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Abstract—In this paper we discuss our efforts in “unlocking”
the Long Term Archive (LTA) of the LOFAR radio telescope.
This is a large (> 43 PB) archive that expands with about 7 PB
per year by the ingestion of new observations. It consists of
coarsely calibrated ”visibilities”, i.e. correlations between signals
from LOFAR stations. Currently, only a small fraction of the
LOFAR LTA consists of sky maps, which are needed for most
astronomical research. Unfortunately, creating such sky maps can
be challenging, due to the data sizes of the observations and the
complexity and compute requirements of the software involved.
We try to fix this by enabling a simple one-click-reduction of
LOFAR observations into sky maps for any user of this archive.
This work was performed as part of the PROCESS1 project,
which aims to provide generalizable open source solutions for
user friendly exascale data processing.

Index Terms—data dissemination, data aggregation, data min-
ing, data processing

I. INTRODUCTION

The LOw Frequency Array (LOFAR), which covers fre-

quencies between 10 and 250 MHz, is a European radio

telescope with 51 stations that became operational in 2010.

Its design differs from classical radio telescopes that consist

of arrays of dishes. Instead, LOFAR combines the signals

from 96 Low Band Antennas or 2× 24 High Band Antennas

(HBA field is split) into one station signal, similar to the

signal of a single dish from a classical radio telescope. For

imaging observations the station signals are correlated per

baseline - a pair of two stations - following the principles

of aperture synthesis; i.e. every pair of signals is multiplied

and integrated over the time sampling interval. This means

that a LOFAR imaging observation results in a large set of

such correlations - generally termed visibilities. A visibility is

recorded as a complex number for each baseline, frequency

and time sampling interval and polarization product.

The LOFAR LTA [1] was set up to store all LOFAR

observations. A typical LOFAR observation typically takes

8-12 hours and has a size of about 100 TB. Frequency

averaging of every eight channels reduces this size to about
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1https://process-project.eu

16 TB. Initial (coarse) calibration is also applied. The last

few years the LTA has been expanding by about 7 PB per

year and now (2019) it is exceeding 43 PB. These coarsely

calibrated and frequency averaged observations are sets of

visibilities that are generally not suitable as a starting point

for scientific research. In astronomy, one generally embarks

on a scientific investigation by inspecting sky maps. The

motive may be, for instance, the detection of an explosion

by a gamma-ray satellite at a particular position on the sky.

Understanding the nature of such an event often requires multi-

wavelength analysis. Consequently, astronomers will want to

find out what kind of object images from observations at

other wavelengths, like radio, show at this position on the

sky. This is where a repository with low frequency radio maps

covering a large part of the sky can provide a useful resource.

Unfortunately, sky maps are available only for a small fraction

of the LOFAR observations. This can be accommodated for by

offering ”one-click-processing” of observations: after selecting

an observation, an appropriate reduction pipeline and a set of

reduction parameters, acquiring a well calibrated sky map just

requires waiting for staging - copying from magnetic tape to

disk - and for processing to complete.

As mentioned above, the complex visibilities from the

correlator are seldom used as a starting point for astronom-

ical research. Instead, these data need to go through further

processing such as radio frequency interference removal, cal-

ibration and finally imaging. These images can then be used

as the beginnings of astronomical research. Each part of the

above processing is complex and usually requires both domain

and software knowledge in order to generate useful output.

This, combined with the massive volumes of the data, makes

the use of the LTA only possible for a select group of people.

Furthermore, these challenges are exacerbated when one needs

to process many observations. For this reason, researchers

interested in surveys, for instance, are building frameworks to

make LOFAR observation processing easy, portable, scalable

and generalisable [2].

A large part of this research was conducted from one the
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five use cases for PROCESS2. One of the goals of PROCESS

is to facilitate the use of the resulting platform by providing

a user-friendly frontend that lets the user select both her

dataset and workflow, launch the processing to the computing

infrastructures and, finally, either directly or indirectly, retrieve

the results from the frontend. For the particular case of LOFAR

data processing, such a tool already exists, although it needs to

be customised and extended; as part of the EU EOSC Pilot for

LOFAR project3, an astronomer-friendly frontend to LOFAR

LTA has been built.

A second goal of PROCESS is to offer exascale computing

services to a range of scientists that require big storage and

big compute facilities, in such a way that these users can

remain completely agnostic of the location and specifications

of the compute clusters where their data will be processed. In

Europe, we currently do not have any exaflop supercomputer.

This means that any form of processing requiring exascale

computing will have to be distributed over a number of

clusters in Europe. Such distributions over many clusters will

have to be performed seamlessly and all software packages

that run the computations will have to be containerized to

guarantee portability. So, in summary, scalability is a main

requirement for the PROCESS software infrastructure, not

only with respect to compute power, but also with respect

to data transfer.

