of O(n), where n is the size of the query result. Hence, the

performance of the query result hash calculation is dependent

on the size of the query result and for the test cases it is visual-

ized in Fig. 8. The duration of the other elements of the Query
Handler are independent of the amount of processes defined in

the job or the size of the input data. Therefore, the calculations

of these elements are constant in duration throughout the test

case executions and are visualized in Fig. 7. The test cases

are sorted in ascending order by the size of the query result.

The standard deviation of the elements (normalized: 19.35μs,

norm hash: 5.89μs, file number: 3.98μs, dataset pid: 2.50μs

and orig query: 5.34μs) over all test cases is minimal. It shows

that the duration of the calculation for these elements are not

dependent on the size of the query result.

The performance of the Job Capturing component is in-

dependent on the job complexity, except for the result hash

provided by the Result Handler component, which is depend-

ing on the size of the result image of the job. Fig. 9 shows

the duration of the result hash calculation. The duration of the

result hash calculation is direct proportional to the result size

of the job execution. This is due to the complexity of the hash

function of O(n), where n is the size of the result file.

We summarize the performance of the implementation by

the mean value of all constant elements of the test case

Fig. 7: Duration of the constant Query Handler elements of

the test cases executions sorted by query result size. Time of

the normalized query calculations are blue, time of hashing

the normalized queries are red. Yellow bars show the time of

calculating the number of result files, whereas green bars the

time of fetching dataset identifiers. Storing and fetching the

original queries are brown bars.

Fig. 8: Execution duration of the result hash by running the

test cases, sorted by query result size in ascending order.

executions. The result is an average of about 20 ms plus the

additional time of the result hash of both the Query Handler
and Result Handler. This results in an execution time range

between 20ms and 170ms per job execution. Compared to

the estimated computation time of the test cases between 10

seconds and 20 minutes at the production version of the EODC

backend, we conclude that the impact of the Query Handler
is negligible.

The storage impact of the solution is constant per job

execution. The solution added a query table and a column at

the job table to the EODC backend. Both have only elements

of fixed size. If a job execution creates a new query entry,

the additional storage needed is 2.677 kB. If the job execution

uses an already existent input data PID, only the context model

needs an additional storage of 1.043 kB. We conclude that the

additional needed storage is insignificant due to the size of the

storage infrastructure of EODC.

36



Fig. 9: Execution duration of the Result Handler component

by running the test cases, sorted by job result size in ascending

order.

D. Evaluation Summary

The evaluation showed how the implementation on the

EODC backend tackles the issues of reproducibility in the

earth observation sciences. The data identification implemen-

tation is tested against special test cases regarding data updates

and data deletions. The evaluation shows that the solution

can re-execute queries properly by returning old versions of

updated files. The test cases underline that the usage of the

data PID as input data of a new job is superior to the current

way of re-executing a job with the same process graph. That’s

because the process graph does not have the original execution

timestamp and therefore does not use the same input data

after an update occurs. In the evaluation of deleted data at the

backend, the solution happens to be not capable of showing

the exact missing files, since not the whole file list result of

the query is persisted. We decided to tolerate this drawback,

because there is no precedent at EODC that a deletion occurred

at the backend before. The test case on job capturing conveyed

that the solution is capable of identifying the backend version

and therefore, the environment of the job execution. Still,

to run a new job on the same environment, EODC has to

manually provide it. We evaluated performance and storage

impact on the backend by running 18 test cases derived from

past publications that used data from EODC. The results show

that, except for the result hashes, the calculation of the data

identification and the context model are independent from the

complexity of the job. The time of the result hashing used for

the data identification is dependent on the size of the query

result and the result hash of the context model is dependent

on the size of the output file of the job execution. Impact of

our solution on the performance of the test case executions

is between 20ms and 170ms. Compared to the estimated

computation time of the test cases between 10 seconds and

20 minutes at the production version of the EODC backend,

we conclude that the impact of our solution is negligible. The

space needed in addition per job is constant and also minimal

compared to the size of data kept at the backend.

VIII. CONCLUSION AND FUTURE WORK

In this paper we dealt with the problem of lack of repro-

ducibility of many EO experiments executed using specialised

computing backends. Considered scenarios and problems can

be observed in other e-Science disciplines as well.

