
CHORUS: a Programming Framework for Building
Scalable Differential Privacy Mechanisms

Noah Johnson
UC Berkeley

noahj@berkeley.edu

Joseph P. Near
University of Vermont

jnear@uvm.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@berkeley.edu

Dawn Song
UC Berkeley

dawnsong@berkeley.edu

Abstract—Differential privacy is fast becoming the gold stan-
dard in enabling statistical analysis of data while protecting
the privacy of individuals. However, practical use of differ-
ential privacy still lags behind research progress because
research prototypes cannot satisfy the scalability require-
ments of production deployments. To address this challenge,
we present CHORUS, a framework for building scalable dif-
ferential privacy mechanisms which is based on cooperation
between the mechanism itself and a high-performance pro-
duction database management system (DBMS). We demon-
strate the use of CHORUS to build the first highly scal-
able implementations of complex mechanisms like Weighted
PINQ, MWEM, and the matrix mechanism. We report on
our experience deploying CHORUS at Uber, and evaluate its
scalability on real-world queries.

Index Terms—privacy, differential privacy, SQL queries,
query rewriting, security

1. Introduction

Organizations are collecting more and more sensitive
information about individuals. As this data is highly valu-
able for a broad range of business interests, organizations
are motivated to provide analysts with flexible access to
the data. At the same time, the public is increasingly
concerned about privacy protection. There is a growing
and urgent need for technology solutions that balance
these interests by supporting general-purpose analytics
while guaranteeing privacy protection.

Differential privacy [28], [32] is widely recognized by
experts as the most rigorous theoretical solution to this
problem. Differential privacy provides a formal guarantee
of privacy for individuals while allowing general statistical
analysis of the data. In short, it states that the presence or
absence of any single individual’s data should not have a
large effect on the results of a query. This allows precise
answers to questions about populations in the data while
guaranteeing the results reveal little about any individual.
Unlike alternative approaches such as anonymization and
k-anonymity, differential privacy protects against a wide
range of attacks, including attacks using auxiliary infor-
mation [27], [61], [65], [77].

Current research on differential privacy focuses on
development of new algorithms, called mechanisms, to
achieve differential privacy for a particular class of
queries. Researchers have developed dozens of mecha-
nisms covering a broad range of use cases, from general-
purpose statistical queries [19], [30], [54], [55], [59],

[64], [67] to special-purpose analytics tasks such as graph
analysis [24], [42], [46], [47], [72], linear queries [8], [25],
[41], [50]–[53], [68], [81], [82], [85], and analysis of data
streams [31], [74].

Despite extensive academic research and an abundant
supply of mechanisms, differential privacy has not been
widely adopted in practice. Existing applications of dif-
ferential privacy in practice are limited to specialized use
cases [2], [34].

A major challenge for the practical adoption of differ-
ential privacy is the ability to deploy differential privacy
mechanisms at scale. Today’s data analytics infrastruc-
tures include industrial-grade database management sys-
tems (DBMSs) carefully tuned for performance and reli-
ability, designed to process datasets consisting of billions
of rows.

The simplest mechanisms for differential privacy, like
the Laplace mechanism [30], answer an analyst’s query
by adding noise to the final result of the query. This
mechanism can be easily deployed atop an existing high-
performance DBMS by leveraging the DBMS to execute
the analyst’s query, then adding the right amount of noise
to the result. Since it uses the DBMS to perform the actual
data processing tasks, this approach scales well. Some ex-
isting work, such as FLEX [44], takes this approach, which
we call the post-processing architecture. For appropriate
mechanisms, the post-processing architecture solves the
scalability problem.

However, more advanced differential privacy mecha-
nisms require fundamental changes to the way queries exe-
cute. Summation queries, for example, require clipping the
data before summing it to control the influence of outliers.
The post-processing approach is fundamentally incompat-
ible with mechanisms like this one—it is impossible to run
the analyst’s query unmodified and then achieve differen-
tial privacy by post-processing the results. Unfortunately,
the vast majority of recently-developed mechanisms fall
into this category (e.g. [8], [24], [25], [41], [42], [46],
[47], [50]–[53], [68], [72], [81], [82], [85]), and cannot
be implemented using the post-processing architecture.

As a result, no scalable implementation exists for
many of the exciting differential privacy mechanisms de-
veloped in recent years. The implementations which have
been developed (e.g. [49], [55], [59], [67], [80]) modify
or replace the DBMS with a custom engine, which is un-
likely to offer performance on par with modern production
DBMSs.

The CHORUS Framework. This paper describes CHO-
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RUS, a framework for developing and deploying cutting-
edge differential privacy mechanisms at scale. CHO-
RUS makes it easy to develop mechanism implementa-
tions which work in cooperation with an existing high-
performance DBMS, even for mechanisms which require
modifying queries or generating entirely new ones. CHO-
RUS supports scalable implementations by leveraging the
DBMS for data processing tasks, instead of custom code.
We call this the cooperative architecture for differential
privacy mechanisms.

CHORUS provides a programming framework to sup-
port implementing mechanisms in the cooperative ar-
chitecture. The framework has three major components:
rewriting, for modifying queries to perform functions
like clipping; analysis, for analyzing queries to determine
properties like how much noise is required for differential
privacy; and post-processing, for processing the results of
executing queries. To implement a summation mechanism
with clipping, for example, we can use CHORUS’s rewrit-
ing component to modify the analyst’s query so that the
DBMS performs the clipping as well as the summation.
With this modification, the rest of the mechanism can
be implemented via analysis and post-processing of the
rewritten query.

CHORUS supports integration with any standard SQL
database. The framework is designed to facilitate working
directly with SQL queries, since SQL is the most com-
monly used language for high-performance production
DBMSs. By using a standard SQL database engine instead
of a custom runtime, CHORUS can leverage the reliability,
scalability and performance of modern databases, which
are built on decades of research and engineering experi-
ence.

The cooperative architecture applies to all of the
recently-developed differential privacy mechanisms—even
ones that require significant changes to the way queries
execute or generate entirely new queries. We demon-
strate the flexibility of the approach, and of the CHORUS

framework, by implementing both simple mechanisms like
summation with clipping and complex mechanisms like
wPINQ, MWEM, and the matrix mechanism. In all of
these implementations, CHORUS supports scalability by
moving data processing tasks to the DBMS.

Deployment. We have made CHORUS available as open
source software [3], and it is designed for integration
in production environments. We describe how to deploy
CHORUS to provide differential privacy in the face of
untrusted analysts who may submit malicious queries, and
present practical strategies for privacy budget management
as part of a CHORUS deployment.

We report on our experience deploying CHORUS at
Uber for its internal analytics tasks. CHORUS represents a
significant part of the company’s General Data Protection
Regulation (GDPR) [4] compliance efforts, and provides
both differential privacy and access control enforcement.

Evaluation. We evaluate the scalability of CHORUS on
real queries written by analysts at Uber, using a 300
million rows sampled from the production data. Our evalu-
ation results demonstrate that mechanism implementations
built with CHORUS are capable of scaling to real-world
analysis tasks.

Contributions. In summary, we make the following con-

tributions:

1) We present the CHORUS framework, which enables a
novel cooperative architecture for implementing dif-
ferential privacy mechanisms atop high-performance
DBMSs (§ 3).

2) We demonstrate CHORUS’s flexibility by developing
scalable implementations for a number of advanced
differential privacy mechanisms (§ 5).

3) We release CHORUS as open source [3] and describe
how to deploy it to provide differential privacy in
production settings (§ 6).

4) We report on our experience deploying CHORUS to
enforce differential privacy at Uber, where it processes
more than 10,000 queries per day (§ 6).

5) We demonstrate the scalability of CHORUS by evaluat-
ing it on 18,774 real-world queries with a database of
300 million rows (§ 7).

2. Background

Differential privacy provides a formal guarantee of
indistinguishability. This guarantee is defined in terms of
a privacy budget ε—the smaller the budget, the stronger
the guarantee. The formal definition of differential privacy
is written in terms of the distance d(x, y) between two
databases, i.e. the number of entries on which they differ:
d(x, y) = |{i : xi �= yi}|. Two databases x and y
are neighbors if d(x, y) = 1. A randomized mechanism
K : Dn → R preserves (ε, δ)-differential privacy if for
any pair of neighboring databases x, y ∈ Dn and set S of
possible outputs:

Pr[K(x) ∈ S] ≤ eεPr[K(y) ∈ S] + δ

Differential privacy can be enforced by adding noise to
the non-private results of a query. The scale of this noise
depends on the sensitivity of the query. The global sensi-
tivity of a query f : Dn → R is defined as:

GSf = max
x,y:d(x,y)=1

|f(x)− f(y)|
Importantly, differential privacy mechanisms satisfy a se-
quential composition property: if F1 satisfies (ε1, δ1)-
differential privacy, and F2 satisfies (ε2, δ2)-differential
privacy, then running both F1 and F2 satisfies (ε1+ε2, δ1+
δ2)-differential privacy. For more on differential privacy,
see Dwork and Roth [32].

Statistical queries. Differential privacy aims to protect
the privacy of individuals in the context of statistical
queries. In SQL terms, these are queries using standard
aggregation operators (COUNT, AVG, etc.) as well as his-
tograms created via the GROUP BY operator in which
aggregations are applied to records within each group.
Differential privacy is not suitable for queries that return
raw data (e.g. rows in the database) since such queries are
inherently privacy-violating.

