Improving Fuzzing through Controlled Compilation

Laurent Simon
Samsung Research America
cam.lmrs2@gmail.com

Akash Verma
Samsung Research America
akash.verma@samsung.com

Abstract—We observe that operations performed by standard compilers harm fuzzing because the optimizations and the Intermediate Representation (IR) lead to transformations that improve execution speed at the expense of fuzzing. To remedy this problem, we propose ‘controlled compilation’, a set of techniques to automatically re-factor a program’s source code and cherry pick beneficial compiler optimizations to improve fuzzing.

We design, implement and evaluate controlled compilation by building a new toolchain with Clang/LLVM. We perform an evaluation on 10 open source projects and compare the results of AFL to state-of-the-art grey-box fuzzers and concolic fuzzers. We show that when programs are compiled with this new toolchain, AFL covers 30% new code on average and finds 21 additional bugs in real world programs.

Our study reveals that controlled compilation often covers more code and finds more bugs than state-of-the-art fuzzing techniques, without the need to write a fuzzer from scratch or resort to advanced techniques.

Second, we find that current coverage-based evaluation measures (e.g. the total number of visited lines, edges or BBs) are inadequate because they lose valuable information such as which parts of a program a fuzzer actually visits and how consistently it does so. Coverage is considered a useful metric to evaluate a fuzzer’s performance and devise a fuzzing strategy. However, the lack of a standard methodology for evaluating coverage remains a problem. To address this, we propose a rigorous evaluation methodology based on ‘qualitative coverage’. Qualitative coverage uniquely identifies each program line to help understand which lines are commonly visited by different fuzzers or which lines are visited only by a particular fuzzer. Throughout our study, we show the benefits of this new evaluation methodology. For example, we provide valuable insights into the consistency of fuzzers, i.e. their ability to cover the same code or find the same bug across multiple independent runs.

Overall, our evaluation methodology based on qualitative coverage helps to understand if a fuzzer performs better, worse, or is complementary to another fuzzer. This helps security practitioners adjust their fuzzing strategies.

I. INTRODUCTION

A fuzzer is made up of several components: a compilation toolchain for coverage instrumentation, an initial input generation engine, a seed scheduler engine, and a seed mutation engine [1], [2]. There has been considerable research on how to effectively generate initial input [3], [4], mutate seeds and adapt the seed scheduling strategy [5], [6], [7], [8], [9]. However, there is little to no research studying the compilation toolchain to improve fuzzing.

Compilers typically optimize for speed and size, rather than for fuzzing. Compiler optimizations have been shown to impede software security by removing important security checks in code [10], [11], or by violating developers’ assumptions in cryptography implementations [12]. In this work, we study how a standard compiler toolchain also undermines fuzzing.

We observe that compiler optimizations and IR semantics hinder fuzzing (Section II). For example, we find that optimizations tend to merge basic blocks to improve execution speed, but this is harmful as it requires a fuzzer to satisfy multiple conditions in a single input mutation. Disabling optimization altogether seems like an easy solution but it slows down program execution. Undoing compiler optimizations (LAF-INTEL approach [13]) is a difficult task because compilers have large and complex codebases (e.g. LLVM has over 50 transformation optimizations [14]). So we propose ‘controlled compilation’, a set of techniques to re-factor source code and cherry pick beneficial compiler optimizations to make compilation fuzzing-friendly. We take the view, like previous research [12], that it is more reliable to inform the toolchain about what it should do, rather than trying to undo its optimizations.

We build controlled compilation into a new toolchain using Clang/LLVM. Using this new toolchain, AFL visits new lines on real world programs and finds 21 additional bugs compared to vanilla AFL (which finds 6 bugs). In comparison, recently published tools such as Angora and QSYM find 13 and 6 additional bugs respectively. This suggests that AFL is even more efficient than previously believed, given it is appropriately configured.

We believe this stems from two main reasons: First, it has been difficult for researchers to run AFL in its best configuration (e.g. with a good dictionary). So we provide guidelines and LLVM passes to automate this process (Section VII). This should enable a fairer comparison with AFL for future research.

The second reason is that current coverage metrics vary greatly across research papers and are often inadequate (Section IV). Although a fuzzer’s ultimate goal is to find bugs, coverage is commonly seen as a useful proxy to build and evaluate a fuzzer. Widely-used fuzzers such as AFL or HonggFuzz [15] use coverage feedback to make progress and are based on the intuition that “no fuzzer can find bugs in code that is not covered” [8]. So coverage may be used to measure a fuzzer’s performance and devise efficient fuzzing strategies. Coverage measures used in the fuzzing literature include the total number of lines, edges or basic blocks visited (Section IV).
But these lose valuable information such as *which* parts of a program are visited. So we propose a new methodology based on ‘qualitative coverage’: in contrast to quantitative measures of coverage (e.g. raw number of lines), qualitative coverage uniquely identifies each program line. This allows us to more faithfully compare fuzzers to one another, for example we can identify lines commonly visited by different fuzzers vs. lines visited only by a particular fuzzer (Section VI). Controlled compilation is a fundamental building block towards using qualitative coverage (Section IV): it allows us to generate a dedicated reference build optimized to capture each condition solved by a fuzzer’s input. It also has the advantage of decoupling the binary used for fuzzing from the binary used for extracting coverage information.

Throughout our evaluation, we show the benefits of this new methodology. We study the consistency of fuzzers, i.e. their ability to visit the same lines and find the same bugs across multiple independent runs. We find this to be insightful to adjust the fuzzing strategy, for example for targeted fuzzing where the goal is to reach a particular set of lines (regression tests). We also highlight erroneous conclusions that may be drawn using quantitative coverage metrics (e.g. see pret-typrint program in Section VI).

We contribute the following:

- We observe that a standard compiler toolchain hinders fuzzing. We propose ‘controlled compilation’ to remedy these problems. By putting the source code and IR of the program in a state that is more amenable to analysis, controlled compilation improves a fuzzer’s ability to cover new code and find more bugs.
- We propose a new rigorous evaluation methodology based on qualitative coverage measures extracted from a reference build. The reference build captures path conditions that are solved by a given tool in a more faithful way. The qualitative measure allows researchers to compare additional aspects of their fuzzer’s performance against another, including the fuzzer’s consistency across runs.
- We design and implement controlled compilation with Clang/LLVM compiler toolchain and evaluate the impact of this modified toolchain with AFL as the fuzzer.
- We make our code available\(^1\).

II. Compiler Transformations Harm Fuzzing

White-box dynamic analysis techniques, such as symbolic execution, can solve complex path conditions but suffer from state explosion when they try to visit all possible paths. On the other side of the spectrum, black-box fuzzing requires no knowledge of the program under test. It scales well, but ultimately suffers from this lack of knowledge to be effective. Grey-box fuzzing lies in between white-box and black-box analysis: it trades accuracy for scalability, by randomly mutating input whilst keeping track of the bare minimum state necessary. The random mutations can be repeated so many times that it makes up for the lack of accuracy.

In the rest of this paper, we will use the AFL fuzzer \(^1\) as an example. AFL is a grey-box fuzzer widely used in academia and industry. AFL is a coverage-guided fuzzer, meaning that it deems inputs ‘interesting’ if they trigger new code paths in a program. Coverage is determined through lightweight program instrumentation that records which basic blocks (BBs) are executed – a basic block, loosely speaking, is a series of instructions without branches. When a testcase triggers a new path, AFL saves it and then uses genetic algorithms to mutate it. This allows AFL to automatically discover inputs that trigger new internal states in the targeted program. Note that for AFL, a path is determined not just by the basic blocks visited, but also by their order. AFL keeps track of each basic block transition, which it calls an ‘edge’. Each edge is given a unique 16-bit integer \(\text{edge}_{\text{id}}\) which uniquely identifies a transition \(\text{BB}_{\text{src}} \rightarrow \text{BB}_{\text{dst}}\) (a.k.a. branch or edge).

Since coverage-guided fuzzers like AFL rely on coverage information and have a high dependency on the control flow of programs, it is important to understand how compiler transformations affect these two aspects of a program. A compiler, amongst other things, tries to minimize the number of operations and also tries to replace existing operations with simpler ones. After such transformations are performed, the resulting binary may have a different structure from the original source code. In the rest of this paper, we focus on Clang/LLVM as an example. In Clang/LLVM, transformations may be performed in the Intermediate Representation (a.k.a. LLVM passes) or during translation from IR to machine code (a.k.a. in the backend passes). There are around 50 LLVM transformation passes \([14]\), depending on optimization levels and options passed to the compiler.

In the following sections, we show several examples of transformations performed by LLVM that harm fuzzing. We explain, at a high-level, how these transformations affect the layout of basic blocks that coverage-guided fuzzers rely on, and ultimately hinder fuzzing. This is by no means an exhaustive list, but aims at supporting the claim that compiler transformations do harm fuzzing.

