
Typosquatting and Combosquatting Attacks on the
Python Ecosystem

Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci
University of Trento, Italy

{ducly.vu, ivan.pashchenko, fabio.massacci}@unitn.it

Henrik Plate, Antonino Sabetta
SAP Security Research, France

{henrik.plate, antonino.sabetta}@sap.com

Abstract—Limited automated controls integrated into the
Python Package Index (PyPI) package uploading process make
PyPI an attractive target for attackers to trick developers into
using malicious packages. Several times this goal has been
achieved via the combosquatting and typosquatting attacks when
attackers give malicious packages similar names to already exist-
ing legitimate ones. In this paper, we study the attacks, identify
potential attack targets, and propose an approach to identify
combosquatting and typosquatting package names automatically.
The approach might serve as a basis for an automated system that
ensures the security of the packages uploaded and distributed via
PyPI.

Index Terms—FOSS, Malicious Software, Supply Chain At-
tacks, Combosquatting, Typosquatting, Python, PyPI

I. INTRODUCTION

Python Package Index (PyPI) provides a comfortable and

widely used way to distribute Python projects users. However,

this ease of use comes at a cost: PyPI has been leveraged to

spread malware [1]. For example, the Slovak National Security

Office1 reported 10 cases where malicious code was embedded

into the installation script to steal users’ data. Perica [2]

showed that many packages in PyPI contain executables that

may include malicious payload triggered by users.

Limited automated controls integrated into the PyPI pack-

age publishing system and a small number of administrators

prevents the security verification of every package. Hence,

attackers can repackage the others package code into a new

package with a malicious payload, and trick users into in-

stalling it. Several studies demonstrated PyPI vulnerability to

the squatting attacks.

To demonstrate the ability to register typosquatting packages

Tschacher [1] uploaded artificial packages with the names

nearly identical to the legitimate packages, to the three dif-

ferent software repositories (including PyPI), and received

45K downloads over several months. Stagg [3] crafted and

uploaded 12 packages that have names of the modules of

Python standard library (e.g., os, csv) and observed a

massive number of downloads of these packages (>490K

downloads per year). Hence, squatting package names could

be an attractive way to introduce malicious packages in PyPI.

Considering the ever-growing popularity of PyPI, there is

a significant need for controls capable to automatically find

malicious packages hosted in PyPI and prevent attackers from

1https://www.nbu.gov.sk/skcsirt-sa-20170909-pypi/

uploading new malicious packages. Hence, in this paper, we

provide the following contributions:

• a study of the common attacks to craft malicious packages

and trick users into downloading them,

• an approach for automatic identification of packages

likely used in combosquatting and typosquatting attacks.

Following the motivating study of Stagg [3], we checked

whether any PyPI packages have the same name as any of

the 297 module names of the Python standard library.2 We

identified 62 such packages. Our manual analysis of these

packages suggested that they are kept in PyPI mostly for

backporting reasons.3

Table I shows that attackers apply different modifications

to package names, however, these names remain similar to

the original packages. Therefore, we use the Levenshtein

distance [4] as the simplest and widely used technique to

calculate the edit distance between package name strings. Our

empirical results suggest that 79 933 packages are safe to use,

and 67 005 packages require to be further investigated.

II. HOW PYPI WORKS

PyPI is a popular repository of Python applications or

packages: as of February 2020, it contains more than 216K

packages with the total number of downloads exceeding four

billion times. PyPI is maintained by a group of developers

called Python Packaging Authority (PyPA for short). Figure 1

provides an overview of different roles envisioned by PyPI:

End Users, Package Owners, PyPI Moderators (PyPA), and

PyPI Administrators (PyPA).

End Users provide the name of a package to a package

manager tool, like pip5 to install the package from PyPI.

Although pip does everything automatically for installing a

package, it neither requires user authentication nor performs

any validation of the package. Instead, pip merely looks for

the package in PyPI by its name, identifies and resolves its

dependencies, downloads all the required components, and

installs them on the End User’s computer.

2We checked against all modules appeared in at least one of the existing
Python standard libraries: Python 2.6, 2.7, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8.

