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Abstract—The use of Internet of Things devices is contin-
uously increasing: People buy devices to make their lives
more comfortable by using smart assistants or track sports
activities and assess them. Moreover, these devices can sup-
port digital investigators with valuable information when
it is involved in a crime scene, since its data may provide
information about the circumstances of the crime. One group
of those devices are fitness trackers, which hold data such
as walked steps. Accordingly, analysts can see activities,
routines, and inconsistencies. We inspected three different
common fitness trackers and developed a tool to analyze
them in a standardized and forensically sound way. To collect
data, we analyzed the Bluetooth communication, data on the
phone, and internet communication. Our tool can analyze the
different sources automatically and subsequently presents
the results on a self-hosted web application. It is open-source
and easily scalable so that developers can implement new
extensions to support more than the three analyzed trackers.

Index Terms—Digital Forensics, Internet of Things, Fitness
Tracker, Bluetooth, Android, Network

1. Introduction

Every fifth american wears a device to track their
fitness, according to the Pew Research Center [1]. Also in
germany, the number of users is increasing every year [2].
These devices collect data, such as GPS, movement, or
pulse, and can be used to monitor the user’s activity. But
not only to track the user’s health, the collected fitness
data can be used, but also to solve crimes, as various
articles show. CNN reported that data obtained from a
fitness band was used to reconstruct a timeline of a crime
and refute the testimony of the suspect [3]. In another
case, data from a Fitbit helped determining the time of
death as they showed how the heart rate of the victim
spiked significantly, followed by slowly decreasing until
it stopped [4].

We presume that the potential of these devices with
regard to crime-solving has so far been underestimated.
Most approaches found on the internet are not well doc-
umented or unreliable. Neither a general approach on
how to analyze fitness trackers nor a reliable tool which
can analyze fitness trackers in a forensic environment
was found. This is why we try to answer the question

Can a program be implemented to investigate common
fitness trackers in a standardized and forensically sound
way and subsequently view routines and activities of the
tracker’s user? This work proposes to research different
fitness trackers and gives a general approach on how to
analyze them in a forensic way. Based on this knowl-
edge a program is developed, which can use the different
methods and extracts and reports the trackers’ data. This
tool is Open Source and well documented, thus everyone
can reproduce the process. In addition, the tool is easily
scalable so that people can add more trackers to extend
the program.

1.1. Contribution

We present an open-source forensic tool to analyze
the Xiaomi Mi Band 2, Fitbit Charge 2 and Huawei
Band 2 Pro dynamically in order to view and compare
the daily routines and activities of the user and to show
inconsistencies.

1.2. Outline

In the next section, we start with a brief look at related
work. In section 2 the results of the device analysis are
presented. After that, we introduce in section 3 the devel-
oped fitness tracker analysis tool, which is evaluated in
section 4 afterward. In section 6, we propose our general
approach how to analyze fitness trackers forensically and
finally summarize and conclude our work in section 5.

1.3. Related Work

Most of the forensics work in this field researches
smartwatches. For instance, Baggili et al. analyzed the
Galaxy Gear 2 Neo and the LG G and found that both
devices, rooted, contained fitness data [5]. However, our
goal was to inspect trackers without a Linux based OS
and found no forensic motivated work in this regard, but
only security motivated. Breaking Fitness Records without
Moving: Reverse Engineering and Spoofing Fitbit presents
an in-depth security analysis of the Fitbit Flex and Fitbit
One [6]. The traffic to the cloud and also the Bluetooth
communication was analyzed. In this manner, they found
a way to request and manipulate various dumps from the
tracker including status information and health data. Since
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it was a security issue, Fitbit fixed it and the traffic is
encrypted in the latest version. In our work the attempt is
to find reliable ways to request data.

In 2016 a team from Canada published work on nine
fitness trackers and smartwatches considering their secu-
rity [7]. Again, they intercepted the communication with
the smartphone and the cloud. Afterwards, they compared
the found issues and test person’s experience with the
company’s Privacy Policies and Terms of Service to de-
sign proposals for IoT companies regarding their Privacy
Policies. The approach they used to analyze the devices is
similar to our strategy. They used their findings to design
policy proposals. We, on the other hand, used our results
to develop a forensic tool with the purpose to analyze
fitness trackers.

2. Device Analysis

In this work, the term fitness tracker refers to wearable
wristbands which are designed to track the user’s fitness
and activities. They have a small memory capacity and
without a remote device, such as an Android phone, they
provide just basic functions. It is important to note that this
work does not discuss smartwatches, which are wearable
watches with a broadly developed OS and the option to
install apps.