To eliminate these problems, we propose ‘controlled compilation’, a way to inform the compiler which transformations to enable and which to disable to improve fuzzing (Section III and IV).

A. Condition Merging

The main transformation that affects the layout of basic blocks is the merging of conditions. It changes the Control Flow Graph (CFG) and harms fuzzing. Condition merging takes place in several transformations, as we explain next.

Block-level Optimizations:

A major reason for merging condition at the IR level is to simplify other LLVM passes, by enabling them to work at the level of a single basic block (BB). The LLVM pass responsible for merging BBs is called SimplifyCFG \([14]\). For example, consider the code in Listing 1 on page 4. The resulting IR before optimization is depicted in Listing 2 on page 4: the IR contains four BBs. In basic block BB_1, variable \(w = x\)

\(^1\)https://github.com/Samsung/afl_cc
Listing 4: Switch-statement.

```c
switch(a) {
  case 1:
    return 123;
  case 2:
    return 456;
  case 3:
    return 789;
  default:
    return 0;
}
```

Listing 5: Three integer comparisons.

```c
if (x==0x01 && y==0x02 && z==0x03)
  <some code>
```

+f + y is defined (line 6); and the same value is copied into variable z in basic block BB_2 (line 10). It is obvious that both variables have the same value x + y, so it makes sense for the Common Subexpression Elimination (CSE) to replace these two computations with a single one. During compilation, the SimplifyCFG pass merges BB_1 and BB_2 into BB_12 (Listing 3 on the following page). A CSE pass that only works at the level of a basic block can then easily spot that z and w store the same value, and replace the two computations with a single one.

Unfortunately, merging BBs has unintended consequences with regards to fuzzing. Consider an input where x \neq MV_x and y \neq MV_y; the input visits only BB_0 and BB_end (Listing 2 on the next page). If a different input is such that x = MV_x and y \neq MV_y, then the input visits BB_1 in addition to BB_0 and BB_end: therefore AFL will discard the input that improves coverage and saves the seeds. Similarly, AFL will mutate this seed to find new inputs that visit all BBs.

However, when SimplifyCFG runs (typically when optimization is enabled), this works differently, as shown in Listing 3 on the following page. When x = MV_x and y \neq MV_y, no additional BBs are visited because the conditions if (x == MV_x) and if (y == MV_y) are now merged into a single if (x == MV_x && y == MV_y) (BB_0, line 4 in Listing 3 on the next page). This means that AFL must find values for both x and y at the same time in order to satisfy both conditions. This is much harder: assuming a random mutation of the input, the probability of success for two 16-bit integers would be $2^{-16} \times 2^{-16}$ rather than $2^{-16} + 2^{-16}$.

Branch-less Optimizations:

Another reason to merge conditions or remove branches in programs is speculative execution. Each time the CPU encounters a conditional branch, it makes an educated guess about which basic blocks to prefetch next. If the guess turns out to be wrong, the pipeline is halted and this incurs a performance hit. Therefore, by reducing the number of conditional branches in a program, the number of guesses the CPU has to make decreases, and the speed improves.

There are several optimization techniques used by LLVM to remove conditional branches, including bitmaps, linear maps, and table lookups. An example for a switch-statement is provided in Listing 4; and its resulting (optimized) IR in Listing 6 on the next page. In the optimized IR code (Listing 6), a-dependent branches are removed. Instead, the return value is stored in an array switch_table (line 2) and retrieved through a branch-less lookup (line 10). This harms fuzzing for the same reasons we explained before: a coverage-guided fuzzer will miss interesting inputs that return different values, since different inputs will not alter the control flow.

Single Instruction Multiple Data (SIMD) instructions (e.g. AVX on x86) allow performing a comparison over multiple bytes in a single instruction. They offer an even more aggressive solution to reduce branches and improve performance, but at the expense of fuzzing.

Built-in functions:

Another transformation used by compilers is to replace libc functions (e.g. strcmp(), strncmp(), etc.) with built-in functions (e.g. memcmp()). This allows the compiler to inline the code and remove branches, which helps to re-use the ideas presented in previous sections. For example, a call to strcmp() may be replaced by a call to memcmp(), which may then be converted into a SIMD instruction. However, this further decreases the probability of finding all the right magic values. For example for Intel AVX vectorization instructions which support up to 256-bit registers, the probability would go down to 2^{-32}.

B. LLVM vs. binary coverage

Compiler internals do not just harm fuzzing, they may also harm other kinds of runtime analysis such as concolic execution engines. Compiler transformations may introduce differences between the BB layout in the IR vs. the BB layout in the final binary. This creates problems for concolic engines that expect the LLVM BB and the final binary’s BB layout to be identical. Take as example the code in Listing 5. When compiled with optimizations by AFL’s toolchain, conditions are merged as shown in Listing 7 on the next page: there are three BBs. Now consider the resulting binary generated (Listing 8 on the following page); there are five BBs. There is inconsistency between the binary and the LLVM IR regarding basic block layout. What happens is that the compiler back-end (which converts IR instructions into machine code) has transformation passes of its own. Using certain heuristics and architecture knowledge, it determines that inserting additional branches for early exits is advantageous for this platform. But this creates conflicts. AFL’s view of coverage is implemented at compilation time on the LLVM IR representation, so basic blocks are merged as depicted in Listing 7 on the next page. A concolic engine (e.g. QSYM [17]) that uses the binary for symbolic input replay sees a different view of coverage as depicted in Listing 8 on the following page. Therefore, when such a concolic engine generates new input that satisfies additional conditions in the binary, AFL may discard it because it expects all conditions to be satisfied at once in the IR. We verified this to be an issue for QSYM.

III. THE NEED FOR CONTROLLED Compilation

We initially thought that disabling all compiler transformations was the best way to eliminate all these problems.
if (condition) instructions by the LLVM into the branch-less, constant-time select()

as

res = select(condition, cond_true, cond_false) regardless of optimizations used. The IR instruction select() is typically lowered into a branch-less, constant-time CMOV instructions by the LLVM backend. Unfortunately, the select() instruction removes branches depending on variable condition in the CFG. For the reason we described in previous sections, this harms fuzzing. Note that the backend also has a dedicated pass called IfConversion [18] responsible for transforming conditional branches into predicated instructions.

A. Predicated Instructions

Clang/LLVM makes use of predicated instructions both at the IR level and in the backend, and this may happen even when optimizations are disabled. Predication helps speed up execution by converting control dependence into data dependence to eliminate branches. For example, consider the code using the conditional operator

res = condition ? cond_true : cond_false which is functionally equivalent to the if-statement if (condition) res = cond_true; else res = cond_false. The former, using the conditional operator is compiled by Clang/LLVM into the branch-less, predicated instruction called select() as res = select(condition, cond_true, cond_false), regardless of optimizations used. The IR instruction select() is typically lowered into a branch-less, constant-time CMOV instructions by the LLVM backend. Unfortunately, the select() instruction removes branches depending on variable condition in the CFG. For the reason we described in previous sections, this harms fuzzing. Note that the backend also has a dedicated pass called IfConversion [18] responsible for transforming conditional branches into predicated instructions.

B. Byte-Splitting Passes (BSP)

A 'Byte-Splitting-Pass' (BSP) is an LLVM pass that transforms single multi-byte comparisons into multiple byte-by-byte comparisons. Consider the code of Listing 10 on the next page. Using BSP, the goal is to transform the code into the code of Listing 11 on the following page. The idea is that instead of trying to guess, say, a 16-bit value at once (probability 2⁻¹⁶), BSP breaks each comparison into two single-byte comparisons. This way the fuzzer can incrementally guess each value (probability of 2 × 2⁻⁸). This idea may be applied to larger integers too, and has been implemented by the authors of LAF-INTEL [13]. LAF-INTEL, however, runs without controlled compilation, which limits the passes they can implement and may hinder their effectiveness since it is very hard to de-optimize all optimizations. Controlled compilation puts the IR of a program in a state that is
more amenable to various types of custom instrumentations, including BSP.

Let us take the example of Listing 12, which performs a single one-byte comparison with a magic byte MV. Before the code is processed by BSP, the LLVM IR is as shown in Listing 13 on the following page. Integer promotion is performed by the compiler (as part of the C standard), so integers smaller than four bytes are converted to four-byte integers prior to comparison. Then, when BSP (or LAF-INTEL) runs, it (re-)splits each four-byte comparisons into a series of single-byte comparisons (Listing 9). We end up with four byte-comparisons instead of one as in the original code, which may decrease program execution speed and increase the probability of edge collision. Recall that for AFL, an edge is a unique integer edge_id identifying a transition from a BB SRC → BB DST, and can only take 64K distinct values. A collision occurs when two different edges end up having the same edge_id. If an input triggers a new edge but its edge_id is the same as another already-seen edge, AFL will incorrectly discard the input. Note that naively increasing the range an edge_id can take to more than 64K values is not a viable solution, because it has the side effect of increasing cache misses and slowing down program execution [1].

