
Vision: What If They All Die?
Crypto Requirements For Key People

Chan Nam Ngo
University of Trento

Trento, Italy
channam.ngo@unitn.it

Daniele Friolo
Sapienza University of Rome

Rome, Italy
friolo@di.uniroma1.it

Fabio Massacci
University of Trento

Trento, Italy
fabio.massacci@unitn.it

Daniele Venturi
Sapienza University of Rome

Rome, Italy
venturi@di.uniroma1.it

Ettore Battaiola
Cassa Centrale Banca

Trento, Italy
ettore.battaiola@cassacentrale.it

Abstract—The question above seems absurd but it is what
a Bank has to ask to its suppliers to meet the European
Central Bank (ECB) regulations on the continuity of critical
business functions. The bank has no intention of mingling
in the daily work of the supplier (that’s the whole purpose
of outsourcing). Nor the supplier has any intention to make
available to the bank the keys of its kingdom (it is actually
forbidden to do so by the very same regulations). We need
a way to do so only when the hearts of the key people stop
beating. In this paper, we discuss whether recent advances in
cryptography (secret sharing and MPC, time-lock puzzles,
etc.) can replace the classical approach based on human
redundancy.

1. Introduction

Encryption [6], [18] is among the most popular mech-
anisms for data security. Indeed, banking systems use
gazillions of encryptions to keep data confidential, at rest
or in transit. Although not usually explicitly mentioned,
decryption is necessary for this mechanism to work as in-
tended: somewhere, somehow, somebody needs to supply
passwords which nobody wrote down, or to pass a live
biometric test binding the decryption key [4].

For large organizations, there might always be some-
body alive, but for smaller organizations things may be
different. A small organization might specialize in a par-
ticular service that is critical to a bank (or a set of banks).
Its IT staff might run into an handful as its core business is
not the IT, it is just the particular service that is a small cog
in an overall machine churning credit (a critical, heavily
regulated, business function).

One of such examples is the administrative manage-
ment of small and medium enterprises (SME)’s applica-
tions to the Guarantee Fund for the Italian Ministry of
Finance (other European countries have a similar scheme).
The application form is complicated and must change at
the whims of the Ministry. Getting the form submitted
in due order is a critical requirement for the SME credit
worthiness at the Bank, albeit, from the perspective of
credit scoring, this is just a couple of bits in the function
(submitted, approved). Hence, companies specialize in this

application process to allow banks to concentrate on the
core business. The core of the business is not IT, it is
the knowledge of how to fill the forms. IT security is
important (as this is also regulated by the ECB), but staff
members might be few as otherwise the whole business
would be unprofitable.

In this scenario a legitimate question the bank must
ask to its supplier is precisely what happens if they all
die: no single system admin who knows a password or
owns the necessary biometrics is left.

As an example, after the tragic 9/11 incident, the first
thing that came to the mind of the chief executive of
Cantor Fitzgerald, one of the world’s largest financial-
services firms, was passwords.1

The formal phrasing is of course different from bank
to bank, from supplier to supplier, and most likely not in
such extreme terms,2 but the essence is the same: what
do you do if the critical employees holding the key to the
kingdom are no longer there?

In a less tragic case, the importance of having such a
plan has become well known to the general public with
the case of Terry Childs. Terry Childs was the network
administrator of the city of San Francisco. In July 2008,
he refused to hand over the passwords that grant admin-
istrative control to the city’s FiberWAN network, because
his supervisors were not qualified to have access to the
passwords.3 Terry Childs was eventually sentenced to 4
years and had to hand over the passwords to the city’s
mayor. Even though the city’s network operated normally
during the 12 days of the incident, the city had to pay
an expensive bill of $900,000 on trying (and failing) to
regain control of its own network. Fortunately, in this case,
Terry Childs was not dead, therefore the passwords could
still be recovered (only by law enforcement). In our worst
case, the city would have spent much more for the recon-
figuration of its network. The European Union Agency

1. https://www.nytimes.com/2014/11/19/magazine/
the-secret-life-of-passwords.html.

2. The usual form for the ECB guidelines is “Essential employees
are unavailable”. Yet, we know of one case in which it was exactly
formulated in the way we mention.