Mechanism design. Research on differential privacy has
produced a large and growing number of differential
privacy mechanisms. Some mechanisms are designed to
provide broad support for many types of queries [19], [30],
[49], [54], [55], [59], [64], [67], while others are designed
to produce maximal utility for a particular application [8],
[24], [25], [34], [41]–[43], [46], [47], [50], [52], [68], [72],
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[81], [82], [85]. While mechanisms adopt unique strategies
for enforcing differential privacy in their target domain,
they generally share a common set of design choices and
algorithmic components. For example, many mechanisms
require addition of Laplace noise to the result of the query.

3. The CHORUS Architecture

This section presents the system architecture and ad-
vantages of CHORUS, and compares it against existing
architectures for differentially private analytics. We first
describe the design goals motivating the CHORUS archi-
tecture. Then, in Section 3.1, we describe the limitations
of existing architectures preventing previous work from
attaining these goals. Finally, Section 3.2 describes the
novel architecture of CHORUS and provides an overview
of our approach.

Design Goals. The design of CHORUS is motivated by
the desire to enforce differential privacy at the scale of
real-world industrial deployments. To that end, CHORUS

has the following design goals:

• Process data using a DBMS, not a custom system
• Support a broad range of privacy mechanisms
• Integrate easily with existing data environments

As we will demonstrate in the next section, achieving
these goals is challenging, and no existing system manages
to achieve all three. We emphasize the importance of
integration with an existing, highly-tuned database man-
agement system (DBMS)—such systems are the result of
decades of research, and the massive scale of modern
data warehouses is made possible only by leveraging
these results. A custom-built system specific to differential
privacy is unlikely to ever match the performance of a
highly-tuned DBMS designed for big data.

Motivating example: bounded sum queries. Consider a
simple example query over a table called trips containing
information about taxi trips. Suppose we want to return the
sum of miles driven over all of the trips in the database.
We might use a query like this:

SELECT SUM( t r i p d i s t a n c e ) FROM t r i p s

Satisfying differential privacy for this query is chal-
lenging, because there is no obvious bound on the global
sensitivity of the SUM. Two neighboring databases differ
in only a single row, but that row may have any value,
and adding a row to the database increases the sum by
the value of an attribute in the new row. Without some
upper bound on the attribute values rows can have, it is
not possible to bound the sensitivity of the summation
query.

The usual strategy for solving this problem is clipping:
we first enforce a bound on the maximum distance of any
trip in the database, then perform the sum on the clipped
distances. We can implement this strategy using a revised
query:

SELECT SUM(max(0 , min (100 , t r i p d i s t a n c e ) ) )
FROM t r i p s

The revised query has a global sensitivity of 100, because
all trip distances are clipped to lie between 0 and 100
miles. We can achieve differential privacy for the revised
query by adding Laplace noise scaled to 100

ε [32].

3.1. Existing Architectures

Existing systems for enforcing differential privacy
for data analytics tasks adopt one of two architecture
types: they are either deeply integrated systems or post
processing systems. These architectures are summarized
in Figure 1(a) and Figure 1(b). PINQ [55], Weighted
PINQ [67], GUPT [59], and Airavat [71] follow the deep
integration architecture: each one provides its own special-
ized DBMS, and cannot be used with a standard DBMS.
As described earlier, the use of a specialized DBMS is
likely to prevent the use of these systems for large-scale
deployments.

The FLEX [44] system uses the post processing archi-
tecture: it runs the analyst’s original query on the database,
then adds noise to the result. This approach supports
mechanisms that do not modify the semantics of the orig-
inal query, like Elastic Sensitivity, PINQ, and Restricted
sensitivity. The major advantage of the post processing
architecture is that it is compatibile with existing DBMSs.

However, the post processing architecture is funda-
mentally incompatible with mechanisms that change how
the original query executes—such as queries that perform
clipping, like the motivating example above. FLEX is not
capable of answering SUM queries with differential privacy
unless bounds on the values of the summed columns are
known a priori (which is often not the case).

Many differential privacy mechanisms make even
more complicated changes to the query the analyst actu-
ally wants to answer. For example, Sample & Aggregate
splits the database into chunks and runs the analyst’s query
on each chunk separately, then aggregates the results, and
WPINQ assigns a weight to each row of the database
and updates these weights as the query executes. More
recent algorithms, like MWEM, the Matrix Mechanism,
and others are even more complicated. These approaches
are impossible to implement via post-processing: they
require running queries which are different from the an-
alyst’s original query, and they often require multi-stage
interaction with the DBMS.

The deeply integrated and post processing architec-
tures in Figure 1(a) and (b) therefore both fail to address
two major challenges in implementing a practical system
for differentially private data analytics:

• Deeply integrated systems use custom DBMSs, which
are unlikely to achieve parity with mature DBMSs in
terms of performance and scalability, query optimiza-
tion, recoverability, and distribution.

• Neither architecture supports all of the different mech-
anisms discussed earlier. The deeply integrated ar-
chitecture requires building a new DBMS for each
mechanism, while the post processing architecture is
inherently incompatible with some mechanisms.

3.2. The CHORUS Architecture

In CHORUS, we propose a novel alternative, which we
call the cooperative architecture. As shown in Figure 1(c),
the cooperative architecture has two major differences
with existing architectures:

• CHORUS integrates tightly with an existing unmodified
SQL DBMS, which holds the sensitive data.
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Pros:
• Broad mechanism support

Cons:
• Poor scalability
• Higher software complexity
• New system required for each

mechanism

Pros:
• Good scalability
• DBMS-independent

Cons:
• Supports only post-processing

mechanisms

Pros:
• Good scalability
• DBMS-independent
• Broad mechanism support

Figure 1: Existing architectures: (a), (b); architecture of CHORUS: (c).

• CHORUS can perform post-processing operations and
modify the way queries execute, enabling implementa-
tions of all the mechanisms discussed earlier.

CHORUS provides a flexible framework for imple-
menting differential privacy mechanisms in the coopera-
tive architecture. In this architecture, the analyst specifies
the task to be completed via one or more queries to
be answered, plus additional metadata (for example, the
desired values for the privacy parameter(s)). CHORUS

provides the following components:

• Rewriting supports generating new SQL queries, by
modifying queries from the analyst’s workload or gen-
erating new ones.

• Analysis supports analyzing queries in the workload to
determine their properties (e.g. sensitivity).

• Post-processing supports post-processing of query re-
sults (e.g. to combine results or add noise).

For counting queries like those supported by FLEX [44],
CHORUS can simply execute the queries in the workload
and add noise to the results via post-processing. For a
SUM query requiring clipping, like our motivating example,
CHORUS rewrites the query to include the clipping bound
specified by the analyst in the metadata, executes the
rewritten query on the DBMS, and adds noise to the
result. For more complicated mechanisms like the Matrix
Mechanism [51], CHORUS may generate entirely new
queries not present in the original workload. CHORUS has
two key advantages over previous work:

• CHORUS is DBMS-independent (unlike the deeply in-
tegrated approach): it requires neither modifying the
database nor switching to purpose-built database en-
gines. Our approach can therefore leverage existing
high-performance DBMSs to scale to big data.

• CHORUS can implement a wide variety of privacy-
preserving techniques. Unlike the post processing ap-
proach, CHORUS is compatible with all of the mecha-
nisms discussed earlier, and many more.

CHORUS’s architecture is specifically designed to be
easily integrated into existing data environments. We re-
port on the deployment of CHORUS at Uber in Section 6.

Challenges. Developing differential privacy mechanisms

to target the cooperative architecture is much more chal-
lenging than developing either deeply integrated or post-
processing solutions. In particular, this model requires
interacting closely with a DBMS which may have a non-
standard dialect or feature set, analyzing SQL queries
which may have complicated structure or target a spe-
cific dialect, and generating new queries which target the
appropriate DBMS.

CHORUS is designed specifically to address these
challenges. We detail the solutions to each one in Sec-
tion 4. We also develop a number of case studies (in
Section 5) to demonstrate how the features of CHORUS

support programmers in developing differential privacy
mechanisms in the cooperative architecture, following the
rewrite-analyze-postprocess structure outlined above.

3.3. Threat Model

Typical deployments of CHORUS mechanisms involve
three kinds of parties: data subjects, who contribute sensi-
tive data to the database, the data curator, who manages
the database containing the sensitive data, and analysts,
who submit queries to be answered using the sensitive
data. CHORUS is designed primarily to protect the sen-
sitive data contributed by data subjects against malicious
analysts.

As with most systems designed around the central
model of differential privacy, we assume that the data
curator behaves honestly. The DBMS, CHORUS-based
mechanisms, and other systems maintained by the data
curator for answering queries are assumed to be trusted,
and cannot be corrupted.

The adversary in this setting is represented by a group
of one or more malicious analysts, who would like to
discover a fact about an individual data subject in the
sensitive data. The analyst may submit arbitrary queries to
the system, designed to expose private information about
an individual. These queries may be adaptively chosen
based on previous results, and more than one analyst may
collude to infer private information. CHORUS is designed
to guarantee that each query response satisfies differential
privacy, which implies a bound on the total privacy cost
of all queries posed by the analyst.
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Our deployment enforces that the adversary may ac-
cess the sensitive data only via the centralized query
interface. All components of the system, including the
query interface, the privacy budget accountant, CHORUS,
and the DBMSs themselves, are protected from tampering
by the adversary via access-control protections.