First, we inspected the Bluetooth Low Energy (BLE)
communication for each tracker and the Generic Attributes
(GATT) [8] of the it via logs on our rooted Samsung
Galaxy S4 and bluepy [9]. Secondly, we analyzed the
data stored on the phone via Android Debug Bridge
(ADB) [10] - first as normal user, later as root. Lastly,
we studied the phones’ network traffic by using Burp
Suite [11] as a proxy with Burp’s CA certificate. The
focus was set on GPS, step count, heart rate, acceleration,
sleeping hours, account information, such as the profile
picture, and timestamps to have a fixed scope. We con-
sidered this data to be valuable for an investigation as
they can help to understand the course of a crime. In the
following sections, we present the individual findings.

2.1. Xiaomi Mi Band 2

Xiaomi, a startup founded 2010 in China reached a
market share of 14.6% placing it among the top five
wearable companies in 2019, according to the Interna-
tional Data Corporation [12]. Their Mi Band 2 uses its
sensors to measure heart rate, count steps, and detect sleep
phases, which can be viewed in the Mi Fit application.
In contrary to the other two trackers, the Mi Band 2
mostly measures the heart rate on demand. Only if the user
triggers an activity, such as running or biking, the heart
rate is measured live. Also, if activated in the options, the
heart rate is measured every two minutes during sleep.

2.1.1. Tracker device. To communicate via BLE with
the Mi Band 2 the user first needs to authenticate before
accessing previously recorded data. This was researched
by Andrey Nikisaev and the detailed protocol works as
shown below [13]:

1) Enable notifications by sending \x01\x00 to
descriptor with handle 0x2902

2) Send \x01\x00 + 16 byte key (same for all
devices) to authentication characteristic 000000
09-0000-3512-2118-0009af100700

3) Request a random string by sending \x02\x00
to authentication characteristic

4) Receive a random 16 byte string
5) Send \x03\x00 + string, encrypted with the

initial key (AES with ECB) back to authentication
characteristic.

Being authenticated, the user can request previously
recorded data for up to two weeks. The only way to delete
this data is a factory reset in the app, else the data remains
on the band even with a new connection. We found a way
to receive the data from the band without a phone. The
BLE protocol requires enabling the notification of two
characteristics initially. Then, we send a timestamp for
the requested time. The band will send another timestamp
from which it sends data. This is due to the fact that the
band cannot store data for a very long time because of the
small amount of memory. To answer this, we send 0x02
and subsequently receive data packets from the timestamp
until now. A step by step of the protocol looks as follows:

1) Packet 1 & 2 - Enable notification by activating
of the activity characteristic 00000005-0000-
3512-2118-0009af100700 and fetch char-
acteristic 00000004-0000-3512-2118-00
09af100700

2) Packet 3 - Send timestamp to the fetch character-
istic in the following format:
\x01\x01<year><month><day><hour><
minute>\x00\x08
year = \xe2\x07; month = \x06; day = \x14;
hour = \x15; minute = \x14

3) Packet 4 - Receive \x10\x01\x01 followed by
the actual timestamp

4) Packet 5 - Send \x02 to the fetch characteristic
5) Packet 6 and following - Receive data packets

Each of the data packets can be split into four data
items, where one item equals one minute. The items
consist of the index, activity category, acceleration, steps
and heart rate. If the Mi Band 2 measured no heart rate,
it stores the values 0, 254 or 255. One example packet is
shown in Table 1.

2.1.2. Smartphone. In the user area of out test phone, we
found various directories related to Mi Fit application. The
path /sdcard/.miband/ included PNGs, which show
the recorded path during an activity and their distance.
Furthermore, /sdcard/Android/data/com.xiao
mi.hm.health/ contained the user’s profile picture
in Millelet/TEMP_PHOTO, the rest were cache files.
Cache data can indicate activity with the app, however,
we considered them not valuable for our scope.

The directory /data/data/com.xiaomi.hm.he
alth in the root area contains much relevant information.
We found one database in the directory databases with
a great number of tables of which some were empty. This
is due to the fact that we did not use every function of
the app, such as connecting friends. The interesting tables
are:

• DATE_DATA - Every row is a single day with
a date and a summary of the user’s fitness data.
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TABLE 1. INTERPRETATION OF PREVIOUS RECORDED DATA.