C. Magic Value Extraction (For Dictionary Generation)

AFL has an option that lets developers pass a dictionary (a set of magic values) to use for fuzzing. This simple feature helps AFL satisfy comparisons that use hard coded values. Generating a dictionary typically requires expert knowledge and/or reading through a format’s standards, which is time consuming. An alternative to this human-generated dictionary is to create it automatically. Approaches include processing the program binary to extract 1) hexadecimal-encoded values, 2) strings and 3) Xref values of memory used in comparison instructions. We found that these approaches either create a dictionary with an overwhelming number of magic values (approach 1 and 2), or they require non-trivial taint tracking to extract the correct values (approach 3). So instead, in this pass, we look at the possibility of generating the dictionary automatically at compilation time.

Consider the code in Listing 14 on the following page. After integer promotion is performed, the code looks like in Listing 15 on the next page. If we try to extract magic values from the program IR by scanning the constant operands of comparison instructions, we end up with two four-byte magic values: MV0_32 and MV1_32 (line 6 and 7 respectively in Listing 15 on the following page). What happens when AFL attempts to use the dictionary values is depicted in Fig. 1 on the next page. AFL successfully passes the first comparison with MV1_32 (Step 1). Unfortunately, when trying the second magic value MV0_32 (Step 2), it overwrites the bytes of MV1 in the input and ends up failing on the first comparison. As a result, AFL fails to find a path to the abort() using the dictionary. On the contrary, if we control integer promotion, the magic values we extract are the original one-byte values MV1 and MV0: these allow AFL to effortlessly satisfy the two comparisons. Note that this behavior may be controlled with LLVM’s --argpromotion option.

Other useful ways to control compilation for dictionary generation include constant folding, a compiler technique that evaluates constant expressions at compilation time rather than computing them at runtime. For example, it transforms $2 + (3 \times 5)$ into 17, which makes it easier for us to extract the magic value 17.

Without controlling the compilation, data representations and instructions may be optimized by the compiler, as illustrated in the previous examples. So to generate a reliable dictionary, optimizations would need to be reversed post-compilation which is practically infeasible. During our experiments, we tried to automatically generate a dictionary without controlled compilation; but even for small targets, we were not able to extract all the relevant magic values. Controlling compilation allows us to put a program’s IR in a state that is more amenable to dictionary extraction.

IV. CONTROLLED COMPILATION HELPS FUZZING EVALUATION

The previous sections highlighted the potential benefits of controlled compilation to improve a fuzzer’s ability to pass conditions. In this section, we show that controlled compilation is also beneficial for fuzzer evaluation. There is consensus in the community that we need to improve the evaluation of fuzzing research [19], [20]. So we decided to survey previous research (totaling 38 papers) to learn how coverage evaluation is conducted in the fuzzing literature. Recall that coverage is commonly seen as a proxy to evaluate fuzzers because “no fuzzer can find bugs in code that is not covered” [8]. In previous research, about half of the papers use coverage to measure their tool (TABLE III on page 16 in Appendix). Among these, coverage evaluation varies greatly.

Listing 9: Byte comparison without optimization and after BSP.

```c
1 int8_t a = ...;
2 int32_t a_32 = a; // integer promotion
3 int32_t MV_32 = MV; // integer promotion
4
5 // BSP splits the 4-byte comparison
6 // into 4 single-byte comparison
7 int8_t a0_8 = *((int8_t*) &a_32);
8 int8_t a1_8 = *((int8_t*) &a_32);
9 int8_t a2_8 = *((int8_t*) &a_32);
10 int8_t a3_8 = *((int8_t*) &a_32);
11 int8_t MV0_8 = *((int8_t*) &MV_32);
12 int8_t MV1_8 = *((int8_t*) &MV_32);
13 int8_t MV2_8 = *((int8_t*) &MV_32);
14 int8_t MV3_8 = *((int8_t*) &MV_32);
15
16 // We end up with 4 times more comparisons
17 // than necessary
18 if (a0_8==MV0_8)
19   if (a1_8==MV1_8)
20     if (a2_8==MV2_8)
21       if (a3_8==MV3_8)
22         abort();
```

38
In general, we find that fuzzers do not quantify which things they have to do worse in order to improve others. This is unlike in other fields, like intrusion detection or machine learning, where tradeoffs are explicitly acknowledged, e.g., via ROC curves, F1 scores, recall, precision, etc. Next, we present some of the insights we gained while reviewing previous research’s coverage evaluation. This will motivate the need for harmonizing coverage metrics and for a more rigorous evaluation strategy.

AFL’s Unique paths: Almost half of research papers that report coverage use the number of ‘AFL’s unique paths’ as a measure of coverage (‘AP’ in the first column of TABLE III on page 16). In general, a ‘path’ may be defined as a unique ordered list of basic blocks visited by a program for a given input. In AFL’s terminology, though, a ‘path’ simply represents the number of inputs (a.k.a. seeds) that AFL saves because they are considered interesting. The number of inputs saved by AFL is not appropriate for reporting coverage, as we explain next. Consider the control flow graph depicted in Fig. 2 on the following page. Assume a fuzzer F_1 that finds inputs that satisfy all four conditions (condition C_1 branches to edge E_1 and E_2; condition C_2 branches to edge E_3 and E_4). Assume F_1 satisfies the four conditions with two inputs: input I_1 follows path $E_5 \rightarrow E_6 \rightarrow E_7 \rightarrow E_8$, and input I_2 follows path $E_5 \rightarrow E_6 \rightarrow E_7 \rightarrow E_8$. Now imagine a fuzzer F_2 that satisfies only three conditions with two inputs: input I_1 follows path $E_1 \rightarrow E_2 \rightarrow E_3 \rightarrow E_4$ and input I_2 follows path $E_1 \rightarrow E_2 \rightarrow E_3 \rightarrow E_4$. Using the number of AFL’s unique inputs as a measure of coverage, we would conclude both fuzzers are equally good. This is incorrect though, since fuzzer F_2 fails to find an input that takes edge E_5 of condition C_2. Using lines, basic blocks or edges is better suited to report coverage because these directly relate to the conditions solved by a fuzzer.

Binary vs. source code coverage metrics:
Over half of the papers report the number of basic blocks (Binary BB ‘BB’ or Source BB ‘SBB’) or edges (Source edges ‘SE’ or Binary edges ‘BE’) visited by their fuzzer (first column of TABLE III on page 16). This has limitations too, because these measures depend on the toolchain used to compile a program. Since compilers have different transformations and optimizations, etc., edges and basic blocks differ for binaries generated by different compilers (AFL, for example, supports both gcc and Clang to compile a program). This problem is aggravated when comparing a binary-instrumented fuzzer vs. a source code-instrumented one. As we showcased in Section II-B on page 3, the layout of basic blocks differs between the IR (used by source code instrumentation) and the generated binary (used by binary fuzzers). This creates inconsistency with regards to the ground truth coverage to compare fuzzers faithfully. In the literature, around one third of papers report binary-based numbers (‘BE’ or ‘BBB’) while the remaining two third report source-based numbers (‘SE’ or ‘SBB’). We believe harmonizing coverage metrics would help researchers by having a common ‘reference’ build for the sole purpose of extracting coverage information.

Quantitative vs. Qualitative Coverage:
A major problem in evaluating and comparing fuzzers with regards to coverage is that the research community has only considered quantitative metrics rather than qualitative ones. With the exception of AFLGo [21], previous research only reports the total number of lines, basic blocks, and/or edges visited by their tool. But this raw number is too coarse: for example, it cannot capture if there is overlap between the lines visited by different fuzzers. It is possible that different
fuzzers visit a similar number of lines but visit different parts of the program (we will see examples of this in the evaluation section). One may be mislead into concluding that two fuzzers perform similarly if the coverage metric cannot capture this difference in behavior. Therefore, we propose using a qualitative coverage metric, i.e. a measure where each line is uniquely identified. Long-term, we envisage qualitative coverage may be used to identify fuzzing techniques that complement one another, in the sense that they visit different parts of the code. We take the view that a fuzzer is useful even if it visits less code overall, so long as it visits code that is hard to reach by other fuzzers.