3.4. Selecting a Mechanism

As described in Section 2, many differential privacy
mechanisms exist, and many of these require the analyst
to re-phrase queries in a new way or provide additional in-
puts. As a result, it is not always possible to automatically
select the best mechanism for answering a SQL query
posed by the analyst—the best mechanism might depend
on domain knowledge, other queries in the workload, or
the ability of the analyst to re-phrase the query. For certain
classes of queries—for example, linear queries over a
single database table—Hay et al. [48] demonstrate that a
machine learning-based approach can leverage properties
of the data to select a mechanism most likely to yield high
utility.

The interface provided to the analyst in each deploy-
ment of CHORUS will therefore depend on the analyst’s
expected expertise in differential privacy.

• Non-experts will submit standard SQL queries, without
any knowledge about how differential privacy is being
enforced. CHORUS can attempt to select a mechanism
which supports the features used in the query. If no suit-
able mechanism is found, CHORUS rejects the query.

• Privacy-conscious analysts will submit workloads of
queries written in subsets of SQL (e.g. linear queries),
and CHORUS can select the best approach (e.g. using
a machine learning model).

• Privacy experts will manually select a mechanism, and
phrase their queries appropriately for that mechanism
(e.g. for the Sparse Vector Technique, a sequence of
queries and a threshold).

The CHORUS API is designed to facilitate all three pos-
sibilities. For our prototype deployment (discussed in
Section 6), we expected users to be non-experts, and
implemented a simple rule-based mechanism to select a
mechanism based on the aggregation function used and
whether or not the query contained joins. Section 4.4
describes the use of the CHORUS API for this purpose.

3.5. Privacy Budget Management

We have designed CHORUS to be flexible in its han-
dling of the privacy budget, since the best approach in a
given setting is likely to depend on the domain and the
kinds of queries posed.

One approach to budget management involves tracking
a single global budget, subtracting from the budget when
each query runs using standard composition. One straight-
forward optimization is to use advanced composition [33],
which improves the total budget for k queries to be
proportional to

√
k. Recent advances in composition, like

Rényi differential privacy [58], zero-concentrated differ-
ential privacy [22], and truncated concentrated differential
privacy [21], can be directly applied in a similar way.

Some mechanisms build a differentially private syn-
thetic representation of the data, and use this represen-
tation to answer queries (e.g. MWEM and the matrix
mechanism). This is another form of budget management:
once the representation is built, it can be used to answer an
unbounded number of queries without incurring additional
privacy cost. Such mechanisms often offer better accuracy
over workloads of queries than any composition approach
which supports online answering of queries.

We describe the CHORUS API for implementing bud-
geting strategies in Section 4.4. Mechanism definitions
return the privacy cost of one execution, and approaches
to budgeting can be built on top of this interface.

3.6. Assumptions & Limitations

CHORUS’s guarantees rely on the soundness of sev-
eral underlying components. Bugs in these components
could cause a failure of the guarantee, and the release of
sensitive information without differential privacy.

Correctness of Underlying Libraries. CHORUS uses the
Apache Calcite [1] framework for parsing SQL queries
and translating them to a bag-based variant of relational
algebra. A bug in Calcite could cause a query to be
wrongly parsed or converted. Such a failure would result
in incorrect results being returned to the analyst, but would
not cause a failure in differential privacy, since CHORUS

analyzes, rewrites, and executes the final output of Cal-
cite’s processing pipeline. In addition, Apache Calcite is
widely used and therefore likely to be reliable.

Soundness of Abstract Interpretation. To analyze a
query’s sensitivity, CHORUS performs abstract interpre-
tation of the query (see Section 5). CHORUS provides an
abstract interpretation framework, which enables imple-
menting many different kinds of analyses. A bug in either
the framework or the implementation of a specific analysis
could cause unsoundness in the analysis results, leading
to a failure to ensure differential privacy. To mitigate
this risk, we designed the framework to be compact and
easily audited; further mitigation using formal verification
techniques might also be possible in future work.

Semantics of DBMSs. A more subtle failure of the ab-
stract interpretation occurs when the concrete semantics
of the DBMS used to execute queries do not match the
semantics encoded by the abstract interpreter. This is a
special concern for CHORUS, since we aim to support
many different DBMSs, and because DBMSs sometimes
differ significantly in their semantics [37]. Mitigation of
this risk would require formal analysis of specific DBMS
implementations to verify their compliance with a stan-
dard semantics.

Dialects and Other Languages. CHORUS uses Apache
Calcite [1] to parse and process queries, and works for
queries that Calcite supports. Calcite does offer support
for a number of SQL dialects, but it may not support all
of the vendor-specific extensions offered by a particular
DBMS, and CHORUS will therefore not support them
either (without modifications to Calcite). Code written
in languages other than SQL (including stored or user-
defined functions) are not supported for the same reason.

Sources of Randomness. CHORUS relies on randomness
generated by both the DBMS and the Java runtime, and
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previous work has shown [57] that inadequate sources
of randomness can lead to a failure of differential pri-
vacy. However, the same work also demonstrated simple
solutions for improving faulty sources of randomness to
recover differential privacy. Large-scale deployments of
CHORUS should verify that both the DBMS and Java
runtime used provide high-quality sources of randomness,
or implement the appropriate countermeasures.

Correctness of Mechanism Implementations. Bugs may
also exist in mechanism implementations themselves. The
CHORUS framework is designed to simplify mechanism
implementations to reduce bugs, but it does not eliminate
them entirely. Integrating an approach for formal verifica-
tion of mechanism correctness (e.g. [10], [12]–[16], [26],
[35], [62], [69], [73], [79], [83], [84]) could ensure bug-
free mechanisms, and is an exciting area for future work.

4. The CHORUS Programming Framework

The CHORUS framework provides a Scala library for
implementing differential privacy mechanisms in the co-
operative model we have proposed. The library provides
support for all three components of the model:

• A rewriting component, with support for modifying
existing SQL queries and generating new ones

• An analysis component, which provides an abstract
interpretation framework for analyzing SQL queries

• A post-processing component, which provides utilities
for post-processing results

In this section, we describe each of the three components.
We begin with our simple motivating example from ear-
lier: a SUM query over a column with no known upper
bound. As described earlier, bounding the sensitivity of
this query requires clipping the values being summed, but
this is impossible to accomplish by post-processing alone.

We will implement a CHORUS mechanism to answer
such queries in three steps: (1) rewrite SUM aggregations
in the analyst’s query to perform clipping; (2) analyze the
rewritten query to determine its sensitivity; (3) run the
rewritten query and add noise to the result based on the
sensitivity computed in step (2).

4.1. Rewriting

For the first step, CHORUS provides a powerful rewrit-
ing API for modifying the analyst’s queries. The following
Scala code implements the rewriter for step (1) above.

def r e w r i t e C l i p ( l : Double , u : Double ,
roo t : Re la t ion ) : Re la t ion = {

r oo t . rewr i teRecurs ive ( UnitDomain ) {
( node , or ig , ) =>

node match {
case Re la t ion ( a : Aggregate ) => {

va l r = a . mapCols { co l =>
max( l , min ( u , co l . expr ) ) AS co l . a l i a s }

( r , ( ) )
}
case => ( node , ( ) )

} } }

CHORUS’s rewriter API contains an embedded
DSL for building SQL queries; the expression
max(l, min(u, col .expr)) uses this embedded DSL to generate a
new expression for the argument to the SUM aggregation.
Running this rewriter on our simple query from earlier,

with a lower bound of 0 and upper bound of 100,
produces the following change:

SELECT SUM( t r i p d i s t a n c e ) FROM t r i p s

⇓
SELECT SUM(max(0 , min (100 , t r i p d i s t a n c e ) ) ) AS sum
FROM t r i p s

CHORUS’s rewriting library is designed to address the
challenges of rewriting tasks like the one above. Solving
such tasks requires matching on generalized patterns in the
query, and replacing sections of the query with new text.
This process requires building an abstract syntax tree for
the query, since searching through its text (e.g. with regu-
lar expressions) will not provide enough information about
the query’s structure to implement the correct semantics.
Modern DBMSs use a variety of SQL dialects; many SQL
queries in production are hundreds or thousands of lines
long and use many of these special features, so analyzing
these queries is difficult.

CHORUS provides a query parser based on Apache
Calcite [1], and also allows extending the parser to support
features of specialized dialects. We translate special fea-
tures into an abstract syntax tree (AST) based on relational
algebra for rewriting, and provide an API for pattern
matching on pieces of the AST. The rewriteRecursive method,
for example, makes it easy to search for a particular pat-
tern in the query and replace it with something new. This
method also allows the program to perform simultaneous
analysis of the query, using the abstract interpretation
framework described in the next section.

A second challenge of rewriting is producing new
queries (or sections of queries). CHORUS provides an
embedded domain-specific language (DSL) as a library
of Scala operators for this purpose. SQL queries produced
using our DSL have two major advantages over a simpler
solution based on formatting strings: first, they are more
readable, and can easily incorporate other AST nodes
(as in min(u, col .expr) above), and second, the AST objects
produced by our DSL operators can be easily translated
back into different SQL dialects. For example, if the
DBMS used for deployment provides the minimum function
instead of min, CHORUS can translate the above query
appropriately for this dialect.