3. https://www.cio.com/article/2416252/network-admin-terry-childs-
gets-4-year-sentence.html.

178

2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)

© 2020, Chan Nam Ngo. Under license to IEEE.
DOI 10.1109/EuroS&PW51379.2020.00031

for Cybersecurity (ENISA) provides no guideline for this
scenario, while the National Institute of Standards and
Technology (NIST, in the US) only provides somewhat
general guidelines for Key Recovery Systems [1] whose
purpose is to backup and recover encryption keys.

Orgaizational solutions are the current mechanisms of
choice (separation of duties, redundancies etc.) but we
wonder if some security protocols could be set-up to avoid
such measures and provide a purely technical solution. We
can of course create escrow systems, e.g. the passwords are
deposited at a regulator but that’s a violation of security
as we have no way to make sure the system is not abused.

State machine replication [3], [11], where the bank
outsources the information processing to more than one IT
supplier, is another trivial solution. This is a cryptographi-
cally sensible solution, except that it requires at least three
suppliers (instead of one) and fails the whole point of
saving costs in oursourcing.

The bank could also share the data among its IT sup-
pliers, e.g. using secret sharing [21], and later run a secure
multiparty computation (MPC) [5] protocol between the
bank and the suppliers for the procedure to get some
processed information from the repositories of suppliers.4

However, there will be a need of additional compu-
tational power together with larger storage requirements,
developing the application to manage the new procedures,
etc.All these are hardly worthy to manage the SMEs
formal applications to the Ministry of Finance Guarantee
Fund.

One could also develop an automatic recovery proce-
dure, where the system admins must periodically perform
an action, otherwise the recovery procedure kicks in. We
call this a heart-beat puzzle.5 In this case the time window
becomes a security parameter, similarly to what happens
with time-lock puzzles, i.e. encryptions that can be broken
after a certain period of time.

Paper Organization. The rest of the paper is orga-
nized as follows. In §2, we provide more details to the
“what if they all die” scenario. There, we also outline
the considered adversarial model and acceptable trust
assumptions. To make the paper self-contained, we review
a few necessary cryptographic primitives in §3, followed
by possible solutions to our question using those schemes
in §4. Yet, in §5, we argue that those solutions might not
work (in their current form). Thus, in §6, we envisage
a new cryptographic primitive, which we call the heart-
beat puzzle, to tackle the mentioned problem. Finally, we
conclude the paper in §7.

2. System Model: What If They All Die?

The scenario we consider is the outsourcing of a small
cog in a larger machine that is mission critical for an
institution.

• Absolving the cog functions requires specialized
knowledge in which the IT function is purely
supporting to the process.

4. Threshold Encryption [19], where t out of n admins of the same IT
supplier can jointly encrypt/decrypt the data without revealing the key,
is clearly not usable.

5. We can think of the “heart-beat” as the parties who hold the key
“do something periodically”.

• The cog is actually small in the overall (critical)
process, so, on the one hand, it is “critical” accord-
ing to the ECB definition, and on the other hand it
is not so critical from the institution’s perspective
to the point of being necessarily internalized.

• The cog might have associated a reasonably small
IT staff, so that a simple car incident involving
the people traveling to a customer’s meeting might
wipe out the key people.67

The example we mention here is the administrative
management of an SME’s applications for the Guarantee
Fund for the Italian Ministry of Finance. Upon successful
approval of such application, the SME might qualify for
a one-off guarantee by the Ministry for around 80% of
the balance sheet. Such forms may change every year
depending on the particular ministerial decree specify-
ing the technical conditions, and must often supplied
electronically. The information for the application must
be digitally signed in appropriate ways, and a number
of equally digitally signed documents must be supplied
as annexes. Hence, a company will typically specialize
in supporting this application process by keeping itself
up to date with the regulation and the type and format
of document necessary for successfully submitting the
application and processing the responses. Such company
might be small by itself.

The key in this process is that an SME would normally
apply to the Guarantee Fund through the bank and not
through the company specializing in such applications.
Indeed, the whole process is just a cog in the overall
process that the bank has to undergo in order to supply
credit to the SME. So the form management company
ends up being actually a critical supplier of the bank.