3The manual analysis of 62 packages available at https://github.com/
vuduclyunitn/wacco_2020

4Data collected from pypistats.com on Feb 15, 2020
5https://pip.pypa.io/en/stable/

508

2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)

© 2020, Duc Ly Vu. Under license to IEEE.
DOI 10.1109/EuroS&PW51379.2020.00073

Package Owners (400K) End users

Administrators

less than 10 people

30TB/day

Nurse

Moderators

Upload project

Maintain project Install project

Ban project
Remove package

Fig. 1: Roles and responsibilities in the PyPI ecosystem.4

Package Owners can distribute code on PyPI using the tool

called setuptools6 that packs the original source code and

generates a local distribution that is either in a source7 or built8

format. Package Owners register a package name on PyPI and

publish the distribution artifacts of the package. If Package

Owners have provided both distribution types, pip prefers to

install the built distribution first. Publishing a package on PyPI

is restricted to Package Owers, who can later modify (e.g.,

update a new version) existing packages that they have access.

PyPI Administrators and Moderators have exclusive rights

to ban or revoke packages of Package Owners. For example, if

a particular package is reported as malware, the Administrators

will delete the package from PyPI and block the malicious de-

veloper. The Administrators can delete the corrupted package

and support the Package Owners in recovering their access if

a package owner credentials are compromised or damaged.

Although this scheme proved to support high latency for

both Package Owners and End Users, limited resources and

automated controls integrated into the package uploading, and

distribution process leave the room for attackers to use PyPI

for spreading malicious software. PyPI especially becomes an

attractive target for attackers, considering the certain unbal-

ance concerning the number of Package Owners and PyPA

developers (40K to 1) and continuously growing popularity

of PyPI. In the next sections, we will give an overview of

the common strategies that attackers use to craft malicious

packages and exploit the PyPI package distribution procedure

to deliver malicious packages to End Users (Section III).

III. CRAFTING AND SHIPPING MALICIOUS PACKAGES

In the wild, attackers use mostly two ways to spread

malicious code within the PyPI ecosystem:

• steal the legitimate package owner’s credentials of an

existing package, inject a malicious payload into it so

that users in their normal activities can unintentionally

download it (e.g., install or update a package);

• create a new package with built-in malicious payload and

trick users into downloading it (e.g., by squatting the

name of a popular package).

Stealing PyPI credentials. In the first approach, attackers

exploit End Users’ trust in an already existing package. After

6https://github.com/pypa/setuptools
7https://packaging.python.org/glossary/#term-source-distribution-or-sdist
8https://packaging.python.org/glossary/#term-built-distribution

the attacker obtained the Package Owner’s rights to perform

specific operations in the publishing process, they can upload

their crafted package as a new (malicious) version of a com-

promised package. The ssh-decorate package (Table I)

was affected by such an attack when attackers injected a

malicious functionality for sending users’ SSH credentials to a

remote server.9 Although this attack requires additional effort

(e.g., social engineering) to obtain the credentials of package

owners, a certain number of infections are still possible.

Tricking users into downloading malicious packages. In

the second approach, attackers create a new package that, by

design, features some malicious behavior. Attackers can craft

the package from scratch or fork an existing PyPI package. In

the latter case, the attackers injected a malicious dependency

by modifying the setup.py installation script of the package so

that the malicious dependency will be downloaded and silently

installed along with the benign package (e.g., acqusition
(#11), urlib3 (#8) attacks in Table I). Then, they follow a

regular procedure to create an account in PyPI, register a new

package name, and upload the malicious package.

To increase the chance of getting more infections, attackers

register package names that are similar to existing (usually

popular) packages by package typosquatting or package
combosquatting ([5],[6]) in which they split the package name

into elements based on the "hyphen" character, and rearrange

the elements, e.g., "python-nmap" into "nmap-python". Users

who mistype or confuse the package name will install the

malicious package instead of the legitimate one.