4.2. Analysis

The next step is to analyze the rewritten query to deter-
mine its sensitivity. For this purpose, CHORUS provides a
query analysis API which implements an abstract interpre-
tation framework for SQL queries. Abstract interpretation
is the execution of a program using abstract values instead
of concrete (normal) values. Abstract values are members
of an abstract domain, and each abstract value represents a
set of possible concrete values. For example, the abstract
domain {Even, Odd, Unknown} might correspond to the
concrete domain of the integers, and the abstract value
Even represents the set of even numbers. Abstract in-
terpretation enables analysis of program properties: if a
program outputs the value Even, then we know its output
is always an even number. In CHORUS, we use abstract
interpretation on SQL queries to determine properties like
the sensitivity of the query independent of the underlying
concrete data.
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The sensitivity analysis for our rewritten query de-
pends on three properties. First, the stability [55] of
the underlying relation is 1. The stability of a relation
measures how much the transformations used to create it
from underlying tables change the number of rows before
aggregation. A stability of 1 means that these transfor-
mations do not change the number of rows. Second, each
value is clipped to lie between 0 and 100 before being ag-
gregated. Third, the aggregation being performed is a SUM,
whose global sensitivity is equal to (u− l) ·s where u and
l are the upper and lower clipping bounds, respectively,
and s is the stability of the underlying relation.

We can use CHORUS to build an analysis which
encodes these three properties by developing a pair of
abstract domains that track properties of subexpressions
of the query. The abstract values in these domains are
placeholders for arbitrary relations, annotated with upper
bounds on their stabilities or sensitivities. The stability
domain tracks the stability (defined above) of relational
expressions; the sensitivity domain tracks upper and lower
bounds of values, and the global sensitivity (defined in
Section 2) of values.

case c lass ColSens (
s e n s i t i v i t y : Option [ Double ] ,
upper : Double ,
lower : Double )

ob jec t SensDomain
extends AbstractDomain [ ColSens ] {
ove r r i de va l bottom : ColSens =

ColSens (
s e n s i t i v i t y = None ,
upper = P o s i t i v e I n f i n i t y ,
lower = N e g a t i v e I n f i n i t y ) }

The second part is to implement the analysis itself,
which encodes the rules for updating the domain. For sta-
bility, we will return a stability of 1 for relations resulting
from a single table, and a stability of infinity otherwise.
For sensitivity, we will follow the rules outlined above:
the sensitivity and upper and lower bounds of a column
reference start out infinite; upper and lower bounds are
introduced using the max and min functions, respectively;
and sensitivity is bounded using the COUNT and SUM ag-
gregation functions. The definition of the analysis appears
in Figure 2.

The abstract interpretation framework in CHORUS ad-
dresses a key challenge of deploying differentially private
mechanisms for realistic SQL queries: SQL queries can
be extremely complicated, and building sound analyses of
these queries (e.g. for determining sensitivity) is corre-
spondingly difficult.

The CHORUS analysis library allows a small amount
of code to define sound analyses which support these com-
plicated queries. The analysis we have defined here can be
used even on queries with features we have not discussed,
including subqueries, queries with WHERE clauses, and so
on. This ability is based on the same parser and relational
abstract syntax tree support described in the last section,
extended with a dataflow analysis.

CHORUS implements a dataflow library for relational
ASTs based on the classic monotone framework [45].
In this framework, the programmer defines an abstract
domain as a lattice, provides a join operator for computing
the least upper bound of two points in the lattice, and
writes transfer functions to specify the effect of each

c lass SensAnalysis extends ColAnalys is ( SensDomain ) {
ove r r i de def t rans fe rAggregate (

node : Aggregate ,
s t a t e : ColSens ) = {

node . aggFunction match {
case Some( func ) =>

va l newSens i t i v i t y = func match {
case COUNT => s ta te . nodeFact . s t a b i l i t y
case SUM =>

( s t a t e . nodeFact . upper s ta te . nodeFact . lower )
* s t a t e . nodeFact . s t a b i l i t y

case => P o s i t i v e I n f i n i t y
}

co lS ta te . copy (
s e n s i t i v i t y = Some( newSens i t i v i t y ) ,
upper = P o s i t i v e I n f i n i t y ,
lower = N e g a t i v e I n f i n i t y )

} }

ove r r i de def t rans fe rExpress ion (
node : RexNode ,
s ta te : ColSens ) = {

va l bot = s ta te . copy (
s e n s i t i v i t y = None ,
upper = P o s i t i v e I n f i n i t y ,
lower = P o s i t i v e I n f i n i t y )

node match {
case c : RexCall =>

c . getOperator . getKind match {
case SqlKind . Max =>

s ta te . copy ( upper=c . getOperands [ 0 ] )
case SqlKind . Min =>

s ta te . copy ( lower=c . getOperands [ 0 ] )
case => bot

}
case => bot

} } }

Figure 2: Static Analysis for Determining Sensitivity of
SUM and COUNT Queries, with Clipping

operator in the programming language on its inputs. In
CHORUS, these are specified as regular Scala functions.
The framework uses these to generate an abstract inter-
preter [63] that checks properties of programs by comput-
ing conservative approximations of the program’s output.

This abstract interpretation framework greatly sim-
plifies the task of analyzing a query to determine its
properties. Above, we have defined a domain which tracks
two properties of the query: (1) bounded ranges for val-
ues in sub-parts of the query, introduced by clipping,
and (2) sensitivity of the query, based on aggregation
functions and the bounded ranges determined in part (1).
Implemented directly on abstract syntax trees, such an
analysis would comprise hundreds of lines of complicated
code; CHORUS’s analysis library is designed to provide
re-usable components to make these tasks simple.

4.3. Post-Processing

Finally, we use the rewriter and analyzer we have
defined to produce a new SQL query with bounded sen-
sitivity, run the query using the DBMS, and add Laplace
noise to the results.

def laplaceMechCl ip ( query : S t r ing ,
eps i l on : Double ) : L i s t [Row] = {

va l r e w r i t t e n = r e w r i t e C l i p (0 , 100)( query )
va l sens = SensAnalysis ( ) . analyze ( r e w r i t t e n )

va l r = DB. execute ( r e w r i t t e n )
r + U t i l s . Laplace ( sens / eps i l on )

}

541



Here, the call to DB.execute actually runs the query on
the DBMS used in deployment. CHORUS works with
any DBMS with a JDBC interface, and the configuration
information for the DBMS is specified in CHORUS’s
configuration file.

This mechanism is ready for deployment using CHO-
RUS, which enables it to run alongside any standard SQL
DBMS and scale to massive databases. Since the code
we have defined here is part of a static analysis of just
the query, the scalability of our mechanism depends only
on the ability of the cooperating DBMS to execute the
rewritten query (which has only minor changes).

Our mechanism definitions are simply Scala functions,
and can be exposed to analysts in a number of differ-
ent ways depending on the deployment scenario (more
in Section 6). The CHORUS post-processing library pro-
vides a number of useful utilities, including the Laplace
mechanism (used above), the Gaussian mechanism, the
Exponential mechanism, and various forms of clipping.

This simple example illustrates how CHORUS enables
a rewrite-analyze-postprocess pattern to achieve its design
goals of enabling mechanisms which change how the
query executes while integrating easily with an existing
DBMS. We will see this pattern repeatedly in the more
complicated mechanisms we will develop in Section 5.

4.4. Budgeting & Mechanism Selection

The CHORUS API provides two interfaces for privacy
budget accounting: PrivacyCost, to represent privacy costs,
and PrivacyAccountant, to track the total cost of composing
many mechanisms.

The PrivacyCost interface requires the programmer to de-
fine the + method in accordance with the sequential com-
position property of the corresponding privacy definition.
The following two classes define privacy costs for pure
ε-differential privacy and Rényi differential privacy [58]
(we have also defined privacy cost for (ε, δ)-differential
privacy and Zero-concentrated differential privacy [22]):

case c lass EpsilonDPCost ( eps i l on : Double )
extends Pr ivacyCost {

def +( o ther : Pr ivacyCost ) = o ther match {
case EpsilonDPCost ( o therEps i lon ) =>

EpsilonDPCost ( eps i lon + o therEps i lon ) }}

case c lass RenyiDPCost ( alpha : I n t , eps i l on : Double )
extends Pr ivacyCost {

def +( o ther : Pr ivacyCost ) = o ther match {
case RenyiDPCost ( otherAlpha , o therEps i lon ) =>

RenyiDPCost ( math .max( alpha , otherAlpha ) ,
eps i l on + o therEps i lon ) }}

The PrivacyAccountant class enables different approaches
to computing the total budget used over many queries. The
base class tracks the privacy costs of individual mecha-
nisms, and the programmer defines a getTotalCost method
to compose these costs. For example, the following two
classes define accountants for advanced composition of
pure ε-differentially private mechanisms and for Rényi
differential privacy:

c lass AdvancedCompositionAccountant ( de l t a : Double )
extends Pr ivacyAccountant {

def getTota lCost ( ) = {
va l eps i lons = costs .map( . eps i l on )
va l t o t a l E p s i l o n = 2* ( eps i lons .max ) *

math . s q r t ( 2 * ( eps i lons . leng th ) * math . log ( 1 / de l t a ) )
Epsi lonDeltaDPCost ( t o t a l E p s i l o n , de l t a ) }}

c lass RenyiComposit ionAccountant
extends Pr ivacyAccountant {

def getTota lCost ( ) =
costs . f o l d ( RenyiDPCost (0 , 0 ) ) ( + ) }

Finally, the ChorusMechanism abstract class defines a
standard interface for mechanisms, and integrates them
with a chosen privacy accountant. Each mechanism class
defines a run method that returns a differentially private
result and a PrivacyCost object. To run a mechanism with
accountant a, the programmer calls execute(a), which in-
vokes run, adds the mechanism’s cost to the accountant,
and returns the result. For example, we can package our
Laplace mechanism into a CHORUS mechanism:

c lass laplaceMechanism ( eps i l on : Double , l : Double ,
u : Double , roo t : Re la t ion )

extends ChorusMechanism [ L i s t [DB.Row ] ] {
def run ( ) = ( laplaceMechCl ip ( eps i lon , l , u , r oo t ) ,

EpsilonDPCost ( eps i l on ) ) }
These interfaces provide a flexible way to build sys-

tems that leverage existing mechanisms, permit building
new mechanisms from old ones, and even allow im-
plementing automatic mechanism selection (via “mech-
anisms” that use query properties to select from a list
of mechanisms to run). For example, for our prototype
deployment, we implemented a CHORUS mechanism that
runs one of three individual mechanisms using a simple
rule-based approach.