We presented how infrastructure of existing backends can be

modified to support precise data identification by following the

Research Data Alliance recommendations. We described how

jobs can be captured and compared using the VFramework

to identify whether any differences in computational environ-

ments exist. The proposed solution was implemented at Earth

Observation Data Centre in Vienna which is a member of

the openEO consortium that develops a common interface for

interoperability of EO backends. The implementation involved

extending the backend to add reproducibility supporting func-

tionality, as well as, extending client side interfaces to provide

additional functionality. Thus, we did not change the way

researchers work, but introduced changes to existing envi-

ronments to improve reproducibility of experiments executed

using them.

To evaluate our solution, we simulated use cases represent-

ing updates of data and changes in the backend environment.

We also measured the performance and storage impact on the

backend. We conclude that the solution is capable of making

the input data, code and the environment identifiable and

reproducible. Impact on backend’s performance is minimal.

Future work will focus on implementing the solution on

further backend types, e.g. backends with non-file-based result

sets. The openEO project is an ongoing project, hence the

common API may evolve and our work will have to be adapted

to new releases of the API.

ACKNOWLEDGMENT

openEO - This project has received funding from the

European Unions Horizon 2020 research and innovation pro-

gramme under grant agreement No 776242.

The authors wish to thank the team of EODC, especially

Luca Foresta and Thomas Mistelbauer, for the support on

implementing the concept into the EODC backend.

REFERENCES

[1] M. Ramamurthy, “Geoscience cyberinfrastructure in the cloud: Data-
proximate computing to address big data and open science challenges,”
in 2017 IEEE 13th International Conference on e-Science (e-Science),
Oct 2017, pp. 444–445.

[2] E. H. B. M. Gronenschild, P. Habets, H. I. L. Jacobs, R. Mengelers,
N. Rozendaal, J. van Os, and M. Marcelis, “The effects of freesurfer
version, workstation type, and macintosh operating system version
on anatomical volume and cortical thickness measurements,” PLOS
ONE, vol. 7, no. 6, pp. 1–13, 06 2012. [Online]. Available:
https://doi.org/10.1371/journal.pone.0038234

[3] M. Konkol, C. Kray, and M. Pfeiffer, “Computational reproducibility in
geoscientific papers: Insights from a series of studies with geoscientists
and a reproduction study,” International Journal of Geographical
Information Science, vol. 33, no. 2, pp. 408–429, 2019. [Online].
Available: https://doi.org/10.1080/13658816.2018.1508687

[4] T. Miksa, A. Rauber, and E. Mina, “Identifying
impact of software dependencies on replicability of
biomedical workflows,” Journal of Biomedical Informatics,
vol. 64, pp. 232 – 254, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1532046416301484

37



[5] A. Rauber, A. Asmi, D. V. Uytvanck, and S. Pröll, “Identification of
reproducible subsets for data citation, sharing and re-use,” IEEE TCDL,
vol. 12, 2016.

[6] R. Mayer, T. Miksa, and A. Rauber, “Ontologies for describing the con-
text of scientific experiment processes,” in 2014 IEEE 10th International
Conference on e-Science, vol. 1, Oct 2014, pp. 153–160.

[7] E. Pebesma, W. Wagner, M. Schramm, (...), and P. Soille, “OpenEO -
a Common, Open Source Interface Between Earth Observation Data
Infrastructures and Front- End Applications,” 2017. [Online]. Available:
https://doi.org/10.5281/zenodo.1065474

[8] F. O. Ostermann and C. Granell, “Advancing science with vgi: Repro-
ducibility and replicability of recent studies using vgi,” Transactions in
GIS, vol. 21, pp. 224–237, 2017.

[9] Y. Gil, C. H. David, I. Demir, B. T. Essawy, R. W. Fulweiler, J. L.
Goodall, L. Karlstrom, H. Lee, H. J. Mills, J.-H. Oh, S. A. Pierce,
A. Pope, M. W. Tzeng, S. R. Villamizar, and X. Yu, “Toward the
geoscience paper of the future: Best practices for documenting and
sharing research from data to software to provenance,” Earth and
Space Science, vol. 3, no. 10, pp. 388–415, 2016. [Online]. Available:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015EA000136

[10] C. M. Zwlf, N. Moreau, and M.-L. Dubernet, “New model for
datasets citation and extraction reproducibility in vamdc,” Journal
of Molecular Spectroscopy, vol. 327, pp. 122 – 137, 2016, new
Visions of Spectroscopic Databases, Volume II. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022285216300613

[11] B. H. Schubert C., “Handling continuous streams for meteorological
mapping,” in Lecture Notes in Geoinformation and Cartography, vol.
8628. Springer Verlag, 2019.