Received data Interpretation Explanation
0x39 index of packet Packet 57
0x11 category Begin of one minute (57*4)+0
0x1b acceleration 10%
0x07 steps 7 steps in this minute
0x3f heart rate 63 bpm
0x60 category Begin of one minute (57*4)+1
0x2b acceleration 17%
0xf4 steps 20 steps in this minute
0x41 heart rate 65 bpm
0x60 category Begin of one minute (57*4)+2
0x12 acceleration 7%
0x00 steps No steps
0x4b heart rate 75 beats per minute
0x50 category Begin of one minute (57*4)+3
0x09 acceleration 4%
0x00 steps No steps
0xff heart rate No measured heart rate

More interestingly, the column DATA includes a
JSON with a value field. This field contains a byte
string, which can be base64 decoded and results
in a 4320 byte list. 4320 divided by three is 1440,
the number of minutes of a day. Every third byte
of the byte list can be interpreted as one minute
starting from midnight incrementing by one with
each group; the first byte seems to be an activity
status, the second byte the acceleration, and the
third byte the number of steps during the minute.
Consequently, it is possible to determine the move-
ment of the user accurate to a minute. Last, the
column DATA HR contains a 1440 elements long
byte list, which can be interpreted as the heart rate
for each minute of the day. If not measured the
value is 0, 254 or 255. Heart rate measured during
an activity is not included, but can be found in the
TRACKER_DATA table.

• DEVICE - The table contains information about
all devices, that were connected with the app,
such as the time it was first connected and last
synchronized.

• HEART_RATE - The table lists all on-demand
measured heart rates. It provides a timestamp in
Unix time and the id of the device which measured
the heart rate as well as the measurement value.

• MANUAL_DATA - The table provides data the user
added manually in the app, such as sleeping hours.

• TRACKRECORD and TRACKDATA - Joined to-
gether the tables hold information on activity
routes, such as the date or distance. Further, we
found the start position and the following position
changes. An example can be seen in Table 2.
Additionally, combining columns BULKTIME and
BULKPAUSE we were able to reproduce the min-
utes passed since the last position measurement
and activity breaks. BULKHR contains the pulse
and the passed seconds since the last measure-
ment.

• USER_INFO - The table provides information
about the user, such as the birthday or an avatar.

In the directory files we found a log with already
known information and shared pref that hold tokens for

the huami API, an interface used by the app to store data in
a cloud. Finally, the cache directory contained the profile
pictures, cached API calls and library requests. While we
consider libraries as not interesting for our purpose, API
calls can be useful for network analysis.

2.1.3. Network. As aforementioned, the Mi Fit applica-
tion uses the Huami API to communicate with a cloud.
On Github the developers recommend to email part-
ner@huami.com to create an API account, however, they
never answered our e-mail [14]. After we asked via
Github, they replied and said that our request has been
deprioritized [15].

By using Burp Suite to analyze the application’s traf-
fic, we found calls to Huami, Google APIs, and Face-
book. Together with the potential API tokens from the
shared pref and the recorded API calls, we tried to con-
nect to the Huami API. However, our attempts to get
access to the API were denied.

2.2. Fitbit Charge 2

Fitbit reached a market share of 4.1% in 2019. Its
Charge 2 measures continual heart rate, steps, walked
floors and sleep phases. The heart rate is measured every
five seconds in default mode and every second during
workouts. To view detailed data the Fitbit app and an
account are required. Besides that, Fitbit offers a public
Web API which can be used with a registered API key.

2.2.1. Tracker device. As mentioned in related work,
the Fitbit synchronizing protocol is already researched
and works as seen in Appendix B. The tracker uses the
smartphone as a transmitter to send an encrypted mega
dump to the Fitbit servers. After the servers evaluated
the data, the users can request and view them on their
smartphone. We were able to reproduce this behavior and
thus we were not able to extract any fitness information
using only BLE.

2.2.2. Smartphone. In the user area of the phone we
only found binary files that belong to the Fitbit app. The
contained no typical magic bytes and we were not able
to interpret the format. We found more information in the
root area /data/data/com.fitbit.FitbitMobi
le/. In the cache/ directory we identified Google Maps
thumbnails of traveled routes. In addition, the directory
holds several subdirectories of which only two contained
readable files. The sub-directory datacache/ held various
information about setup and updates, only relevant for the
user. Another sub-directory httpcache/ contained cached
network traffic, such as API calls and results, but mostly
encrypted. Nevertheless, we found some JSON files which
were not encrypted and readable. One of those files held
step count data of every minute, obtained from an API
call. However, since it is a cache file, it is not clear how
reproducible the existence of such files is. During several
tests, such a file rarely appeared in the cache files.