5. Mechanism Development with CHORUS

This section demonstrates the use of CHORUS to im-
plement a number of different mechanisms, from simple
ones based on the Laplace mechanism to more advanced
algorithms like Sample and Aggregate and MWEM.

5.1. Average Queries

Average queries are typically answered with differen-
tial privacy by transforming the query into two separate
differentially private queries—a SUM and a COUNT—and
performing the division as post-processing.

We can implement this approach in CHORUS by re-
using the building blocks we have already built. First, we
will develop two rewriters: one that turns AVG into SUM,
and another that turns AVG into COUNT. We will rewrite the
input query twice, once with each rewriter, and then run
both rewritten queries using the mechanism we developed
in Section 4. The full implementation appears in Figure 3.

This modular approach illustrates a key benefit of
CHORUS’s design: the ability to re-use existing mecha-
nisms to implement new ones. We will see this pattern
used again in later mechanisms to reduce complexity.

5.2. Report Noisy Max

The report noisy max mechanism [32] takes a list of
queries as input, adds independently drawn noisy to each
one, and returns the index of the maximum noisy result.
The key advantage of report noisy max is that it consumes
privacy budget proportional to one query, regardless of the
length of the list of queries specified by the analyst.

This mechanism can be implemented in CHORUS by
extending the ideas in the laplaceMechClip mechanism to a list
of queries, and returning only the index of the maximum
value in the resulting list:
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def avgMech ( query : Rela t ion , eps i l on : Double ) = {
def replaceAvg ( q : Rela t ion , aggFn : Aggregate ) = {

Chorus . recurs i veRewr i te ( q ) { ( node : Re la t ion ) =>
node match {

case Re la t ion ( a : SqlAvgAggFunction ) => {
va l r = a . mapCols { co l =>

aggFn ( co l ) AS co l . a l i a s }
( r , ( ) )

}
case => ( node , ( ) )

} } }

va l sumQuery = replaceAvg ( query , Sum)
va l countQuery = replaceAvg ( query , Count )

va l r1 = laplaceMechCl ip ( sumQuery , eps i l on / 2)
va l r2 = laplaceMechCl ip ( countQuery , eps i l on / 2)
r1 / r2 }

Figure 3: AVG Mechanism in CHORUS

def reportNoisyMax ( quer ies : L i s t [ Re la t ion ] ,
eps i l on : Double ) : I n t = {

va l r e s u l t s = quer ies .map(
laplaceMechCl ip ( , eps i lon , 0 , 1 ) )

U t i l s . argmax ( r e s u l t s ) }

Our implementation of the report noisy max mecha-
nism demonstrates two important principles. First is the
use of a workload of queries: since CHORUS mecha-
nisms are implemented as regular Scala functions, they
can accept queries in any format, including a workload
of SQL queries. Second is the splitting of mechanism
logic between Scala and SQL: query results can be post-
processed with Scala code in arbitrary ways (here, we use
Scala to find the maximum workload result).

5.3. Exponential Mechanism

The exponential mechanism [54] is the generalized
version of report noisy max: it selects an element of a set
R which approximately maximizes the value of a scoring
function. The scoring function q : Dn → R → R assigns
numeric scores to each element of R based on the private
database (in report noisy max, the scoring function simply
returns the value of the query). For a scoring function with
sensitivity Δ = GS(q) and a database X , the exponential
mechanism outputs r ∼ R with probability proportional
to:

Pr[r] ∼ exp
(εq(X, r)

2Δ

)

In report noisy max, the scoring function was fixed, so
it was easy to assume something about its sensitivity and
apply it directly to each query in the workload. The gen-
eralized exponential mechanism makes this process more
difficult: since the analyst specifies the scoring function,
we cannot assume anything about its sensitivity.

The solution is to ask the analyst to provide the scoring
function as a query, so that we can analyze its sensitivity
directly. This query should produce a relation mapping
elements in R to their scores. For example, the following
query implements a scoring function which will allow
selecting the day of the week with approximately the
largest number of trips:

SELECT day , COUNT( * ) as score
FROM t r i p s
GROUP BY day

We can use the same basic analysis as before to show
that this query has a sensitivity of 1, and then perform

def sparseVectorMech ( quer ies : L i s t [ Re la t ion ] ,
th resho ld : Double , eps i l on : Double ) = {

va l sens = r e w r i t t e n .map( SensAnalysis ( ) . analyze ( ) )

/ / r equ i re s e n s i t i v i t y 1 quer ies
i f ( sens . e x i s t s ( > 1 ) )

r e t u r n None

/ / generate noisy th resho ld
va l T = th resho ld + U t i l s . laplaceSample ( 2 / eps i l on )

f o r ( i < 0 to quer ies . leng th ( ) ) {
va l r = DB. execute ( quer ies ( i ) )
i f ( r + U t i l s . Laplace ( 4 / eps i l on ) >= T)

r e t u r n Some( i ) }

r e t u r n None }

Figure 4: Sparse Vector Technique in CHORUS

the selection step of the exponential mechanism in a post-
processing step.

def exponentialMech ( scor ing : Rela t ion ,
eps i l on : Double ) = {

va l s = SensAnalysis . analyze ( scor ing )
va l scores = DB. execute ( scor ing )
va l t o ta lSco re = scores .map( . 2 ) . sum ( )
va l p r o b a b i l i t i e s = scores .map { r =>

( r ( 0 ) ,
( eps i l on * ( r ( 1 ) / t o ta lSco re ) ) / (2 * s ) ) }

U t i l s . chooseWi thProbab i l i t y ( p r o b a b i l i t i e s ) . 1
}

Our implementation here uses Utils .chooseWithProbability to
select from the elements of R with the appropriate prob-
abilities (this function expects a list of tuples mapping
domain elements to their probabilities, and implements
weighted random selection). We return just the identity
of the element which was selected, similar to the report
noisy max mechanism.

5.4. Sparse Vector Technique

The sparse vector technique (SVT) [32] releases the
index (but not the result) of the first query in a sequence
of queries whose result exceeds a threshold set by the
analyst. Like report noisy max, SVT consumes privacy
budget proportional to just one query. In situations where
only a small number of queries are likely to have large
enough results to be useful to the analyst (but the an-
alyst does not know which ones), SVT can be applied
repeatedly to answer the useful queries while minimizing
privacy budget consumption.

We can define a CHORUS mechanism to implement
SVT in a similar way to the report noisy max mechanism.
In contrast to the report noisy max mechanism, however,
SVT is iterative—it runs the queries in the workload in
sequence, and may halt before running all of them. SVT
first adds Laplace noise to the threshold, then compares
the noisy result of each query to the noisy threshold. SVT
releases the index of the first query whose noisy value
exceeds the noisy threshold.

Our implementation appears in Figure 4. First, it an-
alyzes each query to ensure that the query’s sensitivity
does not exceed 1, and returns None if not. Then, it uses
Utils .Laplace to add noise to both the threshold and each
query result, and returns Some(i) for the first index i whose
noisy query result exceeds the noisy threshold. If no query
exceeds the threshold, we return None.
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This implementation corresponds to the AboveThreshold

algorithm described by Dwork and Roth [32]. This algo-
rithm can be combined with our earlier mechanisms to
release the value of the first query above the threshold:

def sparseVectorMechValue ( quer ies : L i s t [ Re la t ion ] ,
th resh : Double , eps i l on : Double ) = {

va l i = sparseVectorMech ( quer ies , thresh , eps i l on / 2 )
laplaceMechCl ip ( quer ies ( i ) , eps i l on / 2 ) }

This mechanism combines SVT with the Laplace mecha-
nism to find the value of the first query above the threshold
(not just its index), splitting the privacy budget between
these two tasks. This mechanism illustrates the ease of
combining mechanisms in CHORUS to build complex
functionality.

5.5. Sample & Aggregate

The Sample & Aggregate [64], [75] mechanism
works for all statistical estimators, but does not support
joins. Sample & Aggregate has been implemented in
GUPT [59], a standalone data processing engine that
operates on Python programs, but has never been inte-
grated with a high-performance DBMS. As defined by
Smith [75], the mechanism has three steps:

1) Split the database into disjoint subsamples
2) Run the query on each subsample independently
3) Aggregate the results using a differentially private

algorithm

We can use the DBMS to accomplish tasks 1 and 2 by
modifying the analyst’s original query. We add a GROUP BY

clause to the original query which groups rows according
to their row number. Sample and aggregate does not
require the subsamples to be randomized, so basing the
selection of the subsamples on row number satisfies its
requirements. For example, we can transform a simple
AVG query as follows:

SELECT AVG( t r i p d i s t a n c e ) FROM t r i p s

⇓
SELECT AVG( t r i p d i s t a n c e ) , ROW NUM( ) MOD n AS grp
FROM t r i p s
GROUP BY grp

This transformation generates n subsamples and runs the
original query on each one. Once we have obtained the
answers to query on the subsamples, we can perform dif-
ferentially private aggregation as a post-processing step—
with clipping followed by a noisy average. The complete
implementation appears in Figure 5.