Given a large number of package owners w.r.t. the number

of administrators, this likely to be (and so far has been)

undetected because several legitimate packages whose names

very close to other legitimate packages. For example, there is a

PyPI package called cpython that has the same name as the

Github project “cpython”.10 The package, however, has a very

vague description and uses a different source code repository.

Table I shows several past combosquatting and typosquat-

ting attacks in PyPI. Lutoma11 detected two malicious pack-

ages; one substituted the ‘l’ character with the capital ‘I’ so

that it is quite tricky to distinguish between jeIlyfish
and jellyfish. At the time of its detection, the package

had been downloaded 119 times. Another malicious package

exploited the difference between the package naming practices

established in two python versions Python 2 and Python 3

(python3-dateutil vs. python-dateutil) to con-

fuse users when selecting the package of a particular Python

version. These packages were used to steal users’ information

and send them to a remote server. Attackers prefer to delete

characters from the legitimate packages to generate squatting

names. For example, the Slovak National Security identified

ten PyPI packages12 (e.g., acqusition, urllib) that sent

9https://medium.com/@bertusk/cryptocurrency-clipboard-hijacker-
discovered-in-pypi-repository-b66b8a534a8

10“cpython” is a compiler or an interpreter, not a third-party package
11https://github.com/dateutil/dateutil/issues/984
12https://www.nbu.gov.sk/skcsirt-sa-20170909-pypi/

509

TABLE I: Malicious packages in our sample.
Levenshtein distance d

Time Appear Malicious Package Legitimate package Names change d=1 d=2
1 2016-03-02 virtualnv virtualenv Delete ‘e’ �
2 2016-03-03 mumpy numpy Substitute ‘n’ by ‘m’ �
3 2017-05-01 crypt crypto Delete ‘o’ �
4 2017-06-02 django-server django-server-guardian-api Delete “-guardian-api”
5 2017-06-02 pwd pwdhash.py Delete “hash.py”
6 2017-06-02 setuptool setuptools Delete ‘s’ �
7 2017-06-02 setup-tools setuptools Insert ‘-’ �
8 2017-06-02 telnet telnetsrvlib Delete “srvlib”
9 2017-06-02 urlib3 urllib3 Delete ‘l’ �
10 2017-06-02 urllib urllib3 Delete ‘3’ �
11 2017-06-03 acqusition acquisition Delete ‘i’ �
12 2017-06-03 apidev-coop apidev-coop_cms Delete “_cms”
13 2017-06-04 bzip bz2file Substitute “2file” by “ip”
14 2017-11-23 djanga django Substitute ‘a’ by ‘o’ �
15 2017-11-24 easyinstall easy_install Delete ‘_’ �
16 2017-12-05 colourama colorama Delete ‘u’ �
17 2018-04-25 openvc opencv-python Swap ‘c’ and ‘v’ & Delete “-python”
18 2018-05-02 mateplotlib matplotlib Insert ‘e’ �
19 2018-05-02 numipy numpy Insert ‘i’ �
20 2018-05-02 python-mysql MySQL-python Swap “python” and “mysql” �
21 2018-05-03 libcurl pycurl Substitute “py” by “lib”
22 2018-05-03 libhtml5 html5lib Swap “html5” and “lib”
23 2018-05-03 pysprak pyspark Swap ‘a’ and ‘r’ �
24 2018-05-03 PyYMAL pyyaml Swap ‘a’ and ‘m’ �
25 2018-05-10 nmap-python python-nmap Swap “nmap” and “python” �
26 2018-05-10 python-mongo pymongodb Delete “db” & Substitute “py” by “python-”
27 2018-05-10 python-openssl openssl-python Swap “openssl” and “python” �
28 2018-09-17 pytz3-dev pytz Insert “3-dev”
29 2018-10-29 python-sqlite pysqlite Substitute “py” by “python-”
30 2018-10-30 python-ftp pyftpdlib Delete “dlib” & Substitute “py” by “python-”
31 2018-10-30 python-mysqldb MySQL-python Swap “python” and “mysql” & Insert “db”
32 2018-10-30 smb pysmb Delete “py” �
33 2018-10-31 pythonkafka kafka-python Swap “kafka” and “python” & Delete ‘-’
34 2019-12-01 jeIlyfish jellyfish Substitute ‘l’ by ‘I’ �
35 2019-12-01 python3-dateutil python-dateutil Insert ‘3’ �
36 2018-04-25 ssh-decorate ssh-decorate Hijacked Package

sensitive information to a remote server, nine of the packages

were created by deleting characters from original packages.