In the databases directory several interesting SQLite
databases were found:

• exercise_db - This database holds various
tables with data on the exercises. In table EX-
ERCISE EVENT we found timestamps with co-
ordinates and more fitness information. Combined
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TABLE 2. THE TABLE SHOWS AN EXAMPLE HOW POSITION DATA IN THE MI FIT DATABASE IS STORED

Data in database Longitude Latitude
4947223680, 873280544 49.47223680 8.73280544
381, -11825 49.47224061 8.73268719
0, -7438 49.47224061 8.73261281
-4196, 10204 49.47219865 8.73271485
-762 ,-762 49.47219103 8.73270723
-4959, 6198 49.47214144 8.73276921
-3433, 9536 49.47210711 8.73286457
-3433, 9727 49.47207278 8.73296184
-381, 8773 49.47206897 8.73304957
4196, 3051 49.47211093 8.73308008
0, -6961 49.47211093 8.73301047

with table EXERCISE SEGMENT, which groups
the events, we were able to reconstruct the path
of an exercise. However, GPS information is only
recorded with the phone connected to the internet.

• fitbit-db - This database offers information
about the user’s profile and devices. Furthermore,
we discovered the table TIME SERIES OBJECT,
which holds certain data types at a specific time,
whether summarized for one day or of a 15-minute
interval. The data types, as we interpreted them
can be found in Appendix A. Unfortunately, both
groups are not reliable as much data is missing.

• heart_rate_db - It contains the average heart
rate for each day and further information about
heart rate zones, such as cardio or fat burn.

• sleep - It holds information on the users’ sleep
cycle. The table SLEEP LOG contains the start
and duration about recorded sleep, as well as min-
utes spent asleep, minutes spent awake and more
metadata. In addition, SLEEP LEVEL DATA and
SLEEP LEVEL DATA SUMMARY show exactly
when and how often the user entered a sleep phase.

In the last two directories files and shared prefs
we found the user’s e-mail address, a URL to the
user’s profile picture and information about the smart-
phone device model. Moreover, we discovered two files
oauth2 authinfo credentials.json and 0ADF345A1316tra
ckerAuthCredentials.json, which presumably contain an
access token for the API and keys to communicate with
the tracker. However, both files appear to be encrypted as
we were not able to read them. We found no key in the
data to decrypt them. One could reverse engineer the apk
and search the code for a key, yet this was out of our
scope.

2.2.3. Network. Fitbit offers a public Web API, which
works with OAuth2. Unfortunately, all discovered creden-
tials were encrypted so we used a new created account to
test the API.

While most API calls worked without problems, some
issues were encountered. First, the API offers a method to
download the data of an activity as a .tcx file, including
GPS, however it requires a log-id. This can be found in
the Fitbit Web Interface. Although the documentation says
different, we were not able to request this ID by only
using the API. The next issue was that time series calls
did not work properly and to obtain all intraday data we
must request each day and data type individually. Due to
Fitbits request limit, we are limited to request only 74

days per hour. Note that this limitation was not detected
in the app.

We also analyzed cached files and found API calls that
were not documented officially, yet most of them were
deprecated. The only interesting call we found offers the
time at which the user was sitting: https://api.fitbit.com/1
/user/[user-id]/sed/date/[date].json.

2.3. Huawei Band 2 Pro

The last tracker we analyzed is the Band 2 Pro from
Huawei, who reached a market share of 8.4% in 2019. The
band measures the heart rate every 30 minutes in default
mode and every second in sport mode. Furthermore, it
measures steps and sleep phases and during sport mode
the traveled distance and position via GPS. To connect
the Band 2 Pro with the phone, Huawei recommends
two apps: Huawei Health and Huawei Mobile Services.
Huawei Health app is used to track the Band 2 Pro data
and Huawei Mobile Services is needed for the Huawei
ID, the required user account.