5.6. Additional Mechanisms

We present CHORUS implementations of three addi-
tional mechanisms in in Appendix A: Weighted PINQ,
the Matrix Mechanism, and MWEM.

6. Implementation & Deployment

This section describes the deployment of CHORUS to
protect sensitive data and provide a secure, differentially
private interface for analysts to query that data. We also
describe our experience deploying CHORUS to enforce
differential privacy at Uber.

A typical deployment of a CHORUS mechanism in-
cludes a centralized query interface which allows the

def rewriteSAA ( n : I n t , r oo t : Re la t ion ) = {
r oo t . rewr i teRecurs ive ( UnitDomain ) {

( node , or ig , ) =>
node match {

/ / Add new subsample number column
case Re la t ion ( t : TableScan ) =>

( node . p r o j e c t ( * , RowNumMod AS ” grp ” ) , ( ) )

/ / Group by the subsample number
case Re la t ion ( a : Aggregate ) =>

( a addGroupedColumn co l ( ” grp ” ) , ( ) )

case => ( node , ( ) )
} } }

def saaMech ( query : Rela t ion , l : Double , u : Double ,
numSubsamples : I n t , eps i l on : Double ) = {

/ / r e w r i t e the query to perform subsampling
va l r e w r i t t e n = rewriteSAA ( numSubsamples , query )
/ / execute r e w r i t t e n query and get subsample r e s u l t s
va l r = db . execute ( r e w r i t t e n ) . map( . 2 )

/ / c a l c u l a t e s e n s i t i v i t y
va l sens = ( u l ) / numSubsamples

/ / c a l c u l a t e noisy average v ia c l i p p i n g
va l mean = U t i l s . mean( U t i l s . c l i p ( r , l , u ) )
r + U t i l s . Laplace ( sens / eps i l on ) }

Figure 5: Sample & Aggregate in CHORUS

DBMSs containing sensitive data to be queried only via
the mechanism. In such a deployment, untrusted analysts
submit queries to the centralized query interface, which
runs the mechanism and updates the privacy budget. The
interface may enable auditing of the budget by a trusted
curator of the system, and rejection of queries after the
budget has been exhausted.

Implementation. Our implementation is built on Apache
Calcite [1], a generic query optimization framework that
transforms input queries into a relational algebra tree and
provides facilities for transforming the tree and emitting
a new SQL query. We built CHORUS’s custom dataflow
analysis and rewriting components on Calcite to support
the CHORUS programming framework. The framework,
mechanism-specific analyses, and rewriting rules are im-
plemented in 5,096 lines of Java and Scala code.

The approach could also be implemented with other
query optimization frameworks or rule-based query rewrit-
ers such as Starburst [66], ORCA [5], and Cascades [36].

Real-world Deployment. CHORUS has been tested in a
deployment to enforce differential privacy for queries over
customer data at Uber. The primary goals of this deploy-
ment are to protect the privacy of customers from insider
attacks, and to ensure compliance with the requirements of
Europe’s General Data Protection Regulation (GDPR) [4].
The mode of deployment calls for CHORUS to process
more than 10,000 queries per day.

The deployment’s data environment consists of several
DBMSs (three primary databases, plus several more for
specific applications), and a single central query interface
through which all queries are submitted. The query inter-
face is implemented as a microservice that performs query
processing and then submits the query to the appropriate
DBMS and returns the results.

Deployment involved building a minimal wrapper
around the CHORUS library to expose its rewriting func-
tionality as a microservice. The only required change
to the data environment was a single modification to
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the query interface, to submit queries to the CHORUS

microservice for rewriting before execution. The wrapper
around CHORUS also queries a policy microservice to
determine the security and privacy policy for the user sub-
mitting the query. This policy informs which mechanism
is used—by default, differential privacy is required, but for
some privileged users performing specific business tasks,
differential privacy is only used for older data.

A major challenge of this deployment has been sup-
porting the variety of SQL dialects used by the various
DBMSs. This challenge motivated the built-in support for
different dialects in the CHORUS framework.

The privacy budget is managed by the microservice
wrapper around CHORUS. The microservice maintains
a small amount of state to keep track of the current
cumulative privacy cost of all queries submitted so far,
and updates this state when a new query is submitted. The
current design of the CHORUS microservice maintains a
single global budget.

7. Evaluation

In this section, we evaluate the performance overhead
of enforcing differential privacy using CHORUS in the
context of real-world queries on a large production dataset.
Our results demonstrate that the mechanism implementa-
tions we have developed using CHORUS scale effectively
to realistic datasets using commodity DBMSs.

Our evaluation is intended to demonstrate the scalabil-
ity of the CHORUS approach, rather than the ability of the
mechanisms we implemented to produce accurate results.
The accuracy we obtain in each of our experiments is a
direct result of the underlying mechanism used in the ex-
periment, and the same accuracy would be obtained using
an alternative implementation of the same mechanism.

Corpus. We use a corpus of 18,774 real-world queries
containing all statistical queries executed by data ana-
lysts at Uber during a single month. The corpus includes
queries written for several use cases including fraud de-
tection, marketing, business intelligence and general data
exploration.

Dataset. We used a database of data sampled from the
production database in our evaluation. This database con-
tained 300 million records representing trip data similar in
nature to the New York City Taxi Trip Data [6]—including
information about trips, riders, and drivers.

Mechanisms. In our evaluation, we considered two more
complicated variants of the sensitivity-based mechanism
we developed in Section 4: elastic sensitivity [44] and
restricted sensitivity [19]. These mechanisms can answer
existing counting and summation queries written by ana-
lysts unfamiliar with differential privacy, like those in our
corpus. We also considered the performance of Weighted
PINQ [67], since it performs more serious modifications
to the analyst’s query.

7.1. Performance Overhead

We conduct a performance evaluation demonstrating
the performance overhead of several mechanisms imple-
mented with CHORUS.

Experiment Setup. We used a single HP Vertica 7.2.3 [7]
node containing 300 million records including trips, rider
and driver information and other associated data stored
across 8 tables. We submitted the queries locally and ran
queries sequentially to avoid any effects from network
latency and concurrent workloads.

To establish a baseline we ran each original query
10 times and recorded the average after dropping the
lowest and highest times to control for outliers. Then,
we ran each CHORUS mechanism 10 times and recorded
the average execution time, again dropping the fastest and
slowest times. We calculate the overhead for each query
by comparing the average runtime of the original query
and the CHORUS mechanism.

Results. Figure 6 shows the distribution of overhead as a
function of original query execution time. This distribution
shows that the percentage overhead is highest when the
original query was very fast (less than 100ms). This is
because even a small incremental performance cost is
fractionally larger for these queries.

WPINQ significantly alters the way the query executes
(see Section 5) and these changes increase query execution
time. In particular, the query transformation adds a new
join to the query each time weights are rescaled (i.e. one
new join for each join in the original query), and these
new joins result in the additional overhead. Figure 6 shows
that, in both cases, the performance impact is amortized
over higher query execution times, resulting in a lower
relative overhead for more expensive queries.

7.2. Utility

We also measured the ability of some of the mech-
anisms we have implemented with CHORUS to produce
accurate differentially private results for queries in our
corpus, primarily as a study of whether or not differential
privacy is a good fit for these queries. These mechanisms
were previously proposed, and their accuracy properties
were previously known. Our experimental results confirm
existing knowledge using real-world queries and data.

For this experiment, we used the elastic sensitivity and
restricted sensitivity mechanisms described earlier. Eval-
uating the utility of more complicated mechanisms would
require re-formulating the queries in our corpus with the
help of the original analyst. All of these mechanisms have
been previously evaluated on synthetic query workloads,
and their ability to improve utility is well-understood; as
we gain experience with practical deployments, analysts
will begin to adopt these mechanisms and re-formulate
their queries.

Experiment Setup. We use the same setup described in
the previous section. For each query, we set the privacy
budget ε = 0.1 for all mechanisms. For Elastic Sensitivity,
we set δ = 1

n2 (where n is the database size).
We ran each query 10 times on the database and

report the median relative error across these executions.
For each run we report the relative error as the percentage
difference between the differentially private result and
the original non-private result. Consistent with previous
evaluations of differential privacy [43] we report error
as a proxy for utility since data analysts are primarily
concerned with accuracy of results.
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Figure 6: Performance overhead of differential privacy mechanisms by execution time of original query.

Figure 7: Utility of elastic sensitivity and restricted sensitivity, by presence of joins.

Query Sample Size. Our corpus includes queries covering
a broad spectrum of use cases, from highly selective
analytics (e.g., trips in San Francisco completed in the
past hour) to statistics of large populations (e.g., all trips
in the US). Differential privacy generally requires the
addition of more noise to highly selective queries than
to queries over large populations, since the influence of
any individual’s data diminishes as population size in-
creases. Consequently, a query’s selectivity is important
for interpreting the relative error introduced by differential
privacy. To measure the selectivity we calculate the sample
size of every aggregation function in the original query,
which represents the number of input records to which the
function was applied.

Results. Figure 7 shows the results of this experiment.
Both mechanisms exhibit the expected inverse relationship
between sample size and error; moreover, this trend is
apparent for queries with and without joins.