Therefore, the form management company must now
show that they have a number of critical security functions
and, among them, the ability to manage the disappearance
of the critical IT employees. For the form management
company, the duplication of the critical employees is ob-
viously a financial burden. One cannot have IT employees
holding the key of the kingdom paid a pittance as the
chance that they would reveal some data or misuses some
data is higher.

System Model.We consider two main entities: the Bank
who owns the data and the Suppliers who perform non-
critical functions for the bank. The bank outsources some
(initial) data to the suppliers for them to start performing
the required functionality. During the operations, the sup-
pliers can produce and store intermediate data. Since the
bank is only interested in the final result, those interme-
diate data might not be of the bank’s interest. Therefore
they are often only stored at the suppliers’ storage. For
security reasons, the suppliers must8 encrypt their data.
The encryption key is only known to the sysadmin of

6. Of course here we mean the key IT administrators. The sudden
death of the CEO or the janitor might both create havoc within a
company, but we ignore this aspect for the time being.

7. A trivial solution would be to forbid key people traveling together.
Unfortunately this is only viable if the company is a big corporation
with 1000 employees where one key person could be accompanied by
other supporting staffs. If the company has only 10 people including
the accountant and the technicians, we clearly have a problem with this
setup.

8. Unless we use secret sharing and MPC, see §4.

179

the respective supplier. Clearly, the admin must be trusted
in this settings.9For simplicity, this is also our only trust
assumption. Additional requirements might change this
trust assumption, but we do not consider them here. The
problem arises when the sysadmin is unavailable. The
bank then has the need to recover the key (and thus the
data, including intermediate ones) to let another sysadmin
or supplier take over the job.

Cryptography could provide a one-stop-shop solution:
the (expensive) system administrators could present a
“heart-beat” (the parties who hold the key “do something
periodically”). If they fail to do it within a certain time
window then a recovery procedure kicks in. At this point
the key can be made available to a senior executive (e.g.
CEO/Chair) who could pass it on to the next expensive
sys admin who is taking over. The latter may immediately
change the password and restore the heart-beat procedure.
The time window becomes a security parameter.

Adversarial Model.We can model the main entities in
the adversarial model as the Bank (B) and the suppliers
(SPs). B can be modeled as a semi-honest adversary that
engages in some protocol with the SPs when a particular
event where B’s interaction is needed occurs. A specific
actor working for the SP, called sysadmin, is trusted. All
the other actors working for the SPs can be considered
semi-honest adversaries instead, meaning that they can
have access to the database and read its content. The
database therefore must be encrypted with a key known
only to the sysadmin. The security goal here is to ensure
that B and the external adversaries cannot learn the key as
long as the sysadmin of the SP is operational. Being non-
operational can be formalized by the fact that the sysadmin
doesn’t send an heart-beat after a fixed time-shift. In this
case a key-recovering procedure can be applied by any
other actor of the SP, therefore allowing to learn the key
and decrypt the database.

3. Background: Cryptographic Schemes

To make the paper self-contained, in what follows we
briefly review the candidate cryptographic techniques.

3.1. Secret Sharing and MPC

We start by reviewing secret sharing and MPC. We
focus more on the former, as the latter would only be
performed among the suppliers.

Intuitively, secret sharing, allows a party to share
a secret s among n parties, in such a way that any t
parties can recover the secret. On the other hand, any
set of less than t parties cannot learn any information
about the secret. A secret sharing scheme consists of two
probabilistic polynomial time (PPT) algorithms (SS.Share,
SS.Recover):
{si}ni=1 ← SS.Share(s, t, n) takes as inputs the secret s,

the threshold t and the number of parties n (with
t ≤ n) and outputs a share si for each party i.

s← SS.Recover({sj}j∈T, t) takes as inputs the set of
shares {sj}j∈T where T = {i : 1 ≤ i ≤ n} and
‖T‖ ≥ t, and outputs the secret s.

9. Terry Childs can be technically considered as “honest but unavail-
able” sysadmin. A malicious admin can just delete the ciphertext or
reveal the plaintext.