One of the achievements of this project is to make workflow

processing possible on a few clusters connected to the LTA

- such as the clusters hosted by SURFsara4 - with high-

bandwidth network and accelerating some of the processing

steps by using parallel computing. This can be seen as vertical

scalability. One of the goals the project did not reach yet is

horizontal scalability. Indeed, PROCESS is designed to tackle

the extreme large data handling and processing challenges

introduced by exascale applications such as astronomical sur-

veys. The approach taken by PROCESS is to build tools and

services capable of supporting exascale applications by feder-

ating computing infrastructures from both HPC and Cloud.

II. IMPLEMENTATION AND RESULTS

A. Web Interface

The Web application (LTACAT) is a React application based

on FRBCAT5 developed in the AA-ALERT6 project. This

application is customised and extended to fit LOFAR LTA

needs. In the frontend, the main database view (Fig. 1) remains

mostly unchanged, but showing information about LOFAR

observations, instead of fast radio bursts (FRBs). The frontend

is however extended with a pipeline configurator and launcher.

The backend is rewritten to use the LTA database view,

which lets the application seamlessly access the observational

archived data. Next, the backend is further extended with a

RESTful [4] backend service developed using Django. The

2https://www.process-project.eu/projects/square-kilometre-array-lofar-ska/
3https://eoscpilot.eu/lofar-data
4https://userinfo.surfsara.nl/
5http://www.frbcat.org
6https://www.esciencecenter.nl/project/aa-alert

Fig. 1. Main database view.

Fig. 2. Prefactor listed as an available pipeline.

purpose of this service is to provide a window to the Web

application to integrate and execute pipelines, i.e. it provides

a list of available pipelines, provides configuration parame-

ters for selected pipelines, and allows for executing a user

configured pipeline for a selected observation. The pipeline

configurator (Fig. 3) in the Web application is automatically

rendered from the JSON schema7 that is provided by the

backend service. JSON schema was chosen as the format

for providing the pipeline configuration as it allows for,

among others, setting default values and constraints on inputs,

setting required properties, and defining dependencies between

properties.

By default the backend service comes bundled with a pre-

defined pipeline, but is easily extended. It allows users to

develop additional pipelines and integrate them in the Web

application. For this purpose a pipeline template is provided

in addition to a step-by-step guide on how to integrate new

pipelines into the service. The procedure consists of imple-

menting a run function, defining the pipeline configuration

parameters in JSON schema format, and registering the

7https://json-schema.org/
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Fig. 3. Pipeline configurator.

pipeline in the pipeline administrator of the service. After

installation of the new pipeline based on these steps, a new

pipeline appears in the list of available pipelines next to the

default one as illustrated in the image in Fig. 2. Here we added

the prefactor8 pipeline.

B. DDF pipeline

prefactor takes care of the first step in calibration, which

is direction independent. For science quality images, this has to

be followed by direction dependent calibration. This is caused

by the LOFAR station beam that covers a patch of the sky

so wide that ionospheric phase delays differ within that patch.

In order to take these effects into account the field of view is

often split in hundreds of directions and calibration solutions

are derived for each of these directions. A few calibration

packages are available that solve for multiple directions on

the sky, like factor9, SAGECal10, BBS11 and DPPP12,

but we chose killMS13 because it is part of a complete

imaging pipeline - the DDF-pipeline14 - that has proven

its robustness in the the reduction of petabytes of LOFAR data

as part of the LOFAR Two-metre Sky Survey [5]. The

core part of the DDF-pipeline is a self-calibration loop:

initial calibration solutions are used to produce a first map

of the sky. The sources in that map are subsequently used to

derive better calibration solutions, which are used to produce

a more accurate map, and so forth, see [6].

C. CWL & Xenon

To run the pipeline in a scalable manner we chose to

adopt the Common Workflow Language (CWL15) to describe

the pipeline and use xenon-flow16 to run it on compute

8https://www.astron.nl/citt/prefactor/
9https://github.com/lofar-astron/factor
10https://github.com/nlesc-dirac/sagecal
11https://support.astron.nl/LOFARImagingCookbook/bbs.html
12https://support.astron.nl/LOFARImagingCookbook/dppp.html
13https://github.com/saopicc/killMS
14https://github.com/mhardcastle/ddf-pipeline
15https://www.commonwl.org/v1.0/
16https://github.com/xenon-middleware/xenon-flow

Fig. 4. Prefactor CWL workflow.

infrastructure. Xenon-flow is a RESTful Web service that

executes CWL workflows on compute infrastructure using the

Xenon [3] middleware and a CWL runner. It runs as a server

in the background and waits for requests from clients.