Several combosquatting packages were distributed by ex-

ploiting the usage of common prefixes or suffixes within

PyPI packages (see the analysis in Section V), e.g., pytz
into pytz3-dev making the malicious package look like

the distribution of a Python 3 development version of the

original package. Similarly, attackers used a singular form

of a package name instead of a plural one (setuptool
instead of setuptools), add special characters (e.g.,

hyphens or underscores), somewhere in a package name

(setup-tools instead of setuptools, easy_install
instead of easyinstall), or create a similar package name

a commonly known tool or a module of the standard library

(e.g., pwd13). Attackers leveraged the difference in spellings

of UK and US languages: malicious package colourama, re-
sembling the benign package colorama, download a crypto

miner upon installation by victims.14

IV. TELLING MALICIOUS PACKAGES APART

We start by describing our collection of the ground-truth

packages. They are the ones whose characteristics of a le-

gitimate package. Then we proceed to identify suspicious

13There exist similar Linux commands.
14https://medium.com/@bertusk/cryptocurrency-clipboard-hijacker-

discovered-in-pypi-repository-b66b8a534a8

packages whose names that are the same or similar to the

ground-truth packages.

Assumptions: Our ground-truth packages consist of two

trusted sources:

1) Modules of the Python standard library15 (e.g., os, csv,
re) that are bundled into Python distributions.

2) PyPI packages with known source code repositories.

Similar to [3], we assume that a PyPI package should not

use the name of a module of the Python standard library. If a

package in PyPI has an exact or nearly identical name to one

of these modules, we mark such a package as suspicious.

We assume that a PyPI package’s legitimacy could be

verified by checking its source code repository that provides

additional metrics (e.g., number of stars, followers, and forks)

often used by developers to reason about the package repu-

tation and community support [7]. Considering the examples

of Table I, we observe that developers tend to use the same

package name as the repository name in Github. Although

there is no strict requirement on the name correspondence, we

base on this observation to identify the list of packages with

known code repositories as ground-truth:

• PyPI packages whose names are the same as the reposi-

tory names in Github are not typosquatting packages,

15https://docs.python.org/3/library/

510

• PyPI packages whose names are different than the repos-

itory names or do not have any reference to a Github

repository, require additional verification (Section VI).
Algorithm: To measure the similarity of package names, we

calculate the Levenshtein distance [4] between each pair of

packages and check if the distance is less than or equal to a

threshold heuristically. Based on the list of previous typosquat-

ting package names in Table I, we define the threshold for the

package name similarity to be equal to two as it allows us

to identify the majority of known attacks (21 out of 36) and

reduce the number of false positives.
Figure 2 summarizes the proposed idea for detection of

squatting packages. Packages where source appears in a repos-

itory (e.g., Github) can be verified either by checking their

reputation (e.g., number of stars) or source code. We assume

that the packages that do not have source code repositories

or share the same repository while having a different name

at the same time with another are suspicious. We note that it

is not required that a legitimate package name in PyPI is the

same as the repository name in Github or other version control

systems.

PyPI
• urllib3

• tensorflow

• pandas

..

Select a
package

Does the
package have
the same name
as a module of
standard libs?

Does the
package have
the name

similar to a
module of

standard libs?

Does the
package
have the
same

repository
name?

Does the
package
have the
name

similar to a
package

with known
source?