Importantly, a very large portion of the queries with
large sample sizes have very small relative error—the
majority of queries with a sample size of over 10,000, for
example, have less than 1% error. This suggests that for at
least a subset of the queries in this production corpus, dif-
ferential privacy can be enforced without significant harm
to accuracy. Furthermore, more advanced mechanisms like
the ones described in Section 5 could provide significant
improvements for the accuracy of these queries.

A significant number of queries with small sample
size also result in large relative error. It is likely that
many of these queries are intended to violate privacy—
perhaps they examine the data of an individual or small
set of individuals directly—and so differential privacy is
probably not appropriate for these queries.

7.3. Discussion and Key Takeaways

Strengths & weaknesses of differential privacy. The
mechanisms we studied generally worked best for statis-

tical queries over large populations. None of the mecha-
nisms was able to provide accurate results (e.g. within 1%
error) for a significant number of queries over populations
smaller than 1,000. These results confirm the existing
wisdom that differential privacy is ill-suited for queries
with small sample sizes. For large populations (e.g. more
than 10,000), accurate differentially private results for
real-world queries appears to be an achievable goal. A
large set of such queries exists in our corpus. These results
suggest that differential privacy can provide both strong
privacy guarantees and accurate query responses for a
large portion of the queries written by analysts in practice.

Our results also agree with the prior knowledge that
queries with joins make ensuring differential privacy more
challenging. For both mechanisms we used in our evalu-
ation, the proportion of queries with less than 1% error
was much smaller for queries with joins than for queries
without joins. Differential privacy for joins is an active
area of research [44], [49], and we hope that future
mechanisms can be implemented in CHORUS to provide
more accurate answers for these queries.

Mechanism performance. Our performance evaluation
demonstrates the scalability of mechanisms implemented
with CHORUS—the vast majority of the queries executed
with the elastic sensitivity and restricted sensitivity mech-
anisms resulted in less than 50% overhead, and the mean
overhead for both was below 25%. However, the results
also highlight the variability in computation costs of
differential privacy mechanisms—WPINQ’s added joins
resulted in high performance overhead for some queries.

8. Related Work

Differential Privacy. Differential privacy was originally
proposed by Dwork [28]–[30]. The reference by Dwork
and Roth [32] provides an overview of the field.

Much recent work has focused on task-specific mecha-
nisms for graph analysis [24], [42], [46], [47], [72], range
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queries [8], [25], [41], [50]–[53], [68], [81], [82], [85],
and analysis of data streams [31], [74]. As described in
Section 7.3, such mechanisms are complementary to our
approach, and could be implemented on top of CHORUS

to provide more efficient use of the privacy budget.

Differential Privacy Systems. As differential privacy is
more widely adopted, scalable implementations of differ-
ential privacy mechanisms have received more attention.
Wilson et al. recently developed an open source, highly
performant C++ library [80] which provides basic differ-
ential privacy mechanisms as an extension to PostgreSQL.
However, their approach does not support other DBMSs.
It also does not provide a framework for development of
additional mechanisms; more complex mechanisms, like
MWEM, would need to be added directly to the C++
library as new primitives.

The problem of answering SQL queries has also
received considerable attention in recent years. The
FLEX [44] system answers counting queries with dif-
ferential privacy, and since it implements the post-
processing architecture, it is DBMS-independent. How-
ever, FLEX cannot implement more complex mechanisms
like MWEM. PrivateSQL [49] answers SQL queries with
differential privacy by generating differentially private
synopses of views, then using the synopses to answer
queries. This approach is potentially scalable, but limits
the set of implementable mechanisms.

A number of other systems for enforcing differen-
tial privacy have been developed. PINQ [55] supports a
LINQ-based query language, and implements the Laplace
mechanism with a measure of global sensitivity. Weighted
PINQ [67] extends PINQ to weighted datasets, and im-
plements a specialized mechanism for that setting.

Airavat [71] enforces differential privacy for MapRe-
duce programs using the Laplace mechanism. Fuzz [35],
[40] enforces differential privacy for functional programs,
using the Laplace mechanism in an approach similar to
PINQ. DJoin [60] enforces differential privacy for queries
over distributed datasets. Due to the additional restrictions
associated with this setting, DJoin requires the use of
special cryptographic functions during query execution so
is incompatible with existing databases. GUPT [59] im-
plements the Sample & Aggregate framework for Python
programs. None of these systems offers integration with
high-performance DBMSs.

Security & Privacy via Query Rewriting. Automated
query transformations have been used in previous work
to implement access control. Stonebreaker and Wong [76]
presented the first approach. Barker and Rosenthal [11]
extended the approach to role-based access control by first
constructing a view that encodes the access control policy,
then rewriting input queries to add WHERE clauses that
query the view. Byun and Li [23] use a similar approach
to enforce purpose-based access control: purposes are
attached to data in the database, then queries are modified
to enforce purpose restrictions drawn from a policy.

Since then, a number of rewriting-based approaches
have been proposed for enforcing access control. Agrawal
et al. [9] use query rewriting to enforce row-level privacy
policies focused on access control. Bender et al. [17], [18]
combine query rewriting with specially-designed views
to enforce privacy policies organized in “disclosure lat-

tices.” Wang et al. [78] propose fine-grained cell-level
access control policies, with an enforcement mechanism
based on query rewriting. Rizvi et al. [70] propose an
access control mechanism based on “authorization views”
which define policies, and use query rewriting to re-phrase
queries in terms of these views. Oracle’s Virtual Private
Database [20] enforces fine-grained access control policies
using query rewriting. All of these are primarily focused
on access control policies.

Mehta et al. present Qapla [56], a system which
uses query rewriting to enforce policies written in SQL.
Notably, Qapla includes aggregation policies, which go
beyond traditional access control policies to allow the
release of aggregate statistics while protecting the under-
lying rows, but Qapla does not support differential privacy
or other formal notions of privacy.

Guarnieri et al. [38], [39] explore the challenges of
enforcing access control policies in the context of a
complicated and expressive query language like SQL,
and highlight the need for provable guarantees about
the enforcement mechanism. Zhang and Mendelzon [86]
study one of these challanges—the problem of “query
containment”—in the context of proving correctness for
query rewriting enforcement mechanisms. These results
reinforce the value of additional work in the future to
verify the correctness of our rewriting algorithms.

9. Conclusion

This paper presents CHORUS, a framework which
enables a novel cooperative architecture for enforcing
differential privacy. CHORUS works closely with a high-
performance DBMS to scale differential privacy mecha-
nisms to real-world deployments. CHORUS combines the
strengths of integrated implementations (whose scalability
does not match high-performance industrial DBMSs) and
post-processing based implementations (which scale up,
but are incompatible with many modern differential pri-
vacy mechanisms). We have described how CHORUS can
be deployed to provide differential privacy, and released
it as open source [3].
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and Sam Madden, editors, Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, pages 139–154.
ACM, 2016.

[44] Noah Johnson, Joseph P Near, and Dawn Song. Towards practical
differential privacy for sql queries. Proceedings of the VLDB
Endowment, 11(5):526–539, 2018.

[45] John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis
frameworks. 7(3):305–317, January 1977. Data Flow Analysis.

[46] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory
Yaroslavtsev. Private analysis of graph structure. Proceedings of
the VLDB Endowment, 4(11):1146–1157, 2011.

[47] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhod-
nikova, and Adam Smith. Analyzing graphs with node differential
privacy. In Theory of Cryptography, pages 457–476. Springer,
2013.

[48] Ios Kotsogiannis, Ashwin Machanavajjhala, Michael Hay, and
Gerome Miklau. Pythia: Data dependent differentially private
algorithm selection. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 1323–1337. ACM,
2017.

[49] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ash-
win Machanavajjhala, Michael Hay, and Gerome Miklau. Pri-
vatesql: a differentially private sql query engine. Proceedings of
the VLDB Endowment, 12(11):1371–1384, 2019.

[50] Chao Li, Michael Hay, Gerome Miklau, and Yue Wang. A data-
and workload-aware algorithm for range queries under differential
privacy. Proceedings of the VLDB Endowment, 7(5):341–352,
2014.

[51] Chao Li, Michael Hay, Vibhor Rastogi, Gerome Miklau, and
Andrew McGregor. Optimizing linear counting queries under
differential privacy. In Proceedings of the twenty-ninth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 123–134. ACM, 2010.

[52] Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and
Vibhor Rastogi. The matrix mechanism: optimizing linear counting
queries under differential privacy. The VLDB Journal, 24(6):757–
781, 2015.

[53] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin
Machanavajjhala. Optimizing error of high-dimensional statisti-
cal queries under differential privacy. Proceedings of the VLDB
Endowment, 11(10):1206–1219, 2018.

[54] Frank McSherry and Kunal Talwar. Mechanism design via differen-
tial privacy. In Foundations of Computer Science, 2007. FOCS’07.
48th Annual IEEE Symposium on, pages 94–103. IEEE, 2007.

[55] Frank D McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In Proceedings of
the 2009 ACM SIGMOD International Conference on Management
of data, pages 19–30. ACM, 2009.

[56] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and
Peter Druschel. Qapla: Policy compliance for database-backed
systems. In 26th {USENIX} Security Symposium ({USENIX}
Security 17), pages 1463–1479, 2017.

[57] Ilya Mironov. On significance of the least significant bits for
differential privacy. In Proceedings of the 2012 ACM conference
on Computer and communications security, pages 650–661, 2012.
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Appendix A.
Additional Mechanisms

This appendix presents CHORUS implementations
of three additional mechanisms: Weighted PINQ (Ap-
pendix A.1), the Matrix Mechanism (Appendix A.2), and
MWEM (Appendix A.3).