2.3.1. Tracker device. The analyzed Bluetooth log shows
that the Band 2 Pro uses two characteristics to transmit
data - 0x0039 to send and 0x003a to receive data.
In order to enable the communication, the client must
activate notifications. The recorded messages consist of
byte strings, where we didn’t recognize a pattern, so we
presume that the communication is encrypted. Further, in
contrast to the two previous trackers, we were not able
to connect the tracker with our laptop via Bluetooth as
the tracker refused the connection. We tried to connect
with the tracker in different states, connected to the phone,
disconnected and after a reset, nevertheless we were not
successful.

2.3.2. Smartphone. We analyzed both Huawei apps and
describe first the Mobile Service app, followed by the
Health app. In both apps, we found data in the user area
which were unfortunately redacted and not valuable for
our purpose. In the following we will only describe the
root area.

Data from the Mobile Service app was found in the
directory /data/data/com.huawei.hwid/. The di-
rectory app webview contained a cookie database, which
stores several expired session keys.

In the databases directory we discovered the dns.db
database, that contains DNS entries to several Huawei
services. Another large database goes by the name sns

e d3790ff2a4e4e80f094f955a8ab938a1.db, however it
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is encrypted. For this database we found related files in
the shared preferences, as the names indicate: sns dbKe
y d3790ff2a4e4e80f094f955a8ab938a1.xml; sns secret.x
ml; snsSp d3790ff2a4e4e80f094f955a8ab938a1.xml. The
secret file holds an IV Key, Secret Key, and Salt and the
dbKey file holds a twice base64 decoded 64 bytes long
strings. However, we tried to decrypt the database with
this information and different standard decryption methods
and none led to a result.

Next, we analyzed the files related to the Huawei
Health app. We inspected the databases in directory
databases. The file Device.db maintains the data of all
connected devices with the time they were added and
device addresses. The largest database in the directory
is hihealth 0003.db, yet it is encrypted. The databases
com huawei health*.db, where * stands for a unique
number, are also encrypted. We assume that the number
stands for the stored information type, as later in the
log files the types have the same numbers. However, the
databases are encrypted and no keys were found in the
app data.

We found log files in the folder com.huawei.health/ in
four sub-directories. Each sub-directory, except for one,
contained log files. com.huawei.health DaemonService/
appears to log a conversation with a server with informa-
tion, such as the HTTP response status and the amount
of sent and received data. The log shows that the class H
iH_HiHealthSaveData stores several requested data
types. The types 4002 and 4003 are the daily summarized
counted steps and distance, as they match the data we
see in the app. The log files in com.huawei.health store
information on the users’ interaction with the app. For
instance, we found traces that the user requested counted
steps to show them in a graph. When steps of a day were
requested, the log provides all rendered data. Thus, we are
able to parse all steps, which were viewed by the user. In
Figure 1 an example log is shown in which we can see
the values step and timestamps. However, only the step,
calories, and distance data were found, no positions or
heart rate.

Figure 1. The Huawei log shows data which were requested by the user

2018727−11:11:19:779 | S C U I F i t n e s s D e t a i l I n t e r a c t o r
|80002323 | g e t F i t n e s s D a t a D e t a i l d a t a s =[ H i H e a l t h D a t a{
t y p e =4 , day = 2018−07−26 0 7 : 5 9 : 0 0 , v a l u e s = s t e p
=74 .0 end t ime =1532584800000 t r a c k d a t a d e v i c e T y p e
=47 c l i e n t i d =5 a l t i t u d e o f f s e t =0 .0 s t a r t t i m e
=1532584740000 c a l o r i e =1815.0 d i s t a n c e =60 .0} ,
H i H e a l t h D a t a{ t y p e =4 , day = 2018−07−26 1 0 : 0 2 : 0 0 ,
v a l u e s = s t e p =184.0 end t ime =1532592180000
t r a c k d a t a d e v i c e T y p e =47 c l i e n t i d =5 a l t i t u d e o f f s e t
=0 .0 s t a r t

2018727−11:11:19:779 | S C U I F i t n e s s D e t a i l I n t e r a c t o r | t ime
=1532592120000 c a l o r i e =5201.0 d i s t a n c e =132 .0} ,
H i H e a l t h D a t a{ t y p e =4 , day = 2018−07−26 1 0 : 4 2 : 0 0 ,
v a l u e s = s t e p =49 .0 end t ime =1532594580000
t r a c k d a t a d e v i c e T y p e =47 c l i e n t i d =5 a l t i t u d e o f f s e t
=0 .0 s t a r t t i m e =1532594520000 c a l o r i e =1003.0
d i s t a n c e =32 .0} ,