Qualitative coverage is a tool to help analysts better understand the code visited and the constraints satisfied by their tool. An analyst may weight different parts of the code differently. For example, they may focus their study 1) on a particular function of interest only (e.g. for regression tests), or 2) on code that is more likely to trigger bugs (containing memory accesses, calls to memcpy(), etc.). It is up to the analyst to decide how they interpret the results for their use case. In our evaluation (Section VI), we treat all lines equally to showcase the usefulness of qualitative coverage in general.

Definition of Coverage:
A major obstacle towards using a qualitative coverage metric is that it requires a common definition of what is a line, a basic block, or an edge. For example, for basic blocks, shall we use the IR-level view or the binary-level view? Or shall it be something else entirely?

Consider the code in Listing 16. Assume we want to compare two fuzzers F1 and F2. Assume F1 does not find inputs that satisfy the conditions a1==1 and a2==2 & a3==3, but F2 does: F2 is better than F1 on this code snippet. However, if we plot their line coverage, both fuzzers appear equivalent as they visit the same lines. To remedy this problem, we propose re-factoring the code when compiling a reference build for extracting coverage information.

Intuitively, we should re-factor the original code into the code in Listing 17: each condition appears on a different line so it will be reflected in the line coverage. The guiding principle is that every line should represent one statement. For example Var1 BinOp Var2 should always appear on a single line. This may seem obvious but it is not always the case in source code. We can perform code re-factoring in the compiler in order to generate a reference build for extracting coverage information. Then, to compare fuzzers, we simply run the reference build with each fuzzer’s generated inputs. We end up with a list of line/edge/BB numbers corresponding to visited code statements. Note that the code re-factoring may be performed at various levels of granularity: for example a statement like tab[a++] may be rewritten on two lines; strcmp() may be broken into byte-by-byte, or even bit-by-bit comparisons. In our current prototype, we keep these as in the source code; we show through evaluation this is useful as is.

When re-factoring the code, we must be wary of compiler transformations, as these may undo some of the code-refactoring changes we apply. So we re-use ideas from previous sections to tune which optimizations to run after the code has been re-factored. This ensures that the characteristics added to the source code are reflected in the IR.

Because a qualitative coverage metric captures information about exactly which parts of a program are visited, it is particularly useful for regression testing/targeted fuzzing where the goal is to reach a particular set of lines. In this scenario, knowing which fuzzer is better at consistently reaching which lines helps to select the right fuzzer.

Summary and Limitations: Qualitative coverage labels each statement/line/BB with a unique ID. It forms the fundamental building block of our evaluation methodology. Throughout our evaluation (Section VI on page 9), we use the definition of qualitative coverage as defined above. Qualitative coverage lends itself to the study of fuzzer consistency, i.e. how consistent a fuzzer is at visiting the same lines across multiple independent runs, as we shall see in the next sections. An important limitation of qualitative coverage is that it only considers program control flows. It may be useful to capture other characteristics such as data flows, memory accesses, etc. For example, an analyst may want to know if a fuzzer exercises a particular array well or not. Another limitation is that, to some extent, qualitative coverage still depends on the ‘style’ of the developer. Ideally, one would like to ‘normalize’ the code in a developer-independent way, but it is not clear what the normalization should look like. It is also worth noting that qualitative coverage may be used for feedback during the fuzzing process itself. However, this is out of scope in this work: we focus on improving the benchmarking process to help analysts devise effective an fuzzing strategy.

V. Implementation

We implement a new toolchain using Clang/LLVM: it supports compiling a program 1) for fuzzing and 2) for coverage extraction. The compilation process is depicted in Fig. 3 on the following page. To create a fuzzing build, we start with a target containing a set of *.c files; and to compile it,
we use the aflc-gclang compiler: This is our custom toolchain. aflc-gclang performs mainly two tasks: 1) it removes optimizations from the command line arguments and 2) calls glllvm2 to compile the code (glllvm is a wrapper that facilitates migrating existing projects to using Clang instead of gcc). Once the program is compiled this way, we extract the corresponding LLVM bytecode .bc file, then run llvm-opt with a set of desired builtin optimizations. The resulting .bc can be used to generate various binaries by manually running aflc-clang-fast on it (the diagram only presents two of them for brevity): This is where additional custom LLVM passes are run for edge instrumentation, BSP passes, dictionary extraction, etc.

To generate a coverage build, we compile the target *.c files with aflc-gclang-cov instead of aflc-gclang. aflc-gclang-cov performs code refactoring prior to compilation, by running a patched clang-format and custom Clang plugins. The code is available online3. We give further details about build generations in the next paragraphs.

\textbf{A. Fuzzing build generation}

\textbf{Dictionary generation:}

Our LLVM pass for automated dictionary generation extracts constant integers used as operands to (non-)equality comparison instructions; constants and constant structure fields passed as argument to function calls; and constants (arrays, strings) used in memory comparison functions (e.g. memcmp(), strcmp(), etc.). AFL’s dictionary is just a list of magic values. To use this dictionary at runtime, AFL just inserts each value at all possible positions in the input. One way to use the dictionary more efficiently is to select only the subset of magic values that are actually used in the path the program follows for an input under mutation. Simply speaking, if given an input, AFL visits a path where only N magic values are used in comparison instructions, then we only try those N magic values. We call this an ‘optimized dictionary (OD)’.

To implement the optimized dictionary, we modify our original LLVM pass to include the basic block ID where each dictionary value is used. Note that vanilla AFL only records visted edges, not basic blocks. So we patch AFL’s original LLVM passes to record basic blocks. To ensure this additional instrumentation does not slow down program execution during fuzzing, the basic block IDs are recorded during AFL’s calibration phase, which is run only once before a seed is saved to disk. AFL then has a list of basic block IDs and during runtime, we only associate the relevant magic values to the seed rather than all dictionary values.

In non-deterministic mode, AFL only probabilistically uses the dictionary. We change this behavior for the optimized dictionary: regardless of the mode (deterministic or non-deterministic), we always perform the deterministic part for the dictionary; and we disable the non-deterministic version.

Unlike the rest of the techniques presented in this paper, the optimized dictionary requires patches to the fuzzer itself. However, these changes are minimal (≈ 50 LoC for AFL). In Section VI, we shall see that an optimized dictionary significantly improves AFL’s ability to cover new code.

\textbf{BSP mode:}

For the Byte-Splitting-Pass (BSP), we implement two variants: 1) Full BSP (FBSP), which transforms all comparisons into a series of byte comparisons; and 2) Light BSP (LBSP), which only transforms comparisons if the operand is not a magic value recorded by the dictionary extraction pass. Our intuition was that splitting a multi-byte comparison may not be necessary if a fuzzers has a magic value to pass this comparison anyway. Note that RAF-INTEL is different from FBSP and LBSP, as it splits bytes only for comparisons that use a hardcoded operand.

Our BSP implementation makes use of two additional instrumentations. The first re-introduces edges for select() instructions (see Section III); the second adds edges to exception handling code. In LLVM, C++ exception handling creates instructions (see Section III); the second adds edges to exception handling code. In LLVM, C++ exception handling creates collisons. For each edge $\text{BB}_{\text{try}} \rightarrow \text{BB}_{\text{dst}}$, we create a new basic block BB_{id} between the two such that $\text{BB}_{\text{src}} \rightarrow \text{BB}_{\text{id}} \rightarrow \text{BB}_{\text{dst}}$, where the only role of BB_{id} is to record edge_{id}. These changes only require modifications to existing LLVM passes at compilation-time, not the fuzzers’s code.

Even with controlled compilation, BSP inherently increases the number of edge collisions. To eliminate such collisions, we modify AFL’s edge calculation for BSP to use a counter which we increment each time we create a new edge: $\text{edge}_{\text{id}} = \text{counter} + 1$. The counter never repeats, hence eliminating collisions. For each edge $\text{BB}_{\text{src}} \rightarrow \text{BB}_{\text{dst}}$, we create a new basic block BB_{id} between the two such that $\text{BB}_{\text{src}} \rightarrow \text{BB}_{\text{id}} \rightarrow \text{BB}_{\text{dst}}$, where the only role of BB_{id} is to record edge_{id}. These changes only require modifications to existing LLVM passes at compilation-time, not the fuzzers’s code.

Using this new edge calculation strategy, the number of edges is known at the end of the compilation – it is simply the value of the counter. Note that there may be indirect branches in the code (for instance, polymorphism in C++) for which the callee (i.e. the edge) is unknown at compilation time. To account for these, we always run a BSP-enabled binary with one that is not.

2https://github.com/SRI-CSL/glllvm

3https://github.com/Samsung/afl_cc

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3.png}
\caption{Implementation diagram.}
\end{figure}
Running principle:

Binaries compiled with optimizations run fast but suffer from problems presented in Section II on page 2, such as BB merging, etc. Binaries compiled with controlled compilation are slower since some optimizations are disabled, but provide better coverage feedback for a fuzzer to make progress. Slower still are binaries compiled with Byte-Splitting Passes (BSP), since the passes further increase the size of the binary and the number of branches. But they arguably have the best feedback for a fuzzer to make progress.