Secret sharing schemes must satisfy Recoverability and
Secrecy.
Recoverability The recovery of the shared secret s is

successful with overwhelming probability given at
least t shares {sj}j∈T, where T = {i : 1 ≤ i ≤ n}
and ‖T‖ ≥ t.

Secrecy Any set of at most t− 1 shares {sj}j∈T, where
T = {i : 1 ≤ i ≤ n} and ‖T‖ < t, leaks nothing
about the shared secret.

Remark 1. Let us note that one can also detect malicious
dealers in secret sharing [8], where an adversary send-
ing incorrect shares can result in a protocol abort. This
kind of secret sharing schemes require one round to
share a secret and one round to recover it. The com-
munication complexity is only O(n) for broadcasting
the shares.

3.2. Time-Lock Puzzles

Roughly speaking, a time-lock puzzle [12], [13], [17]
is a hard problem parameterized by a time-lock t, so
that the best possible algorithm for solving the puzzle
takes t steps and the solver cannot be parallelizable. This
means that all attacks can only be performed by a single
sequential machine, and the time τ that it takes to find the
solution relies only on its speed.10

To be precise, a puzzle [2] is a tuple of algorithms
(Puzzle.Gen,Puzzle.Sol):

Z ← Puzzle.Gen(t, s) takes as an input a parameter t
and a solution s ∈ {0, 1}λ, where λ is the security
parameter, and outputs a puzzle Z.

s = Puzzle.Sol(Z) is a deterministic algorithms taking as
an input a puzzle Z and outputting a solution s.

Differently from the known crypto primitives, for the
puzzles we consider the efficiency as part of the definition.
The security properties are stated as follows:

Completeness For every security parameter λ, difficulty
parameter t, solution s ∈ {0, 1}λ and puzzle Z in
the support of Puzzle.Sol(t, s), Puzzle.Sol(Z) always
outputs the solution s.

Efficiency Some puzzle Z computed with
Puzzle.Gen(s, t) for some solution s can be
computed in poly(log t, λ) and the solution can be
computed by Puzzle.Sol(Z) in t · poly(λ).

Security The parallel time required to solve a puzzle is
proportional to the time it takes to solve the puzzle
honestly (i.e. by using a sequential strategy), up to
some fixed polynomial loss.

Remark 2. By the definition of efficiency, the solution
for some puzzle takes more time to be computed by
changing the difficulty parameter. A common instan-
tiation of time-lock puzzles is using the RSA assump-
tion [18].

4. Possible Solutions: Crypto To The Rescue

Escrow Systems. This is the most convenient solution,
where the passwords are deposited at a regulator. The

10. To make τ constant, the parameter t, in facts, must be increased
as faster chips are released.

180

Clipper Chip was an example of such escrow system.11

Any crypto device integrating a Clipper Chip (e.g. a crypto
phone) would give its cryptographic key to the government
in escrow. A “trusted” government agency could therefore
“claim authority” for intercepting and decrypting a par-
ticular communication transmitted through the mentioned
device.

State Machine Replication. The bank could consider
outsourcing the information processing to an IT supplier.
The bank could send the business related data to its
supplier,12 and have the supplier process the data. The
supplier then will return the result to the bank. In this
case, each IT supplier has its own key and encrypted data.
If one supplier dies, the others are still available to run
the services.

Secret Sharing and MPC. It is possible to store the
bank data in a redundant and encrypted form at a set of
IT suppliers’ data storage using secret sharing techniques,
e.g. a bank could use Shamir’s t-out-of-n secret sharing
scheme (SS) [21] to generate cryptographic shares and
store them at the IT suppliers’ servers. Later, general
MPC [5], [22] can be used to compute a function from
the shares to process some information that is necessary
to the bank (note that it is sufficient that the crypto com-
putation is all performed by the suppliers, the bank only
needs to reconstruct the output from the computed shares,
and it is happy about that!). A bank, in order to avoid
paying for expensive in-house servers and the overall
operation/maintenance costs, could decide to outsource its
data s as cryptographic shares s1, . . . , sn to some external
servers owned by the bank’s suppliers S1, . . . , Sn. In this
way the servers store their corresponding banking data in
an encrypted and redundant fashion.13 Whenever the bank
needs to retrieve or process some information, it starts
some specific MPC protocol with the servers in order to
evaluate a function f({si}) (which is mostly done by the
suppliers, the bank only reconstructs outputs).Note that
there is no encryption key to be stored and recovered in
this case, as the data is stored as shares at the servers
(of equal roles), which is sufficiently secure. When one
supplier dies, the n−1 suppliers can still run the services
(we only need t < n). However, the bank might need to
add another supplier (and resharing the secret), but this is
easily doable.