. . .
2018727−11:11:19:779 | S C U I F i t n e s s D e t a i l I n t e r a c t o r |

l t i t u d e o f f s e t =0 .0 s t a r t t i m e =1532618220000 c a l o r i e
=7249.0 d i s t a n c e =226 .0} , H i H e a l t h D a t a{ t y p e =4 , day =

2018−07−26 1 8 : 3 1 : 0 0 , v a l u e s = s t e p =143 .0 end t ime
=1532622720000 t r a c k d a t a d e v i c e T y p e =47 c l i e n t i d =5
a l t i t u d e o f f s e t =0 .0 s t a r t t i m e =1532622660000
c a l o r i e =4416.0 d i s t a n c e =93 .0} ]

Figure 2. The figure shows the program flow of the first phase

2.3.3. Network. In the log files we discovered that the
Health app communicates with https://hicloud.com. Un-
fortunately, Burp Suite recorded no communication be-
longing to the Huawei apps. The explanation for this be-
havior was found in the Health log file where an exception
said: ”don’t use proxy”. To bypass this challenge one
could reverse the app, change the code and recompile it.
This was out of our scope and so we tried various standard
requests to the API which all led to a dead end.

3. Implementation

In the previous section we presented the data that we
found on the fitness trackers and the other sources. Now,
we introduce the tool1 that we developed on the basis of
these findings to investigate the trackers.

The tool is programmed in Python 3 and all require-
ments are listed in requirements.txt. The analysts can start
the tool by specifying the device and the method they
want to use. For instance, one could start python3 m
ain.py --device MiBand2 --method app to
extract and afterward analyze the data which is stored on
the phone in question. The tool is divided into two phases:
the Extracting Phase and the Presenting Phase that apply
the appropriate aforementioned methods for the specified
devices.

Figure 2 demonstrates the first phase. In the first phase
the tool initializes the device module for the requested
device and method. This module is different for each
device and method combination. It obtains the data from
the selected source and verifies the correctness of the data
(if possible). Next, it analyzes and interprets them and
stores them in a SQLite database. The device modules are
independent, so that anyone can develop further modules
in future work. For that purpose, the modules are well
documented and easy to understand.

In the second phase, the results are presented as an in-
teractive HTML report implemented in the report module
by using Flask. An example is shown in 3 and in more
detail in appendix C. The investigator can choose a source
and view different reports:

• User Report - Here the analyst can see user data,
for instance, the profile picture or the name that
was collected from the API or the app. Thus,
they can quickly check whether it is the suspected
person who owns and uses the device.

1. https://github.com/FHantke/FitnessTrackerAnalysisTool
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• Data Report (3) - Here the analyst can see infor-
mation about the heart rate, step count, accelera-
tion and sleep hours in diagrams. Since the amount
of data can easily reach hundreds of thousands
of records, if measured every second, which is at
the expense of render speed, we decided that the
investigator can choose a time range of interest and
the accuracy of the chart. In addition to the main
chart, a calendar shows the step activity over the
course of one year. Steps were chosen, since, in
the initial research, the step data was most reliable
in terms of availability and visibility of activity.
Moreover, the user’s sleeping hours are plotted in
a box-plot diagram, which shows the distribution
of the start and the end of the sleep. Accordingly,
the investigator can deduce a sleep rhythm and
recognize inconsistencies. After the charts have
rendered, the user can easily zoom in, view more
specific time ranges or export the current chart
view as PDF or SVG.

• Map Report - Here the analyst can see the
recorded GPS routes on a Google Maps view.
They can select one route to get a detailed view
with more information on every single recorded
coordinate. For instance, they can see the times-
tamp and heart rate for a specific point in a track.
Further, it is possible to use Street View and
follow the path of the user from the first-person
perspective.

• Compare Report - Here the analyst can compare
data from selected sanalyses to make similarities
and differences of the data visible.

• Custom Attributes Report - Every device is dif-
ferent, thus we decided to give developers the
opportunity to report specific information about
the device.

• Logs - In the log view the various logs can be
searched and sorted. They contain the process
of the investigation with timestamps, as well as
problems and errors.

Figure 3. The activity data page of the report displays fitness data on
a timeline. Additionally, it shows active days and the average sleeping
hours.

4. Evaluation

The evaluation is based on data we collected using
each tracker for one month. We saved the data shown in
the apps for later use as control data. First, we evaluated
the forensic soundness of the tool by considering the four
criteria defined by Rodney McKemmish: Meaning; Errors;
Transparency; Experience. Furthermore, completeness, as
McKemmish calls it one of the two most critical proper-
ties, is considered separately [16]. Secondly, we checked
the robustness of the tool.