Manual
inspection

No

No Yes

Yes

Yes

Fig. 2: Detecting Suspicious Squatting Packages.16

Step 1: Processing of modules of Python standard library
To compose a list of module names of the Python standard

library, we base on the stdlib-list17 package to collect

Python standard library module names of the Python standard

library from nine different Python versions. Then, we scan the

whole PyPI and report packages whose names are the same

as any module of Python standard library as suspicious.
Step 2: Processing of PyPI packages with known source
code repositories For those PyPI packages whose URLs lead

to Github repositories, we use the URLs to extract the source

cdoe repository names. After comparing the repository and

package name, we classify packages that have the same name

as not created for a typosquatting attack and all other packages

as required to pass through additional verification.
Step 3: Identification of packages possibly created for
squatting attacks We look for packages whose names have

16To simplify the algorithm, unspecified paths all lead to the legitimate
packages which are not required inspection.

17https://pypi.org/project/stdlib-list/

TABLE II: Descriptive statistics of package name lengths.

count mean std min 25% 50% 75% max
package 216 547 12.4 7.4 1 7 10 16 80

the Levenshtein distance less or equal than two to the module

names of Python standard library and the packages whose

the same names as code repositories (Step 2). To capture

the common prefix “python” added during the combosquatting

attack, we preprocess package names by substituting “python”

with ‘*’. This transformation allows us to capture, e.g., attacks

#20, #25-27, #29-31, and #33 in Table I.

V. EMPIRICAL RESULTS

Descriptive statistics: In total, we analyzed 216 548 pack-

ages from PyPI as of February 20, 2020. On average, a

package name has 12 characters, while lengths of names of

50% of packages are shorter or equal to ten characters. Table II

shows descriptive statistics of package name lengths in PyPI.

We identified 165 878 packages have homepage URLs, and

197 packages provide code page URLs.18 The largest share of

PyPI packages use Github as a place to store their source

code: 141 358 homepage URLs (85%) and 196 codepage

URLs (99%). Other packages host their source code on GitLab

(2792 homepage URLs and 10 codepage URLs), BitBucket

(4606 homepage URLs and three code page URLs), Google

code (847 homepage URLs), and SourceForge (618 homepage

URLs). 3550 packages (13.3%) either do not provide codepage

URLs or use URLs on PyPI as their homepages.

We noticed that 613 packages use https://github.com/pypa/

sampleproject as their homepage URLs. This case might hap-

pen because package developers had used a template to create

PyPI packages, but did not update their homepage URLs to the

template. Moreover, 12 266 other packages are sharing several

homepage URLs. This might happen for both malicious and

benign reasons. The typosquatting package jeLlyfish used

the homepage URL of the legitimate package jellyfish
unchanged so it may look legitimate to End Users.

Figure 3 shows the distribution of the Levenshtein distances

between all packages names in PyPI. The distance distribution

has a shape of a normal distribution with 4 225 244 (0.02%)

pairs of packages that have distances between one and two.

54.8% of the pairs have a distance between 9 and 16. The

biggest Levenstein distance between package names is 80.19

Hence, the identified threshold of the Levenshtein distance

(d=2) could be seen as a good trade-off, since it allows us to

identify the majority of known attacks and does not generate

a significant number of alerts (d=4 increases the 51 times

amount of alerts from 4.2 million to 215 million).

Known attacks. We observe that the attacks in Table I

targeted popular packages: seven Github repositories (25%)

of the attacked packages have more than 2356 stars, 14 repos-

itories (50%) have more than 972 stars, and 21 repositories

(75%) of the packages have more than 84 stars. Fifteen out of

the 28 squatting attacks are identified by setting the distance

18We found seven packages whose URLs are broken and corrected them.
192to3 and aaaaaaaaaaaaaaaaaaa-aaaaaaaaa-aaaaaaasa-aa

aaaaasa-aaaaasaa-aaaaaaasa-bbbbbbbbbbb

511

Fig. 3: Levenshtein distance distribution of package names.

Fig. 4: #Packages whose name differ from standard modules.

threshold of one. Increasing the threshold to two allows us to

capture six additional attacks (21 out of 28).