Time-Lock Puzzles. We can use time-lock puzzles to
solve our problem by requiring that the system admin
updates his current key k to some new key k′, re-encrypts
the data with new key, and publishes (e.g. posting it on a
blockchain) a time-lock puzzle Z ← Puzzle.Gen(t, k′) of
the new key k′ setting t such that the best known machine
can solve the puzzle at least in some time τ . If the system
admin stops to update the key, then it can be retrieved after
a time τ by some other actor of the system (e.g., the bank’s
CEO or a regulator)by invoking k′ ← Puzzle.Sol(Z).

11. https://www.cryptomuseum.com/crypto/usa/clipper.htm

12. Albeit the bank can still store some hashes of the data for later
verification.

13. The suppliers could also outsource the data storage to another
third party.

5. Limitations: Will These Solutions Work?

Key escrow is the most convenient alternative, but also
the least secure one, since a Trusted Third Party (TTP) is
required. Such a system introduces another point of failure
as it is easy to be abused. Indeed, in presence of an escrow,
abuses will eventually happen as the temptation is far too
great: the escrow itself means access to the original system
as if they all died. So in our scenario the bank employee
holding the escrow might collude with the SME to warrant
them an “application successful checkmark” that wasn’t
existing. Such a solution is clearly not preferable if we
are dealing with bank data.

State machine replication is a cryptographically sensi-
ble solution, except that it requires at least three suppliers
(instead of one) for State Machine Replication. As such,
its security is as weak as the Key Escrow mechanism.
The bank now has to trust at least three suppliers with its
raw data. Moreover, the whole point of oursourcing was
to save money and now this cost at least tripled. Further,
the current regulations makes sure that the suppliers will
have to manage redundancy but in this way IT redundacy
was a supplier’s problem. With the multiple servers, it has
become a bank’s problem.

In the case of secret sharing and MPC, the bank
now has the burden of trusting at least t servers to be
honest.Moreover, even if the banks are happy that the data-
outsourcing servers do the job during normal operations
with no action on their side, this solution could require
heavy machinery and does not scale very well. First of
all the cost is now multiplied by n which fails the point
of oursourcing the process to save money. Further, in this
way, the bank may still have to manage redundancy by
itself (by regulations) and it still needs to buy more cryp-
tographic hardware, manage the secret sharing process,
etc.

Time-lock puzzles, at first sight, seem like a sound so-
lution. Yet, they are not (in the current form). Suppose we
have a time-lock puzzle which is locked until tomorrow
(τ is 1 day). In this case, one may think to have the heart-
beat arrive a few seconds before dawn (the admin updates
the key, re-encrypt the database, and publishes the new
time-lock puzzle) so we should get an extra day.

This is very true... if the bad guys try to break the
new puzzle (what honest bad guys!). As the time for
breaking the old puzzle has anyhow passed, the bad guys
will actually have broken the old locked key.

The obtained key is old, yet useful. The attackers
might also have access to the old encrypted data if they
can still obtain the data of yesterday. Even in futures trad-
ing where everything should conclude within the day, such
trading data still gives insights on traders’ strategy and that
could be hazardous [14]. Maintaining confidentiality in
this scenario is also known as Forward Secrecy [9], [15].
Unfortunately, it cannot be inherently achieved if the data
is static, meaning that the plaintext doesn’t change over
time and it’s still considered sensitive. One could possibly
solve this issue with Honey Encryption [10], in which the
data seems plausible even when decrypting with the wrong
key. But it is not applicable to every type of data.