To maintain the Meaning, the report module does not
change data and the device modules may only interpret
data while storing the data. For instance, raw byte values
are represented and stored as a decimal number or an
ASCII character. Further, our tool checks file hashes,
when downloading data from a phone before and after
the execution to avoid the possibility of broken data. In
case of a wrong hash, it would restart the download. When
working with APIs, SSL certificates are verified to ensure
integrity, which is part of meaning. Assuring integrity, of
course, means also to follow a solid chain of custody.
Every interaction with the devices must be documented
precisely. Errors that occur during an investigation need to
be identified and clarified as McKemmish says. Thus ev-
ery exception in our tool is well documented and displayed
in the logs. To be as transparent as possible, our entire
tool is made open source. Also, every step of the tool
is reported in the log so that the processes can easily be
reproduced. The last criterion, which is called Experience
of an investigator, cannot be influenced by this tool. It
is the task of the analysts to judge themselves correctly.
Nevertheless, we tried to make the reports as structured
as possible so that even an unqualified person can see and
understand correlations.

Beyond the immutability of evidence and complete-
ness of documentation, we also understood by complete-
ness that one should consider whether the tool extracts and
reports all data in the scope of this work. We compared
the data our tool collected with the information shown
in the Android apps. Table 3 shows the evaluation of the
completeness of the different devices.

The question is now, is the tool is forensically sound?
We use several techniques and methods to maintain relia-
bility, so that one part of forensic soundness is guaranteed.
The second part, completeness, was considered for every
device and its methods individually. There, it can be seen
that most methods do not obtain all the information on
which the focus was set and sometimes not even all of
the data, but just for a period of time. Nevertheless, the
found data in this period of time is complete and correct as
several checks with our collected data show. As a result,
we consider the tool forensically sound as long as the
investigators know what data and what period of time were
obtained. This is displayed in the report.

Next, we considered the robustness of the tool. First,
we tested the normal use with data collected during the
entire research. The tool works as intended - it extracts the
data and displays it correctly. When requesting too many
data, the tool takes a few seconds to execute, but always
provides the report eventually. Afterwards, we used the
program incorrectly and attempted to force different fail-
ures or data manipulation. With our methods, we covered
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TABLE 3. EVALUATION OF COMPLETENESS OF DEVICE MODULES

Device Method Found data Completeness
Xiaomi BLE Steps Only the last seven days

Heart Rate Only the last seven days
Acceleration Only the last seven days

Xiaomi App GPS Yes, if the phone is rooted
Steps Yes, if the phone is rooted
Heart Rate Yes, if the phone is rooted
Acceleration Yes, if the phone is rooted
Sleeping hours Yes, if the phone is rooted
Account data Yes

Fitbit App GPS Yes, if the phone is rooted
Steps Yes, if the phone is rooted
Account data Yes, if the phone is rooted

Fitbit Cloud Steps Yes, with user credentials
Heart Rate Yes, with user credentials
Sleeping hours Yes, with user credentials
Account data Yes, with user credentials

Huawei App Steps If the user requested data

a wide spectrum of issues, such as changing the database
or failed imports. The results show, the program reacts
every time as it was intended to and reports the incorrect
behavior. In conclusion, it can be said that the program
passed all the tests, even if it can become slow when the
amount of data is too large.

5. Proposed Method for Fitness Tracker
Forensics

As we mentioned earlier, our motivation for this work
was that we believe fitness trackers can provide great
information about a crime scene. To get the best result,
professional and careful handling and a solid chain of
custody is important. Thus, we propose to divide the pro-
cedure into four steps: Preparation, Extraction, Analysis
and Reporting. Investigators should also keep in mind
that the user could falsify data, for instance by giving
the tracker to a friend. The collected data should never be
used by its own. The following sections describe the steps
and clarify how our tool can be used for this purpose.

5.1. Preparation

When a fitness tracker is involved as a potential wit-
ness, we recommend to put the phone and the tracker into
separate Faraday bags to block further communication.
Otherwise, a tracker could send mistakenly collected data
to the phone and show activity, even after the seizure.
This could lead to inconsistent data during the analysis.
Also, every interaction with the devices from now on
must be documented for the final report and the chain of
custody. In the same way, investigators must take the law
and regulation in account on which the analysis is based.
Since a profile picture or movement of a person is private
information, special care must be given to comply with
the law. Furthermore, it may be possible to request user
credentials for the fitness tracker account with the help of
a warrant for the purpose of extracting information from
an API.