Therefore, we see that each binary has pros and cons. So we decide to run them in parallel to take advantage of each of them. We call each of these binaries an ‘AFL Companion’ (AFLC). We run three companions in parallel and we ensure they share the inputs they find at runtime.

B. Coverage build generation

Collision:

Edge collision means missing an edge covered by the fuzzer. We make collisions negligible by increasing the size of AFL’s bitmap to be arbitrarily large. Unlike for fuzzing, this is fine since we can take a performance hit to extract coverage information.

Artificial Edges:

In general, we remove edges created by non-conditional branches, since these do not represent functional branches (they are always taken). One exception is for direct calls. Although they are non-conditional edges, the callees may be reached through indirect calls as well. So we keep the edge between all call sites and their target basic blocks – this is how vanilla AFL works. One way of improving this would be to use call devirtualization, a technique that aims at turning virtual (i.e. indirect) calls into direct (i.e. non-conditional) ones. However, this feature was introduced in a more recent LLVM version than the one we used in our implementation. So we leave this for future work.

We also remove artificial edges created by the return instruction. Recall from Section II that AFL calculates an edge as a function of BBsrc and BBdst. So if a function contains multiple return instructions, each of these returns creates an additional (but artificial) edge. We address this problem by ensuring all functions have a single return BB; by using LLVM’s -mergereturn option.

In an effort to account for all edges visited by a fuzzer, we also re-use the LLVM passes for select() and C++ handling described in the previous sections.

VI. EVALUATION

A. Methodology based on qualitative coverage

As we described in the previous section, we use qualitative coverage as the basis of our coverage evaluation methodology. Previous research reports a quantitative measure of coverage (e.g. number of lines); and some papers additionally report its standard deviation. Imagine a fuzzer that visits different parts of a program on each run, yet always visits about the same number of lines. Reporting the number of lines along with its standard deviation would lead to the conclusion that the fuzzer is consistent, which is incorrect.

With qualitative coverage, we no longer use the number of lines visited. Instead we uniquely identify which lines are visited and we compare these to another fuzzer. However, it is important to realize that we can no longer use a single standard deviation because we have a huge number of different lines, not just a single raw line number. Therefore we must devise a different strategy to compare fuzzers, which we describe now. There are two relevant questions a security practitioner wants to answer when benchmarking a fuzzer:

1. If a fuzzer runs N times, what is the maximum coverage (i.e. which lines will it visit)? This is a valuable question to ask because security practitioners run fuzzers many many times. They want to understand the cumulative lines (or bugs) a fuzzer will visit. To report this, we use histogram-based cumulative coverage graphs (CCG). Because the graphs report cumulative coverage, there is no standard deviation depicted in CCGs (we shall see an example in the next sections).

2. Across these N runs, how consistent is the fuzzer? A fuzzer’s consistency helps analysts devise an efficient fuzzing strategy suited to their needs. For example, if a fuzzer is known to be inconsistent, it informs analysts that restarting it occasionally may be required. Depending on the use case, consistency may be a desirable or an undesirable property. For example, if an analyst wants to reach a particular program function that is consistently visited by one particular fuzzer, then selecting this fuzzer may be a good idea. If an analyst uses a combination of fuzzers, including a fuzzer with low consistency may be desirable as it would add a degree of randomness, and maybe help reach a function that others do not. To measure this, we compute a coverage consistency score (CCS) which represents a fuzzer’s consistency, i.e. how often lines/bugs are encountered across all independent runs. Take the example of line consistency. For each line Li, its consistency Ci is (0 ≤ Ci ≤ 100%) is the ratio of the number of runs that visit the line Li over the total number of runs. For example, if we launch ten independent runs and four runs only visit line L1, then line L1 has a consistency C1 = 4/10 = 40%. We then use each line’s consistency to generate the final CCS. We initially thought of using the mean of all line’s consistency along with a standard deviation. However, because the consistency does not follow a normal distribution (this will become obvious with examples in the next sections), we instead decided to use the median along with the median absolute deviation (MAD; which represents the spread/deviation of the consistency values from the median).

So the CCS is comprised of two numbers: the median of line consistencies and the MAD. A perfect CCS is (100%,0), i.e. all visited lines are visited in all runs (100% of the time). In addition to the CCS, we also plot a ‘consistency graph’ which is a visual depiction of a fuzzer’s consistency. The CCS is a compact representation of consistency, and the graph is more illustrative as we shall see in the next sections.
B. Results on Real World programs

We wanted to have as much diversity as possible, including programs that manipulate audio/multimedia, parse binary/text formats and that perform compression. So we settled for the following 10 real-world programs (see Appendix for arguments used): ar (compression); jhead, jpeg and png (image parsers); xml, html and unrtf (text parsers); objdump, readelf and pdf (binary-format parsers). We run 17 fuzzing configurations, each being a combination of three AFL companions running in parallel - a detailed description of each is given in TABLE IV on page 17 in Appendix. We run each configuration 24 hours; and we launch 10 independent runs. We distribute the fuzzing workload across 8 machines running Ubuntu with 16GB of RAM each. It took around 8 months to complete the experiments. We answer the following research questions based on the results from our experimental setup:

RQ1: Does controlled compilation boost fuzzing?
Cumulative coverage across all runs:

Consider Fig. 4 on the next page which shows the cumulative line coverage graph (CCG) of C_OD_FBSP vs. baseline V_O3 (vanilla AFL). A histogram marked N/A means the fuzzer could not be tested because of limitations of the current implementation of the tool. Overall, controlled compilation helps AFL to visit more code than vanilla AFL (V_O3) for seven programs out of ten: C_OD_FBSP visits 140% new lines for jhead (histogram above the horizontal zero line); 40% for pdftohtml; around 30% for ar and objdump; 20% for readelf and libpng and 10% for unrtf, whilst missing a negligible number of lines seen by the baseline V_O3 (histogram below the horizontal zero line). For prettyprint, 15% new lines are visited, but close to 10% of lines visited by the baseline are missed (histogram below zero). After investigation, we found that the code of prettyprint defines html magic values with a unique string containing a list of tags as "\<html>\<\html>\\<\img>\...". This string is parsed at runtime to extract the tokens separated by the | character. Because of this, our automated dictionary routines cannot extract the magic html tokens (since the operands to the comparison instructions do not appear constant). Note that had we used a quantitative coverage measure such as the total number of lines visited, we would have concluded that C_OD_FBSP and V_O3 are equivalent on prettyprint, since both visit the same number of total lines. However, with qualitative coverage, we find these two fuzzers are complimentary.

A comparison of all fuzzers and their respective line coverage for objdump is depicted in Fig. 5 on the following page. The results for other benchmarked programs with vanilla AFL as baseline are available in Appendix in Fig. 7 on page 18. Note that all fuzzing configurations have a coverage curve that flattens out after a few hours. Since this is a well-known behavior of fuzzers, we provide only one example for objdump in Fig. 8 on page 19 (Appendix).

Some examples of lines visited with controlled compilation are depicted in Listing 19 on the next page: the condition at line 10632 is satisfied only by fuzzers that use controlled compilation; this is because without controlled compilation, the two conditions at line 10632 and line 10634 are merged so a fuzzer cannot tell when the first condition is satisfied by an input. Both conditions are satisfied only by fuzzers that use both controlled compilation and an automatically generated dictionary (C_AD_* and C_OD_*). Another example of code is shown in Listing 18 on the following page, where the case statements are only satisfied for fuzzers that use FBSP and controlled compilation (C_*+FBSP).

Cumulative bugs found across all runs:

For the analysis of bugs, we implemented a crash analyzer to compare the stack traces generated by gdb for all reported crashes, and then performed a manual analysis of candidates to identify the final list of distinct bugs found. For four programs (jpeg, prettyprint, libpng_read_fuzzer, and xmllint), no bugs are found by any of the configurations. For the remaining six programs, 36 distinct bugs are found across all fuzzing configurations. Except for unrtf, across the 10 runs, all fuzzing configurations find a superset of the bugs found by vanilla AFL. TABLE VI on page 17 shows the classification of discovered bugs by type and by fuzzer. C_OD_FBSP finds 27 of the 36 total bugs discovered. This is 21 more bugs than those found by baseline V_O3, 14 more than QSYM, 8 more than Angora, 13 more than LAF-INTEL and 23 more than MOpt.