As Xenon-flow runs CWL workflows, a CWL file describing

the pipeline has been created. The implemented pipeline

currently consists of three main components: a calibrator17

calibration, the target calibration and the imaging of the direc-

tion independent calibrated data. Each component is described

in its own CWL file as a workflow step and wrapped in

a container to ensure its cross platform compatibility. As

the steps are dependent on each others output we parse the

standard output of each of these steps for specific string values

and have xenon-flow return the concatenation of these as final

output status for the workflow. This leads to three more steps

in the CWL workflow, each parsing the standard output of the

previous main steps, the full DAG is shown in Fig. 4.

After clicking the “Submit Workflow” button, a HTTP

POST request containing all required information for the

pipeline is sent to xenon-flow server. Upon reception of

the request, xenon-flow will start running the workflow. The

configuration of xenon-flow will determine where and how the

processes corresponding to the steps will be executed. In our

case, xenon-flow is configured to run jobs on the Netherlands

ASCI DAS518 cluster located at the VU university using

the CWL reference implementation cwl-runner. Since we are

targeting an HPC compute cluster we use Singularity [7]

as the container platform.

Upon completion, the concatenated string output is available

in xenon-flow and is parsed. Following successful completion,

FITS images produced by the imaging step are available

on DAS5, from where they are retrieved using the Python

Fabric module directly into the Django application directory

structure. Once on the local machine, these FITS images are

converted into JPEG images for visualisation in the browser

using the Python APLpy module.

An example of images obtained through the developed

pipeline is shown in Fig. 5.

17Radio source with known properties.
18https://www.cs.vu.nl/das5/
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Fig. 5. Images of the patch of the sky covered by the processed data. On
the left, the uncalibrated data and on the right the DI-calibrated data. DD
calibration will further improve the quality of the image.

D. Data Services

The data infrastructure needed to unlock the LOFAR LTA

has to be scalable, reliable, and easy to be installed and

integrated which commonly uses data stack solutions by

the scientific research community. The approach proposed to

manage the data of the LOFAR LTA that can handle the

multitude of different data models, applications, distribution

and management is through virtualization, by encompassing

all these requirements in a data micro-infrastructure with

specific nodes for handling the different aspects e.g. data

sharing (nextCloud) remote data access (GridFTP), and HDFS

file system for computing, etc. The whole infrastructure

then becomes an ensemble of micro-infrastructures each with

its own full stack encapsulated in a virtual infrastructure.

Through templating, micro-infrastructures can be booted up

that will satisfy the groups’ requirements for data processing.

Cross provider data, process distribution and management are

handled from within the micro-infrastructure. Cross group

collaboration is also easily manageable e.g. a group could give

access to another group through their data sharing node inside

the micro-infrastructure. This decomposition allows for better

scalability since state management such as indices, is split

between many infrastructures. For this reason, we leverage the

power of containers and created a platform using Kubernetes19

where users create and infrastructure with their own dedicated

data services. Typical data services include data store adaptors

to connect to remote data such as HPC file systems, native

cloud storage using Ceph20 block storage, runtime services

that have access to storage such as WebDAV points, Jupyter

notebooks and data staging services.

III. CONCLUSION AND FUTURE WORK

In this paper we described our ongoing efforts to develop a

framework that enables simple one-click-reduction of LOFAR

observations into sky maps. Ease of use and scalability are

important requirements in the development of this framework.

Our goal is to significantly reduce the time and effort required

to generate skymaps from the selected observations in the

19https://kubernetes.io
20https://ceph.com

archive. Currently, the framework allows for the user to select a

LOFAR observation and a scientific workflow, launch the pro-

cessing onto a (single) computing infrastructure and retrieve

the results. The backend is developed as a RESTful service

and allows for easy extension of the framework with additional

pipelines. As a usecase the prefactor pipeline, a scientific

workflow developed using both CWL and containerisation,

was integrated into the framework.

While the current implementation fulfils the ”ease-of-use”

requirement, it is not yet sufficiently scalable. Currently, only

a single compute infrastructure (DAS5) is available, and trans-

ferring data from the LTA over a regular internet connection

is a significant bottleneck. In the coming months we aim to

improve the scalability by making workflow processing possi-

ble on several clusters connected to the LTA through a high-

bandwidth network, and accelerating some of the processing

steps by using parallel computing.

For full calibration of LOFAR observations, the initial,

direction independent calibration, using prefactor, is fol-

lowed by direction dependent calibration using killMS.

Direction independent calibration can be parallellized trivially

by splitting the observation across subbands (sets of con-

tiguous frequency channels) and distributing the fragments of

the observation across the compute nodes of a cluster. For

direction dependent calibration this is not possible because

the signal-to-noise ratio from additional splitting of the sky

into different calibration directions (facets) would become

too low for finding stable calibration solutions. Therefore

we currently perform this on a single high memory node.

However, parallellization across nodes is still possible, e.g.,

by summing facets from different subbands to increase the

signal-to-noise ratio. We are currently developing this code.
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