5.2. Extraction

In this step, the analyst should use our tool to extract
information from the different sources. Due to volatile

memory, the tracker should be processed first and as soon
as possible. For this, the analyst must connect the tracker
via Bluetooth to a workstation and run our tool. Next,
the investigator should analyze the phone. Therefore, the
phone must be connected to the workstation via USB and
our tool extracts the data. To extract valuable information
from a phone, we have seen that the phone must be rooted
for most trackers. The rooting process can cause problems
as discussed in paper from Vidas et al. [17]. Rooting a
phone often is accomplished by using a software flaw
in the phone’s Android version. This generally changes
internal data as it installs tools with extended privileges
and brings with it the chance of damaging the device.
Modifying the data is at the expense of integrity and can
lead to refusal of the evidence extracted from the rooted
phone in court. Thus, we suggest to first copy all possible
evidence from the unrooted phone, before starting the
rooting process. If the tracker’s manufacturer offers an
API it can also be used with our tool, however our research
showed that access to the tracker users account is needed.
This can be done with the permission and cooperation of
the tracker owner, for instance, if the owners innocence is
to be proven.

5.3. Analysis

During the analysis, the investigator tries to answer
the initial questions of the investigation by interpreting the
collected data. They can use the different views and graphs
in our tool for this purpose. The analyst should cross-
check and synchronize all the findings in the different
sources, for instance, the phone and the tracker. The
findings can show differences in the data which should
be considered. This can, for example, happen when the
tracker was not connected to the phone when it was
confiscated.

5.4. Reporting

Reporting is relevant to demonstrate that the findings
are accurate and to present them in an understandable way.
Therefore, the investigator should extract the graphs from
our tool and use them in the report. In the end, the report
must also hold all interactions with the devices to justify
the decisions and results.

6. Conclusion & Future Work

We analyzed three common fitness trackers to find
data which could support court hearings with valuable
information. On the basis of these results we developed a
tool to investigate the different sources and proposed an
approach to follow.

However, our methods that we used have a few limi-
tations. First, we analyzed only three trackers while there
exist many more on the market. For some trackers, we
didn’t find all the requested information, mostly due to
encryption or the absence of this information. Further,
to obtain valuable information from an Android phone
it must be rooted.

To build upon this work, one could analyze more
trackers and other operating systems to extend our tool, as
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it was intended. On the other hand, one could reverse the
apps to break the encryption and cloud communications
and add the functionality to our tool. With this method, a
researchers may also overcome the limitation of rooting
a phone as the communication with a cloud, if read only,
does not modify the evidence. As it can be seen, plenty
of future work is possible in this field and the potential
for growth is promising.

Although the tool has limitations, we think the result-
ing graphs and tables can be used in forensic work, as we
evaluated it to be forensically sound. We believe that this
work gives a good idea of how beneficial the analysis of
fitness trackers for judicature procedure can be and that
we will see them more often in legal cases in the future.
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Appendix

1. Fitbit Charge 2 - Protocol

The Fitbit Charge 2 synchronizes its data first with
the cloud. Only then, the app can handle this data by
requesting it from the cloud.

Figure 4. The figure indicates the synchronization protocol of Fitbit

2. Fitbit Charge 2 - Object Types

The Fitbit database holds various object types, which
can be interpreted. Table 4 shows the interpretation of
these object types and whether they contain the correct
value or not. Not all of object types are reliable.

TABLE 4. THE TABLES SHOWS INTERPRETED OBJECT TYPES AND

THEIR CORRECTNESS

Type Meaning Correct Values
1 Weight summary of one day False
3 Contains only 0.0 for each day False
4 Step count summary of one day False
5 Calorie summary of one day False
6 Floor summary of one day False
8 Distance summary of one day False
11 Intraday step count every 15 minutes True
12 Intraday calories every 15 minutes True
16 Active minutes of one day False
17 Intraday active minutes every 15 minutes True
18 Intraday heart rate every 15 minutes True
19 Average heart rate minutes of one day True

3. Data Report

The figures show the different graphs one can analyze
in the data report.

Figure 5. The figure shows the users average sleeping hours
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Figure 6. The calender shows the activity of the user over the course of one year

Figure 7. The graph shows the collected data over time
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