A.1. Weighted PINQ

Weighted PINQ (WPINQ) enforces differential pri-
vacy for counting queries with equijoins. A key distinction
of this mechanism is that it produces a differentially
private metric (called a weight), rather than a count. These
weights are suitable for use in a workflow that generates
differentially private synthetic data, from which counts
are easily derived. The workflow described in [67] uses
weights as input to a Markov chain Monte Carlo (MCMC)
process.

Our CHORUS implementation of WPINQ computes
noisy weights for a given counting query according to
the mechanism’s definition [67]. Since the weights are
differentially private, they can be released to the analyst
for use with any desired workflow.

The WPINQ mechanism adds a weight to each row of
the database, updates the weights as the query executes to
ensure that the query has a sensitivity of 1, and uses the
Laplace mechanism to add noise to the weighted query
result. WPINQ has been implemented as a standalone
data processing engine with a specialized query language,
but since the mechanism cannot be implemented via post-
processing alone, it has not been integrated into any SQL
DBMS.

Where a standard database is a collection of tuples
in Dn, a weighted database (as defined in Proserpio et

al. [67]) is a function from a tuple to its weight (D → R).
In this setting, counting the number of tuples with a
particular property is analogous to summing the weights
of all such tuples. Counting queries can therefore be
performed using summations.

In fact, summing weights in a weighted dataset pro-
duces exactly the same result as the corresponding count-
ing query on the original dataset, when the query does
not contain joins. When the query does contain joins,
WPINQ scales the weight of each row of the join’s output
to maintain a sensitivity of 1. Proserpio et al. [67] define
the weight of each row in a join as follows, where Ak is
the weights of rows of relation A with join key k:

A��B =
∑
k

Ak ×BT
k

||Ak||+ ||Bk|| (1)

Since the scaled weights ensure a sensitivity of 1,
Laplace noise scaled to 1/ε is sufficient to enforce dif-
ferential privacy. WPINQ adds noise with this scale to
the results of the weighted query.

In our CHORUS implementation of WPINQ, we use
the DBMS to track the weights associated with each
column in computed relations. We can accomplish this
by modifying the analyst’s query to add weight a column
to each relation. Consider the transformation for a simple
counting query, in which we initialize each weight to 1:

SELECT COUNT( * ) FROM t r i p s

⇓
SELECT SUM( weight )
FROM (SELECT * , 1 AS weight FROM t r i p s )

This transformation adds a weight of 1 to each row in
the table, and changes the COUNT aggregation function
into a SUM of the rows’ weights. The correctness of this
transformation is easy to see: as required by WPINQ [67],
the transformed query adds a weight to each row, and uses
SUM in place of COUNT.

We can accomplish the second task (scaling weights
for joins) by first calculating the norms ||AK || and ||Bk||
for each key k, then the new weights for each row using
Ak × BT

k . For a join between the trips and drivers tables,
for example, we can compute the norms for each key:

WITH tnorms AS (SELECT d r i v e r i d ,
SUM( weight ) AS norm

FROM t r i p s
GROUP BY d r i v e r i d ) ,

dnorms AS (SELECT id , SUM( weight ) AS norm
FROM d r i v e r s
GROUP BY i d )

Then, we join the norms relations with the original results
and scale the weight for each row:

SELECT . . . ,
( t . weight *d . weight ) / ( tn . norm+dn . norm ) AS weight

FROM t r i p s t , d r i v e r s d , tnorm tn , dnorm dn
WHERE t . d r i v e r i d = d . i d

AND t . d r i v e r i d = tn . d r i v e r i d
AND d . i d = dn . i d

The correctness of this transformation follows from
equation (1). The relation tnorms corresponds to ||Ak||, and
dnorms to ||Bk||. For each key, t .weight corresponds to Ak,
and d.weight to Bk.

Finally, we can accomplish the third task (adding
Laplace noise scaled to 1/ε) as a post-processing task.
Our complete CHORUS implementation defines a recursive
rewriter that replaces table references with subqueries that
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def matrixMech ( workload : Mat r i x [ I n t ] ,
s t ra tegyMat : Mat r i x [ I n t ] ,
s t rategyQs : L i s t [ S t r i n g ] ,
eps i l on : Double ) = {

/ / answer the quer ies i n the c e l l l i s t
va l answers = strategyQs .map { q =>

laplaceMechCl ip ( q , eps i l on / st rategyQs . leng th ( ) ) }

workload t imes ( s t r a tegy . mpInverse ( )
t imes c o l M a t r i x ( answers ) )

}

Figure 8: The Matrix Mechanism in CHORUS

initialize weights to 1, and joins with subqueries that
update the weights as above. By modifying the analyst’s
query to track and update weights using the DBMS, our
CHORUS implementation enables WPINQ to scale to large
datasets. We evaluate its performance in Section 7.1.

A.2. The Matrix Mechanism

The matrix mechanism [52] is another general ap-
proach for answering a set of counting queries. The insight
behind the matrix mechanism is that the optimal way of
answering a workload of counting queries might involve
first answering a different set of queries, then inferring the
answers to the workload queries based on these answers.
The matrix mechanism is defined in terms of three ma-
trices: the workload queries, represented as a matrix; the
strategy matrix, which specifies the queries to submit to
the database, and a matrix containing the answers to the
queries in the strategy matrix. Given these three matrices,
the method for answering the workload queries can be
specified as a matrix multiplication.

We present an implementation of the matrix mech-
anism in CHORUS in Figure 8. Its inputs are matrices
representing the workload and strategy, and a list of SQL
queries corresponding to the strategy queries. We use the
Laplace mechanism to answer the strategy queries, then
transform the results into a matrix representation and per-
form the matrix multiplication specified by Li et al. [52]
to obtain the workload results. The mpInverse method on
matrices implements the Moore–Penrose pseudoinverse.

The challenge of determining an optimal set of strat-
egy queries remains; Li et al. [52] consider this an orthog-
onal problem, and provide some heuristics for developing
good strategies. Each of these heuristics can be imple-
mented as Scala functions to generate sets of strategy
queries for our implementation of the matrix mechanism.

A.3. Multiplicative Weights (MWEM)

The MWEM algorithm [41] is an iterative algorithm
for answering a workload of counting queries with differ-
ential privacy. It provides a general algorithmic framework
for iteratively improving a differentially private synthetic
representation of the underlying data, until the synthetic
representation is able to answer the queries in the work-
load with high accuracy.

Here, we develop an implementation of MWEM for
1-dimensional range queries over a single database table,
based on a histogram representation of the data in the
table. The full implementation appears in Figure 9. To
use the mechanism, the analyst provides a list of range

def mwem( quer ies : L i s t [ ( Double , Double ) ] ,
b ins : L i s t [ Double ] ,
numIters : I n t ,
eps i l on : Double ) : L i s t [ ( Double , I n t ) ] = {

/ / answer range query using s y n t h e t i c rep resen ta t i on
def rangeQuerySyn ( synRep : L i s t [ ( Double , I n t ) ] ,

lower : Double , upper : Double ) = {
var count = 0
f o r ( i < 0 to synRep . leng th ( ) ) {

i f ( i <= lower && i < upper )
count = count + synRep ( i )

}

count
}

/ / answer range query using ac tua l data
def rangeQuery ( lower : Double , upper : Double ) =

Selec t Count ( * ) From T
Where C <= lower And C < upper

/ / update r u l e f o r MWEM
def mwemUpdate( lower : Double , upper : Double ,

synRep : Mutab leL is t [ ( Double , I n t ) ] ,
eps i l on : Double ) = {

va l realAnswer = DB. execute ( rangeQuery ( lower , upper ) )
+ U t i l . Laplace (1 / eps i l on )

va l synAnswer = rangeQuerySyn ( synRep , lower , upper )

va l t o t a l = synRep .map( . 2 ) . sum ( )
f o r ( i < 0 to synRep . leng th ( ) ) {

i f ( i <= lower && i < upper )
synRep ( i ) = synRep ( i ) *

exp ( ( realAnswer synAnswer ) / (2 * t o t a l ) )
}

}

/ / i n i t i a l i z e a l l counts to 100
va l synRep = bins .map( l => ( l , 100))

/ / s p l i t the p r i vacy budget
va l e p s i l o n i = eps i l on / numIters

f o r ( i < 0 to numIters ) {
/ / p i ck the ” worst ” query i n terms of accuracy
va l bQs = quer ies .map { case ( l , u ) =>

rangeQuery ( l , u ) rangeQuerySyn ( synRep , l , u ) }
va l qIdx = noisyMax (bQs , e p s i l o n i / 2)

/ / update s y n t h e t i c rep using se lec ted query
va l l , u = quer ies ( qIdx )
mwemUpdate( l , u , synRep , e p s i l o n i / 2)

}
}

Figure 9: The MWEM Algorithm in CHORUS

queries (the workload), plus a list of “bin edges” which
partition the domain of the table into histogram bins.

At each iteration of the algorithm, we perform two
steps: (1) using the exponential mechanism, select a query
from the workload which the synthetic representation
cannot answer with high accuracy; (2) using the Laplace
mechanism, obtain a differentially private answer to this
query, and use the multiplicative weights update rule
to update the synthetic representation. The mechanism
returns the final synthetic representation.

To simplify the implementation we present here, we
require the analyst to specify queries in terms of an upper
and lower bound on the desired range. A query of the
form (l, u) on column c of table T is equivalent to the
SQL query SELECT COUNT(*) FROM T WHERE l <= c AND c <= u.

551