RQ2: How does controlled compilation perform vs. concolic execution?
To answer this question, we look at QSYM, the state-of-the-art concolic execution engine at the time of writing. Cumulative coverage for C_OD_FBSP vs. QSYM is presented in Fig. 9 on page 19 (the baseline used is QSYM). For several binaries, controlled compilation covers over 20% new lines and misses very few lines visited by QSYM. For the other binaries, the benefits are more nuanced: for example for objdump, controlled compilation visits 9% more lines than QSYM but misses 2% of the lines QSYM visits. For xml2tint, QSYM and C_OD_FBSP visit the same number of lines, but each misses 2% of the lines visited by the other. Since both fuzzers perform similarly on xml2tint, let us look at consistency graphs as shown in Fig. 6 on the next page. The left-most histogram represents the number of lines visited 100% of the time: for C_OD_FBSP (Fig. 6b on the following page), 83% of lines are visited 100% of the time. For QSYM (Fig. 6a on the next page), only 55% are visited 100% of the time; and about 20% of the lines are visited 50% of the time. The Coverage Consistency Scores (CCS) for QSYM and C_OD_FBSP are (100, 33) and (100, 11) respectively, which confirms C_OD_FBSP is more consistent than QSYM for xml2tint. Note that in most cases, fuzzers have the first value of the CCS as 100 because the majority of the lines are easy to reach (they are visited in 100% of the runs). The MAD tells us about the ‘spread’ of the line consistency values from the median: in our example C_OD_FBSP has a lower MAD so is more consistent. The result is statistically significant according to the Mann-Whitney U test (p-value < 0.01).
In terms of cumulative bugs, C_OD_FBSP and QSYM find 13 common bugs. C_OD_FBSP finds 14 bugs not found by QSYM, and QSYM finds no bugs that C_OD_FBSP cannot find. All the common bugs found by the two fuzzers and their corresponding consistencies are shown in Fig. 14 on page 19. Each histogram represents a unique (common) bug found by both fuzzers and its height represents the consistency with which the bug is found (100 is the highest possible value which means the bug is found 100% of the time across all independent runs). Of the 13 common bugs depicted in the plot, 8 are found equally consistently by both fuzzers (bugs 4–11); 3 more consistently by C_OD_FBSP (bugs 1–3) and 2 more consistently by QSYM (bugs 12–13).

The fact that concolic execution performs worse than fuzzing was surprising to us as we expected concolic execution to be more effective than fuzzing in general.

RQ3: How does an automatically-generated dictionary perform vs. a handcrafted one?

The configuration using the manually generated dictionary with vanilla AFL is V_MD and the one with an automatically-generated one is V_AD - a detailed description of the manual generation is described in Appendix in Section XI-A on page 15. Consider the cumulative coverage of V_AD vs. V_MD shown in Fig. 11 on page 19 in Appendix. For two programs (readelf and objdump), V_AD visits around 10% new lines and misses almost none of the lines visited by V_MD. For jhead, V_AD visits 130% new lines and misses none. For prettyprint, V_AD visits around 10% new lines but misses also around 10% of the lines visited by V_MD. For the remaining three programs, both fuzzers visit roughly the same lines. The automated dictionary performs well overall, and has the advantage of not requiring human knowledge. Note how for ar and unrtf we could not manually generate a dictionary (N/A in Fig. 11 on page 19), but the automatically-generated one (V_AD) improves over vanilla AFL (V_O3) by 27% and 17% respectively (Fig. 7f on page 18 and Fig. 7h on page 18).

In terms of bugs, V_AD and V_MD find 4 common bugs (bugs 3–6 in Fig. 16 on page 19). V_AD finds 16 unique bugs not found by V_MD (bugs 7–22); while V_MD finds 2 bugs not found by V_AD (bugs 1–2). Of the 4 common bugs, 2 (bugs 5–6) are found more consistently by V_AD and 2 (bugs 3–4) more consistently by V_MD. In terms of total number of bugs found, V_AD is a stronger fuzzer. However, because V_MD finds two bugs that V_AD misses, running both fuzzers in parallel would be preferable.
RQ4: How does an optimized dictionary (OD_*) perform vs. a non-optimized one (AD_*)?
To answer this question, we look at Fig. 12 on page 19 in Appendix. For three programs (readelf, objdump and pdf2html), C_OD_FBSP visits between 4% and 20% new lines whilst missing a negligible number of lines C_AD_FBSP visits. On prettyprint, C_OD_FBSP visits 4% new lines but misses around 8% of lines visited by C_AD_FBSP. On three programs, C_OD_FBSP is worse than C_AD_FBSP and misses between 2% and 5% of lines C_AD_FBSP visits.

For bugs, C_OD_FBSP finds 8 bugs not found by C_AD_FBSP; and C_AD_FBSP finds 1 bug not found by C_OD_FBSP. C_OD_FBSP and C_AD_FBSP find 19 common bugs (Fig. 17 on page 19).

RQ5: How does controlled compilation affect custom passes?
To answer this question, we look at Fig. 13 on page 19 in Appendix. For five programs, there is no noticeable difference between LAF-INTEL and C_LAF-INTEL (LAF-INTEL with controlled compilation). For three programs, C_LAF-INTEL visits between 2% and 8% new lines whilst missing few lines visited by LAF-INTEL. For one program (xmlint), C_LAF-INTEL misses over 10% of lines LAF-INTEL visits whilst visiting just 2% new lines. Based on these results, we see that controlled compilation may help visit new parts of the code, but at the expense of missing some other parts that may be reachable without controlled compilation. This highlights the trade-off between execution speed and better coverage-guided feedback. This trend is confirmed by the bug discovery analysis (Fig. 18 on page 19): 12 bugs are common, 3 are only found by C_LAF-INTEL and 2 only found by LAF-INTEL.

RQ6: Does simply disabling compiler transformations boost fuzzing?
To answer this question, we look at the configuration V_00 vs. the baseline vanilla AFL (V_03) as shown in Fig. 10 on page 19 in Appendix. For three programs, V_00 is worse than V_03 as it misses many lines visited by V_03 and covers no new lines (the histograms are only below zero). For three programs, V_00 visits roughly the same number of lines but different parts of the program, i.e. both fuzzers complement each other. This illustrates the trade-off between program execution speed (V_03) vs. better coverage-guided feedback (V_00). The bug discovery analysis confirms this trend: 5 bugs are commonly found by each fuzzer, and they each find 1 bug the other fuzzer misses (Fig. 19 on page 19).

RQ7: Is there one best fuzzer for the job?
Based on coverage and bugs found, no single fuzzer emerges as the winner: A combination of fuzzers seems to be more effective. For example for readelf, Angora and C_OD together find all 8 distinct bugs but only 1 bug (bug 5) is common between them (Fig. 15 on page 19). If we had to select a single configuration though, C_OD_FBSP would be the best in terms of both coverage and bugs given our experimental results. It finds the largest number of bugs and finds most of the bugs for multiple programs (TABLE VI on page 17 in Appendix).

RQ8: What is a good fuzzing strategy?
We have already established that using a combination of complementary fuzzers/techniques is better than sticking with one single fuzzer. Another useful insight is the consistency with which lines are visited and bugs are found. Our results show that fuzzers have varying levels of consistency for different programs. These results can be used as guidelines to improve the fuzzing strategy: if a fuzzer is inconsistent, we may benefit from killing/restarting it every now and then. Furthermore, if we have two fuzzers with the same cumulative coverage, it is better to use the most consistent one.

RQ9: Is qualitative coverage a better measure than raw coverage numbers?
Based on the insights we have gained about fuzzers in previous sections, qualitative coverage provides advantages over a mere raw line number. The superiority of qualitative coverage can be illustrated with prettyprint (Fig. 7g on page 18). The configuration C_OD_FBSP visits about 13% new lines compared to the baseline V_03, but it also fails to visit about 8% of lines that V_03 visits. Had we used a quantitative coverage measure such as the total number of lines visited, we would have concluded that C_OD_FBSP visits 13 – 8 = 5% more lines that vanilla V_03. This is incorrect and misleading. C_OD_FBSP is not better than V_03. The two fuzzers are complimentary, as they visit different parts of the code. This shows that a qualitative measure is useful in practice to compare fuzzers.

C. Results on LAVA-M dataset

On the LAVA-M dataset [22], C_OD_FBSP outperforms recent fuzzers (except Redqueen) by finding more bugs (TABLE I on page 16 in Appendix). We were surprised by these results, which suggest most of the bugs in LAVA-M simply need guessing magic values copied directly from the input buffer (our automated dictionary manages to find most bugs). In general, we believe there are inherent limitations to using artificially-injected bug datasets for evaluating fuzzing.