Looking at other packages in PyPI.
Modules of Python standard library: We found 62 pack-

ages in PyPI that have the same names as modules of the

Python standard library. We further checked whether we found

the packages published by Stagg [3]: while Stagg published

‘empty’ packages that were removed from PyPI, we identified

several packages with non-empty sources. Particularly, 16 out

of 62 packages do not have any releases, and 12 packages

have only one release. Hence, we confirm that these packages

are not the ones published by [3] and confirm our manually

analysis.

Figure 4 shows the distance distribution between Python

standard library module names and other packages’ names.

There are 296 PyPI packages whose names have the distance

less than or equal to two from Python standard library module

names, and therefore, suspicious.

PyPI packages with known sources: From those packages

that use the Github to host their source code, 79 933 packages

(36.9%) have the same name for both Github repository

and package name in PyPI (i.e., safe packages). Names of

61 522 packages differ from the names of their source code

Fig. 5: #Packages whose names differ from repository names.

repositories, and therefore, these packages require additional

analysis. In Figure 5, we identified approximately 65 000 PyPI

packages have the names similar to the packages with known

sources (they have a distance less than or equal two).

Interesting naming patterns. We noticed some patterns

between the package names and repository names:

• 16 070 (7.4%) package names include names of their

code repositories or vice versa (e.g., the package

0-core-client has its repository name 0-core),
• several common prefixes and suffixes are added or re-

moved from the repository names to create PyPI package

names. Several common prefixes are ‘python-’ (2287),

‘-python’ (1343), ‘.git’ (1324),

Understanding these naming patterns might potentially sup-

port predicting future combosquatting attacks of legitimate

packages as adding/deleting a suffix or prefix is one of the

combosquatting strategies (See Section III).

VI. THREATS TO VALIDITY

Missing potential typosquatting packages. Our approach

can be applied for detecting typosquatting candidates of pack-

ages whose names are longer than 2 (the selected threshold).

However, as shown in Table II, 75% of packages in PyPI have

more than seven characters in their names. Hence, our pro-

posed approach relies on the Levenshtein distance applicable

to most of the PyPI ecosystem packages. To capture packages

with short names, we plan to use common name patterns (e.g.,

repeated or swapped characters)([5],[8]).

False positives The proposed approach has generated false-

positive findings. For example, a package name might differ

from its source code repository name for a good reason, e.g.,

the developers could not register the repository name because

the name has been reserved. We manually verified 62 packages

(the ones look the same to standard libraries) and identified

the following reasons behind existing of these packages in

PyPI: backport to old Python versions (17), empty packages

(17), toy packages (2), legitimate deprecated packages with

different functionality (26).

The manual analysis allowed us to identify the following

ideas to reduce the number of false positives by analyzing:

512

package info (e.g., author reputation, package popularity) and

code features (e.g., suspicious API calls).

We use source code repository as a trusted source.
The legitimacy of a package depends on the equality of

package and repository name. However, a repository name

is not necessarily unique across Github (e.g., stub42/pytz and

newvem/pytz). An organization and a repository name identify

a project in Github. Hence, attackers may create a repository

with the same name but different organization identifiers as an

existing repository in Github (or even a new repository) and

publish a corresponding package in PyPI. Our approach is not

capable of identifying such an attack. However, this attack

requires additional effort to trick the users into downloading

packages that come from an unknown source. To overcome

this limitation, we plan to extend the proposed approach to

considering other reputation metrics (e.g., number of stars).

On the other hand, one Github repository might be used to

store code of several different PyPI packages. For example,

a Github repository https://github.com/Azure/azure-sdk-for-

python organization corresponds to 140 packages in PyPI (e.g.,

azure, azure-ai-nspkg). In such a case, our approach

would generate a false alert.

Also, the referred repository does not need to contain code

that bears any relation to the package. We plan to employ

a code analysis to identify such a discrepancy (whether a

particular code fragment in a package originates from its

source code repository). This might be a good signal for

detection of injected code added by attackers or backporting

changes added by developers directly to the packages.

Some known attacks are not caught. Although the

proposed approach allows us to catch most of the known

typosquatting attacks, some attacks in Table I still remained

unidentified. Additional ways of checking modifications of

package names might allow the detection of such attacks.