181

6. Vision: Heart-Beat Puzzles

The goal is to create a scheme, which we call the
heart-beat puzzle, in which the admin can “restart” the
time-lock puzzle with a new key, and has a fixed time
window long τ to do it (that we call a “heart-beat”), and
either the data can be accessed only with the new key,
or it can be decrypted with the old key recovered by any
remaining available actor (e.g., the bank’s CEO)after τ
(meaning that all the admins actually died).

However the above seem to be conflicting require-
ments: if the key is eventually available it will always
be eventually available and not available only if the new
key does not exist yet.

The closest known primitive is break-glass encryp-
tion [20]. Break-glass encryption is designed as an emer-
gency decryption procedure if the user loses the key (the
laptop is stolen, or the user just... dies). Using break-
glass encryption, one can decrypt the previously encrypted
data without any cryptographic secret possessed by the
user. However, the construction relies on a hardware token
which has the decryption key hardwired (and obfuscated!),
and it only provides detectability, i.e. if the procedure is
misused, the user will know as the illegitimate attempt
is recorded in (but not stopped by) the hardware token.
This could be a good solution if the one holding the
hardware token cares about his own reputation. Yet, we are
talking about critical banking data. Everything, including
reputation, has its own price.

For heart-beat puzzles to work we need something
whose “time” can be “extended”. It could be a time-
lock puzzle with a trapdoor, known only to the trusted
sysadmin who can use it to extend the breaking time of
the puzzle.

Heart-Beat Puzzle
A heart-beat puzzle is a tuple of algorithms
(Puzzle.Gen,Puzzle.Ext,Puzzle.Sol) such that:

{Z, T} ← Puzzle.Gen(t, s) takes as an input a pa-
rameter t and a solution s ∈ {0, 1}λ, where λ
is the security parameter, and outputs a puzzle
Z and a trapdoor T .

⊥ ← Puzzle.Ext(Z, T, t) takes as input the puzzle
Z, the trapdoor T , and an extended time t, and
outputs only ⊥.

s = Puzzle.Sol(Z) is a deterministic algorithms tak-
ing as an input a puzzle Z and outputs a solution
s.

For heart-beat puzzles, we first require all the security
properties of time-lock puzzles (i.e. Completeness, Effi-
ciency, and Security). An additional critical requirement
is Unclonability, i.e. to make the “old” puzzle unavailable
to access once the puzzle has been updated (so the ad-
versary’s progress is reset). One possible implementation,
is to make use of hardware tokens, as in break-glass
encryption.

Another (operational) requirement is for the sysadmin
to maintain access to the puzzle at all time (so that he
can update it periodically). For example, one might con-

sider a solution based on smart contracts,14with the added
complexity the key is only recovered when a real-world
event is true where the event is that the sysadmin has
not sent the heart-beat after the fixed time-shift. However,
in this case, we also need some additional requirements
from the blockchain [16]: How do we store the key on
the blockchain? How do we model the key recovery
procedure? How do we model and implement the heart-
beat from the sysadmin? What if the attacker forks the
chain15 and stops the heart-beat messages reaching its
destination? Would we get the lock extended in the end?

7. Conclusions

“What if they all die?”, i.e. what happens if the key
people are unavailable, is an important question for bank
suppliers to consider, as they must meet the European
Central Bank’s regulations on the continuity of critical
bank business functions.

In this paper we have discussed several candidate
cryptographic solutions, i.e. escrow systems, state machine
replication, secret sharing MPC, and time-lock puzzles,
as attempts to address such requirements. Yet, we have
argued that none of these tools is sufficient to solve our
problem in their current form, and thus we may need a
new tool, which we envisioned and dubbed the heart-
beat puzzle. Intuitively, an heart-beat puzzle is a time-
lock puzzle where the time-lock can be refreshed given a
trapdoor. It remains an open problem whether heart-beat
puzzles exist (and under what assumptions), which is an
interesting challenge for the cryptographic community.

An interesting open problem would be to deal with
malicious sysadmins (at least to some extent). For ex-
ample, even with heart-beat puzzles, the admin could
just update the password without updating the puzzle. To
address this, one could consider “binding” the password
updating and data re-encrypting process to the puzzle
updating process. We leave this for future work.