Injecting bugs into a codebase inherently requires selecting some nodes in the CFG and injecting bugs in these. During evaluation, finding a bug then boils down to visiting this subset of the CFG nodes where bugs are injected. But how do we decide in which nodes to inject bugs? How do we decide if the selected nodes are representative of the overall program? This is a hard question. For example, in its current implementation, LAVA-M arbitrarily selects CFG nodes such that they are easy to reason about, in the sense that with high confidence the injected bugs do not alter the overall functionality of the program. Any bug-injecting tool must try to satisfy this constraint. Unfortunately this is hard and it limits the number of nodes where bugs may be injected in practice. This means that an evaluation based on a bug-injected dataset does not consider the program in its entirety, but biases the ‘effectiveness’ of a fuzzer to this small subset of arbitrarily selected CFG nodes.
On the contrary, coverage takes into account the entire program, not a limited, and arbitrary sample of the CFG node space. This is why we believe coverage may be a viable alternative to artificially-injected bugs. Arguments against coverage-based measures include the fact that a fuzzer may visit less code but find more bugs. This problem arises because the community has been thinking about coverage quantitatively rather than qualitatively. Using a qualitative measure, we can easily discern that two fuzzers visit different parts of the program, as we demonstrated in our evaluation.

Another argument against coverage-based metrics is that it is possible for a fuzzer to visit a basic block without triggering a bug present in the block. Again, this is not a deal breaker. It is straightforward to transform a bug-finding problem into a coverage-based problem, simply by using ‘sanitizers’, i.e. transformations to make the bug explicit in the control flow graph. For example, if we have a 10-byte long stack array, we can instrument the code to add a check to test the lookup index is within range, and crash the program if it is not. The instrumentation will create a new edge when the crash is triggered, hence it will become visible in the coverage metric. Note that there already exist instrumentations to detect different categories of bugs (ASAN, UBSAN, etc.), and we may build sanitizers based on these.

VII. LESSONS LEARNED AND GUIDELINES

During our evaluation, we learned the following lessons which should be useful to other research teams:

1) Heuristics evaluation: Many papers we have surveyed use several heuristics to build a new fuzzer, but do not evaluate each heuristic in isolation. This makes it hard to understand which heuristic is most useful. In this work, we evaluate each transformation in isolation (e.g. dictionary, FBSP), before using them together in our final fuzzer.

2) AFL configuration: We should run AFL in a ‘good’ configuration, for example with a dictionary (manually and/or automatically generated by our toolchain) and in non-deterministic mode (–d option). Note that AFL’s default (deterministic) mode is usually less effective than the non-deterministic mode (–d option) before the 24-hour mark [23], so it is important to run AFL for at least 24 hours. Note that this result is only for the raw number of edges covered, not for a qualitative coverage analysis. Also note that in non-deterministic mode (–d), the dictionary is used probabilistically, whereas in deterministic mode all values are inserted at all input offsets. So there are various options to test dictionary: we may run in parallel -M -x dict_file with -S. -M -x dict_file with -S -x dict_file or -M with -S -x dict_file.

3) Coverage and bug consistency. This is an important measure to understand a fuzzer’s behavior and adapt the fuzzing strategy. For example if a fuzzer is unstable, we may benefit from killing/restarting a fuzzing instance. Overall, the results indicate that fuzzers are complimentary to each other. This begs the question: which is the best combination for a given fuzzing budget?

4) Resource utilization is not well reported. Following previous point 3, ultimately we want to give a security researcher the possibility to select the best combination of tools/fuzzers to run with a dedicated budget, e.g. based on CPU, RAM and duration (e.g. a few days before release or a few minutes for a commit). This is something we realized after we had finished our evaluation so we could not evaluate it. But we believe this is an important measure that must be added to fuzzing evaluations. For example, symbolic execution is more CPU-intensive and memory-hungry that fuzzing. Comparing three AFL instances vs. two AFL + one symbolic engine may not be a fair comparison. Symbolic execution may require as much CPU and memory as two AFL instances, or even more. Resource utilization is currently lacking in fuzzing evaluation papers (TABLE III on page 16), including ours. Running multiple instances of fuzzers to see how well they parallelize or complement each other is also under-studied (TABLE III on page 16).

5) Ideally it would be useful to rank lines and bugs whether they are hard or easy to find. The research community may tackle this problem empirically by testing several fuzzers and combination thereof. We may then give a difficulty score to lines/bugs based on the difficulty that existing techniques have to consistently find them. This would be a good way to gauge improvement over time, as we may update bug/line scores when new research is published.

6) Each research team currently runs their experiment on their own machines. Having a common infrastructure to run all fuzzers would help make results more comparable across research groups. It would also speed up advances in the field by not requiring each research team to re-benchmark all previously published tools. After acceptance of this paper, Google released the first version of FuzzBench [24], a fuzzing evaluation platform.

VIII. RELATED WORK

A. Symbolic and concolic execution

Satisfying program constraints is probably the most challenging area of program analysis. KLEE [25] is a widely used symbolic engine built on top of the LLVM framework. Symbolic execution uses an SMT solver to solve paths constraints. Various proposals to combine symbolic execution and fuzzing have been proposed, such as Driller [26], DART [27], SAGE[28], SymFuzz [29], Taintscope [30] and QSYM [17]. The premise of these systems is to run cheap fuzzing techniques to satisfy ‘easy’ constraints, and resort to expensive SMT solving for harder constraints.

B. Input models

Instead of developing generic techniques to satisfy program constraints, certain fuzzers specialize based on an ‘input model’ given by users. These include generation-based fuzzers that are capable of generating inputs of various types based on context-free grammar definition. Some fuzzers that belong to this category are Peach [31], Godefroid et al. [32], Syzkaller [33], LangFuzz [34], lava [35], Ifuzzer [36] and
CSmith [37]. In the same line of work, structure aware fuzzing [38] lets developers write custom fuzzing routines for specific file formats. Padhye et al. [39] go a step further and devise a framework to build domain-specific fuzzing applications. However, these differ from our work as they do not focus on compiler optimizations and their effect on performance of the respective fuzzers.

C. Cheaper techniques

Libfuzzer [40] and AFL [16] are widely used mutation-based fuzzers that do not require input models but use random mutations for fuzzing. More recently, the research community has explored novel ideas to solve path constraints without user intervention or the scalability issues of symbolic execution. For example, Angora [5] and NEUZZ [41] turn constraint solving into an optimization problem; and then use ML techniques, such as gradient descent, to find inputs that satisfy particular constraints. Redqueen [8]'s insight is that most programs use untransformed input data for path conditions, so it uses heuristics for this case in order to avoid costly symbolic execution. T-Fuzz [7] removes conditions from the original binary and uses the transformation to reach hard parts of a target. HonggFuzz [15] and kAFL [42] leverage modern CPU extensions to speed up the fuzzing process with assistance from hardware. These techniques, while very useful, are orthogonal to our work. Our motivation is to build fuzzing-friendly binaries rather than developing a new fuzzing platform.

D. Our work

In contrast to previous work, we study the effect of compiler optimizations on fuzzing. We propose a generic way to boost existing constraint solving techniques. Our work may be used to help Angora or AFL solve simpler constraints, or to generate a reliable dictionary for fuzzers that support one, etc.

One work that closely relates to ours is LAF-INTEL [43]. Like us, the authors observe that compiler passes can help fuzzing in general. They propose splitting comparisons into smaller ones to help fuzzers incrementally solve smaller constraints. They run their passes post compilation, which limits the passes they can implement. As we argued throughout this work, it is very hard to de-optimize all optimizations. For example, without controlled compilation, LAF-INTEL passes may have the problems illustrated in Section II and III, such as integer promotions and condition merging. Controlled compilation is a generic idea to help other fuzzing techniques. As such, it does not preclude the use of LAF-INTEL; and in fact we re-use some of their ideas for our ESC passes.

Second, we show how controlled compilation is useful for benchmarking fuzzers. A relevant study is the one by Klees et al. [19] who investigate how fuzzing evaluation is conducted in prior work. The authors propose guidelines to improve reproducibility and experimental design, whereas our work focuses on defining better evaluation metrics. Both papers are complementary. Manes et al. [44] provide a survey of existing fuzzer designs, including input generation, seed scheduling and seed selection. Our work focuses on the benchmarking phase and how to improve it.

IX. Conclusion

We observed that compiler transformations harm fuzzing because they alter the basic block layout a fuzzer depends on to make progress. So we proposed ‘controlled compilation’, a set of techniques to transform the source code and IR of a program to be more fuzzing-friendly. We showed through evaluation that controlled compilation helps a fuzzer to visit different parts of a program and uncover new bugs. Controlled compilation often outperforms recent fuzzing techniques in terms of program coverage and number of bugs found. A benefit of controlled compilation is that it does not require advanced fuzzing techniques and it may be used with an off-the-shelf fuzzer like AFL.