[12] S. Prell, R. Mayer, and A. Rauber, “Data access and reproducibility in
privacy sensitive escience domains,” in 2015 IEEE 11th International
Conference on e-Science, Aug 2015, pp. 255–258.

[13] T. Miksa and A. Rauber, “Using ontologies for verification
and validation of workflow-based experiments,” Journal of Web
Semantics, vol. 43, pp. 25 – 45, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570826817300112

[14] P. Ivie and D. Thain, “Prune: A preserving run environment for
reproducible scientific computing,” in 2016 IEEE 12th International
Conference on e-Science (e-Science), Oct 2016, pp. 61–70.

[15] M. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton,
A. Baak, N. Blomberg, J.-W. Boiten, L. O. Bonino da Silva Santos,
P. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo,
O. Dumon, S. Edmunds, C. Evelo, R. Finkers, and B. Mons, “The
fair guiding principles for scientific data management and stewardship,”
Scientific Data, vol. 3, 03 2016.

[16] M. Callegari, L. Carturan, C. Marin, C. Notarnicola, P. Rastner, R. Seppi,
and F. Zucca, “A pol-sar analysis for alpine glacier classification and
snowline altitude retrieval,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 9, no. 7, pp. 3106–3121,
2016.

[17] S. Schlaffer, M. Chini, D. Dettmering, and W. Wagner, “Mapping
wetlands in zambia using seasonal backscatter signatures derived from
envisat asar time series,” Remote Sensing, vol. 8, no. 5, 2016. [Online].
Available: http://www.mdpi.com/2072-4292/8/5/402

[18] S. Schlaffer, P. Matgen, M. Hollaus, and W. Wagner, “Flood detection
from multi-temporal sar data using harmonic analysis and change
detection,” International Journal of Applied Earth Observation and
Geoinformation, vol. 38, pp. 15 – 24, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0303243414002645

[19] S. Schlaffer, M. Chini, L. Giustarini, and P. Matgen, “Probabilistic
mapping of flood-induced backscatter changes in sar time
series,” International Journal of Applied Earth Observation and
Geoinformation, vol. 56, pp. 77 – 87, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0303243416301994

[20] F. Vuolo, M. tak, C. Pipitone, L. Zappa, H. Wenng, M. Immitzer,
M. Weiss, F. Baret, and C. Atzberger, “Data service platform for
sentinel-2 surface reflectance and value-added products: System use and
examples,” Remote Sensing, vol. 8, no. 11, 2016. [Online]. Available:
http://www.mdpi.com/2072-4292/8/11/938

[21] D. B. Nguyen, A. Gruber, and W. Wagner, “Mapping rice extent
and cropping scheme in the mekong delta using sentinel-1a data,”
Remote Sensing Letters, vol. 7, no. 12, pp. 1209–1218, 2016. [Online].
Available: https://doi.org/10.1080/2150704X.2016.1225172

[22] B. Bauer-Marschallinger, V. Freeman, S. Cao, C. Paulik, S. Schaufler,
T. Stachl, S. Modanesi, C. Massari, L. Ciabatta, L. Brocca, and W. Wag-

ner, “Toward global soil moisture monitoring with sentinel-1: Harnessing
assets and overcoming obstacles,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 57, no. 1, pp. 520–539, 2019.

[23] A. Dostlov, W. Wagner, M. Milenkovi, and M. Hollaus, “Annual
seasonality in sentinel-1 signal for forest mapping and forest
type classification,” International Journal of Remote Sensing,
vol. 39, no. 21, pp. 7738–7760, 2018. [Online]. Available:
https://doi.org/10.1080/01431161.2018.1479788

[24] B. Bauer-Marschallinger, C. Paulik, S. Hochstger, T. Mistelbauer,
S. Modanesi, L. Ciabatta, C. Massari, L. Brocca, and W. Wagner, “Soil
moisture from fusion of scatterometer and sar: Closing the scale gap
with temporal filtering,” Remote Sensing, vol. 10, no. 7, 2018. [Online].
Available: http://www.mdpi.com/2072-4292/10/7/1030

38