For example, attacks #20, #22, #23, #24, #25, #27 are based

on the permutation of the legitimate package names, while

typosquatting package names in attacks #4, #5, #12, #8

were created as a result of deletions of a part of legitimate

package names. However, including such checks to enlarge the

search space for the possible typosquatting candidates might

significantly increase the number of false positive alerts, and

therefore, could not be used alone. Hence, we are planning to

investigate the common patterns of packaging names in future

work and embed them into our approach.

VII. RELATED WORK

Duan et al. [9] extract various features of a package to

identify its maliciousness. They rely on the predefined list of

popular packages to find suspicious packages. We propose a

method to automatically find legitimate packages that can be

used for finding potential typosquatting attacks.

Tschacher [1] presented a comprehensive analysis of ty-

posquatting attacks, including the systematic generation of

typosquatting package names, the publication of forks of the

original packages in several open-source ecosystems. By doing

this, they can measure the severity of such an attack by

counting the number of successful installations. Our study

complements this work by providing an approach for obtaining

a list of legitimate package names that can be used for

automatic identification of typosquatting packages in PyPI.

Taylor et al. [8] proposed an approach to identify typosquat-

ting candidates based on package name patterns, like repeated,

omitted, or swapped characters, common typos, swapped

words, and Python version numbers. While the authors con-

sidered the most downloaded packages, we have analyzed all

the packages with source code repository links.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have studied attackers strategies in crafting

malicious packages and trick Python developers into down-

loading malicious packages whose names are similar to the

legitimate packages, i.e., the combosquatting and typosquat-

ting attacks in the Python Package Index ecosystem. We have

also proposed an automatic approach for detecting packages

affected by the typosquatting attack. The empirical evaluation

of the proposed approach on the list of known squatting attacks

suggests that the approach is promising to be used in future

research for automatic identification of malicious packages in

PyPI and has the potential for creating an automatic system

that prevents squatting attacks in the PyPI ecosystem.

For the future work, we plan to extend the approach to

employ the code level checks of the identified packages so

that it will be capable of automatically identifying injected

malicious code snippets into Python packages. Additionally,

we plan to explore the applicability of the approach to other

software ecosystems, like NPM or Maven.

ACKNOWLEDGMENTS

This research has been partly funded by the EU under the

H2020 Programs H2020-EU.2.1.1-CyberSec4Europe (Grant

No. 830929), the NeCS: European Network for Cyber Security

(Grant No. 675320) and the SPARTA project (Grant No.

830892).

REFERENCES

[1] N. P. Tschacher, “Typosquatting in programming language package man-
agers,” Bachelor’s Thesis, Universität Hamburg, Fachbereich Informatik.

[2] A. Z. Robert Perica, “Suppy chain malware - detecting malware in pack-
age manager repositories,” https://blog.reversinglabs.com/blog/suppy-
chain-malware-detecting-malware-in-package-manager-repositories.

[3] S. Stagg, “Building a botnet on pypi,” https://hackernoon.com/building-
a-botnet-on-pypi-be1ad280b8d6, 2017.

[4] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, 1966.

[5] Y. Hu, H. Wang, R. He, L. Li, G. Tyson, I. Castro, Y. Guo, L. Wu, and
G. Xu, “Mobile app squatting,” in Proc. of WWW’2020, 2020.

[6] P. Kintis, N. Miramirkhani, C. Lever, Y. Chen, R. Romero-Gómez,
N. Pitropakis, N. Nikiforakis, and M. Antonakakis, “Hiding in plain sight:
A longitudinal study of combosquatting abuse,” in Proc. of CCS’17.

[7] I. Pashchenko, D. L. Vu, and F. Massacci, “A qualitative study of depen-
dency management and its security implications,” in Proc. of CCS’20.

[8] M. Taylor, R. K. Vaidya, D. Davidson, L. De Carli, and V. Rastogi,
“Spellbound: Defending against package typosquatting,” arXiv preprint.

[9] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio, and
W. Lee, “Measuring and preventing supply chain attacks on package
managers,” arXiv preprint.

513