We identified two main reasons to explain why controlled compilation may outperform more sophisticated techniques used in the literature. First, it has proven difficult for researchers to appropriately configure existing fuzzers such as AFL. To address this problem, we provided guidelines and new LLVM passes to help automate AFL’s configuration. We hope this will help researchers to perform a fairer comparison with AFL.

Second, we found that coverage-based measures used in previous research lose valuable information such as which parts of a program a fuzzer actually visits and how consistently it does so. To address this, we proposed a rigorous evaluation methodology based on ‘qualitative coverage’. Qualitative coverage uniquely identifies each program line in order to help understand which lines are commonly visited by different fuzzers vs. which lines are visited only by a particular fuzzer. This evaluation methodology helps to understand if a fuzzer performs better, worse, or is complementary to another fuzzer. This may help security practitioners adjust their fuzzing strategies.

X. Acknowledgments

This work was supported by the Knox Security team at Samsung Research America. We thank the anonymous reviewers for their valuable suggestions and comments. Special thanks to our shepherd who helped us improve the paper; and Cristiano Giuffrida for his valuable advice.

REFERENCES

XI. APPENDIX

A. Manual Dictionary Generation

The dictionaries were taken from AFL’s dict folder (’AFL’ in column ‘dict’ of TABLE II on the next page). For certain programs such as ar, it was too time-consuming to manually create a dictionary and AFL does not provide one.
So we could not evaluate fuzzing with a manual dictionary (‘N/A’ in column ‘dict’). For ELF-parsing binaries objdump and readelf, AFL does not provide a dictionary but we were able to manually create one in a few hours. For this, we 1) manually extracted constant strings from the ELF standard [45], 2) used the results of the command strings $(which objdump) | grep \’\.\’ and 3) used an LLVM pass from an online blog [46]. We concatenated all the magic values returned by the three steps to generate the dictionary: we call this the ‘bundle’ generation in column ‘dict’ of TABLE II.

<table>
<thead>
<tr>
<th>Executable</th>
<th>Version</th>
<th>Project</th>
<th>Arguments</th>
<th>Dict</th>
</tr>
</thead>
<tbody>
<tr>
<td>prettyprint</td>
<td>0.10.1</td>
<td>gumbo-html</td>
<td>@ @</td>
<td>AFL</td>
</tr>
<tr>
<td>ar</td>
<td>2.27</td>
<td>binutils</td>
<td>x @ @</td>
<td>N/A</td>
</tr>
<tr>
<td>djpeg</td>
<td>6b</td>
<td>libjpeg</td>
<td>@ @</td>
<td>AFL</td>
</tr>
<tr>
<td>pdf2html</td>
<td>4.00</td>
<td>xpdf</td>
<td>@ @</td>
<td>AFL</td>
</tr>
<tr>
<td>xmllint</td>
<td>2.9.8</td>
<td>libxml2</td>
<td>@ @</td>
<td>AFL</td>
</tr>
<tr>
<td>jhead</td>
<td>3.02</td>
<td>jhead</td>
<td>@ @</td>
<td>AFL</td>
</tr>
<tr>
<td>libpng_read_fuzzer</td>
<td>1.6.35</td>
<td>libpng</td>
<td>@ @</td>
<td>AFL</td>
</tr>
<tr>
<td>readelf</td>
<td>2.27</td>
<td>binutils</td>
<td>-a @ @</td>
<td>bundle</td>
</tr>
<tr>
<td>objdump</td>
<td>2.27</td>
<td>binutils</td>
<td>-d @ @</td>
<td>bundle</td>
</tr>
<tr>
<td>cxxfilt</td>
<td>2.27</td>
<td>binutils</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>untrf</td>
<td>0.20.4</td>
<td>untrf</td>
<td>@ @</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TABLE II: Programs used for fuzzing and the dictionary used. ‘AFL’ means the dictionary is the one shipped with AFL. ‘bundle’ is described in Section XI-A on the preceding page.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_O3</td>
<td>three Vanilla AFL</td>
</tr>
<tr>
<td>V_O0</td>
<td>three Vanilla AFL without compiler optimizations</td>
</tr>
<tr>
<td>LAF_INTEL</td>
<td>two Vanilla AFL + one LAF_INTEL build</td>
</tr>
<tr>
<td>MOpt</td>
<td>three MOpt AFL [50]</td>
</tr>
<tr>
<td>QSYM</td>
<td>two vanilla AFL + one QSYM</td>
</tr>
<tr>
<td>Angora</td>
<td>two vanilla AFL + one Angora</td>
</tr>
<tr>
<td>V_MD</td>
<td>three Vanilla AFL with Manual Dictionary</td>
</tr>
<tr>
<td>V_AD</td>
<td>three Vanilla AFL with Automated Dictionary</td>
</tr>
<tr>
<td>C_LAF_INTEL</td>
<td>two Vanilla AFL + one LAF_INTEL using CC</td>
</tr>
<tr>
<td>C_AD</td>
<td>two Vanilla AFL + one CC build using Automated Dictionary</td>
</tr>
<tr>
<td>C_FBSP</td>
<td>one vanilla AFL + two Companions:</td>
</tr>
<tr>
<td></td>
<td>- one CC build</td>
</tr>
<tr>
<td></td>
<td>- one Full Byte Splitting Pass build</td>
</tr>
<tr>
<td>1</td>
<td>this is the configuration suggested by the authors of the tool</td>
</tr>
</tbody>
</table>

TABLE IV: Programs used for fuzzing. CC is an abbreviation for Controlled Compilation.

<table>
<thead>
<tr>
<th></th>
<th>AFL (V_O3)</th>
<th>V_O0</th>
<th>LAF_INTEL</th>
<th>MOpt</th>
<th>QSYM</th>
<th>Angora</th>
<th>V_MD</th>
<th>V_AD</th>
<th>C_LAF_INTEL</th>
<th>C_FBSP</th>
<th>C_AD_LBSP</th>
<th>C_MD_FBSP</th>
<th>C_AD_FBSP</th>
<th>C_OD</th>
<th>C_OD_LBSP</th>
<th>C_OD_FBSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ar</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 NA</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1 NA</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>readelf</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 2</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>objdump</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>pdf2html</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>NA</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>unrtf</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>4 4</td>
<td>NA</td>
<td>5</td>
<td>5</td>
<td>4 6</td>
<td>NA</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>jhead</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>5 8</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>6 8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>total</td>
<td>36</td>
<td>6</td>
<td>6</td>
<td>14</td>
<td>6</td>
<td>19</td>
<td>6</td>
<td>20</td>
<td>15</td>
<td>13</td>
<td>18</td>
<td>13</td>
<td>20</td>
<td>20</td>
<td>21</td>
<td>27</td>
</tr>
</tbody>
</table>

TABLE V: Number of bugs found

<table>
<thead>
<tr>
<th></th>
<th>AFL (V_O3)</th>
<th>V_O0</th>
<th>LAF_INTEL</th>
<th>MOpt</th>
<th>QSYM</th>
<th>Angora</th>
<th>V_MD</th>
<th>V_AD</th>
<th>C_LAF_INTEL</th>
<th>C_FBSP</th>
<th>C_AD_LBSP</th>
<th>C_MD_FBSP</th>
<th>C_AD_FBSP</th>
<th>C_OD</th>
<th>C_OD_LBSP</th>
<th>C_OD_FBSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illegal Memory Access (read)</td>
<td>18</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5 8</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>4 4</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Buffer Overflow (write)</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2 2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3 3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Unsafe Signed to Unsigned Conversion</td>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1 1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Unsafe long to int conversion</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Integer Overflow</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2 2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2 3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Double Free</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0 1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Null Pointer Dereference</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3 3</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>5 3</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncaught Exceptions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>total</td>
<td>36</td>
<td>6</td>
<td>6</td>
<td>14</td>
<td>6</td>
<td>19</td>
<td>6</td>
<td>20</td>
<td>15</td>
<td>13</td>
<td>18</td>
<td>13</td>
<td>20</td>
<td>20</td>
<td>21</td>
<td>27</td>
</tr>
</tbody>
</table>

TABLE VI: Classification of bugs discovered by fuzzers.
Fig. 7: Cumulative line coverage over 10 runs of 24 hours each. The baseline is V_O3.
Fig. 8: Coverage trend (total number of edges) over 24 hours for objdump.

Fig. 9: Comparison of cumulative line coverage of C_OD_FBSP vs. baseline QSYM.

Fig. 10: Comparison of cumulative line coverage of V_O0 vs. baseline V_O3.

Fig. 11: Comparison of cumulative line coverage of V_AD vs. baseline V_MD.

Fig. 12: Comparison of cumulative line coverage of C_OD_FBSP vs. baseline C_AD_FBSP.

Fig. 13: Comparison of cumulative line coverage of C_LAF-INTEL vs. baseline LAF-INTEL.