There could be more requirements if the scenario at
hand is even more complicated. For instance, a new entity
called the local Judge could be involved: the key could
then be secret shared between the Bank, the Supplier, and
the Judge of a local court; the bank can prove to the court
that the supplier is not operational with them to obtain
the key. Thus, another future research direction is to look
further into how companies deal with our problem at the
moment.

Acknowledgements

This work was partly supported by the European Com-
mission under the H2020 Programme Grant Agreement
No. 830929 (CyberSec4Europe).

14. Ethereum: “A built-in fully fledged Turing-complete programming
language that can be used to create “contracts” that can be used to encode
arbitrary state transition functions, allowing users to create any of the
systems described above, and as well as many others that we have not
yet imagined, simply by writing up the logic in a few lines of code.” [7]

15. The blockchain fails to achieve consensus and the nodes maintain
different views of the system.

182

References

[1] E. Barker, “Sp 800-57 part 1 rev. 4 recommendation for key
management part 1: General,” NIST special publication, vol. 800,
p. 57, 2016.

[2] N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan,
and B. Waters, “Time-lock puzzles from randomized encodings,”
in Proceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science, Cambridge, MA, USA, January 14-
16, 2016, 2016, pp. 345–356.

[3] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,”
in OSDI, vol. 99, no. 1999, 1999, pp. 173–186.

[4] Y.-J. Chang, W. Zhang, and T. Chen, “Biometrics-based crypto-
graphic key generation,” in 2004 IEEE International Conference on
Multimedia and Expo (ICME)(IEEE Cat. No. 04TH8763), vol. 3.
IEEE, 2004, pp. 2203–2206.

[5] R. Cramer, I. Damgård, and U. Maurer, “General secure multi-party
computation from any linear secret-sharing scheme,” in Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2000, pp. 316–334.

[6] J. Daemen and V. Rijmen, “The block cipher rijndael,” in Smart
Card Research and Applications, This International Conference,
CARDIS ’98, Louvain-la-Neuve, Belgium, September 14-16, 1998,
Proceedings, 1998, pp. 277–284.

[7] Ethereum, “A next-generation smart contract and decentralized
application platform,” 2015.

[8] P. Feldman, “A practical scheme for non-interactive verifiable
secret sharing,” in Foundations of Computer Science, 1987., 28th
Annual Symposium on. IEEE, 1987, pp. 427–438.

[9] C. G. Günther, “An identity-based key-exchange protocol,” in
EUROCRYPT, 1989, pp. 29–37.

[10] A. Juels and T. Ristenpart, “Honey encryption: Security beyond
the brute-force bound,” in EUROCRYPT, 2014, pp. 293–310.

[11] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[12] J. Liu, T. Jager, S. A. Kakvi, and B. Warinschi, “How to build
time-lock encryption,” Des. Codes Cryptogr., vol. 86, no. 11, pp.
2549–2586, 2018.

[13] G. Malavolta and S. A. K. Thyagarajan, “Homomorphic time-lock
puzzles and applications,” in Proc. of CRYPTO, 2019, pp. 620–649.

[14] F. Massacci, C. N. Ngo, J. Nie, D. Venturi, and J. Williams,
“Futuresmex: Secure, distributed futures market exchange,” in
2018 IEEE Symposium on Security and Privacy (SP), vol. 00,
pp. 453–471. [Online]. Available: doi.ieeecomputersociety.org/10.
1109/SP.2018.00028

[15] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook
of Applied Cryptography. CRC Press, 1996.

[16] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[17] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” Cambridge, MA, USA, Tech. Rep., 1996.

[18] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for ob-
taining digital signatures and public-key cryptosystems,” Commun.
ACM, vol. 21, no. 2, pp. 120–126, 1978.

[19] A. D. Santis, Y. Desmedt, Y. Frankel, and M. Yung, “How to share
a function securely,” in STOC, 1994, pp. 522–533.

[20] A. Scafuro, “Break-glass encryption,” in IACR International Work-
shop on Public Key Cryptography. Springer, 2019, pp. 34–62.

[21] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[22] A. C. Yao, “Protocols for secure computations (extended abstract),”
in Proc. of IEEE FOCS, 1982, pp. 160–164.

183

