
Abusing Android Runtime for Application Obfuscation

Pierre Graux, Jean-Francois Lalande, Pierre Wilke, Valérie Viet Triem Tong
CentraleSuplec, Inria, Univ Rennes, CNRS, IRISA

Rennes, France
firstname.lastname@inria.fr

Abstract—Studying Android obfuscation techniques is an
essential task for understanding and analyzing malicious
applications. Obfuscation techniques have already been ex-
tensively studied for market applications but never for pre-
compiled applications used in smartphone firmwares. In
this paper, we describe two new obfuscation techniques
that take advantage of the duality between assembly and
Dalvik bytecode and, as far as we know, have never been
described before. We also propose detection methods for
these obfuscation techniques. We apply them to vendor
firmwares and market applications in order to evaluate their
usage in the wild. We found that even if they do not seem
to be already used in the wild, they are fully practical.

Index Terms—Obfuscation, Android, Assembly

1. Introduction

The tremendous number of malicious Android appli-
cations has created a crucial need for analyzing Android
obfuscation techniques. Although most malicious appli-
cations are gathered on the Google Play market or other
third-party markets, firmwares can also contain malicious
applications. For example, in 2017, Kryptowire1 discov-
ered Android firmwares that transmit private information
to third-party servers, such as the full content of the user’s
text messages. In such cases, the malicious application is
not installed directly by the user but through the Android
update mechanism, or is already on the device when sold.

The introduction of malicious code into firmwares
gives the attacker a specific opportunity to use assembly-
based obfuscation techniques. These techniques could use
assembly code to perform actions that work only on the
targeted smartphone. Proposing such obfuscation tech-
niques has never been explored yet. Indeed, state-of-the-
art obfuscations have usually been studied only at the
application level.

In this article, we propose two new obfuscation tech-
niques that use assembly code to hide the malicious intents
of applications and we present methods to detect the
use of such techniques. The first one is called Bytecode-
Free OAT (BFO) in reference to the Android file format
OAT. It consists in removing all the bytecode from an
application while leaving its assembly unchanged. It is
only applicable on pre-compiled applications, that is, only
in firmwares. The second one is called Direct Heap Access

1. https://www.kryptowire.com/kryptowire-discovers-mobile-phone-
firmware-transmitted-personally-identifiable-information-pii-without-
user-consent-disclosure/

(DHA) and consists in using assembly code to access the
Android memory layout in order to bypass the interface
between bytecode and native code and therefore thwart
most analysis tools. This technique can be used on both
market and firmware applications. In order to evaluate if
these techniques are already actively used in the wild, we
propose detection techniques that we apply to application
and firmware datasets.

The contributions of this study are the following:

• we describe a new obfuscation technique, Bytecode-
Free OAT, based on the removal of the Dalvik byte-
code, therefore leaving only the compiled assembly;

• we describe a new obfuscation technique, Direct
Heap Access, based on the bypassing of the interface
between bytecode and native code;

• we present methods to detect the use of these new
techniques;

• we evaluate the usage of these techniques in smart-
phone firmwares and, for Direct Heap Access only,
in application datasets.

The rest of the article is organised as follows. Section 2
describes the necessary background on the Android sys-
tem. Sections 3 and 4 present, respectively, BFO and DHA
and their corresponding detection techniques. Section 5
shows the results obtained when using these detection
techniques in the wild. Section 6 refers to works related
to Android assembly obfuscation. Finally, Section 7 con-
cludes the article.

2. Android runtime overview

An Android application is distributed as an APK file,
which is an archive file containing the resources, code
and metadata of the application. The code can be either
Dalvik bytecode, stored in DEX files (Dalvik EXecutable),
or assembly code, stored in shared libraries (.so files).
We will respectively name them bytecode and native
code in the remaining of this article. Usually, bytecode
is compiled from Java or Kotlin source code, and native
code is compiled from C/C++. In order to access bytecode
objects, which are stored on the heap, Android provides
the Java Native Interface (JNI). This interface allows
native code to request the runtime to perform operations
such as retrieving or setting an object field, calling an
object method or even creating a new instance of a class.
The main purposes of JNI and native code is to improve
the performance of applications.

Moreover, since Android 7.0 (Nougat, 2016), the An-
droid runtime (ART) is able to compile bytecode meth-
ods into assembly. The compilation is performed on the

615

2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)

© 2020, Pierre Graux. Under license to IEEE.
DOI 10.1109/EuroS&PW51379.2020.00088

APK

APK
Meta-data

DEX

Native
code

Standard
OAT

OAT
Meta-data

DEX

Quick
code

Obfuscated
OAT

OAT
Meta-data

DEX

Quick
code

obfuscation

co
m

pi
la

tio
n

Figure 1: Bytecode-Free OAT (BFO) technique

smartphone itself, which allows the compiler to use op-
timizations tuned for a specific architecture. This greatly
improves the performance of the application. When com-
piled, Dalvik bytecode is stored on the phone using a new
file format called OAT2. This file contains the originally
compiled DEX file together with the resulting assembly
code. For the sake of clarity and according to the An-
droid source code3, the assembly code resulting from the
bytecode compilation will be named quick code while the
assembly code resulting of the C/C++ compilation will be
named native code. When executing the application, the
Android runtime runs the quick code. If, and only if, the
quick code is not available, it runs the bytecode4.

3. Bytecode-Free OAT

This section presents Bytecode-Free OAT (BFO), an
obfuscation technique that takes advantage of the OAT file
format as represented in Figure 1. When executing an ap-
plication on Android, if some quick code is available, it is
always executed, regardless of whether bytecode is present
or not. So, an attacker could tamper with the bytecode
without modifying the executed quick code. Thereby, the
application behavior is not changed but the analysis of the
bytecode would be erroneous since it is not performed on
the code that is actually run. Quick code is only available
in OAT files which are created on the smartphone itself
and cannot be distributed. Thus, BFO cannot be used
on markets such as Google Play. Instead, this technique
would be particularly well suited for firmware vendors be-
cause these companies provide their applications already
pre-compiled for a specific phone model.

Depending on how the bytecode is tampered with,
the BFO technique can be divided in three different sub-
techniques described in the next three following sections:
removing, replacing or modifying the bytecode. These
techniques are classified according to three criteria: their
robustness, their stealthiness and the possibility to au-
tomate them. Since assembly code works at a lower
abstraction level than the bytecode, we consider that
analyzing bytecode is simpler than analyzing assembly.
Consequently, we consider that an obfuscation technique
is more robust than another if it requires to analyze more

2. We could not find an official definition for this acronym.

3. AOSP source code: https://source.android.com/

4. The bytecode can be either interpreted or Just In Time compiled.

assembly code. On the other hand, we consider that an
obfuscation technique is stealthier than an other if the
difference between the behavior described by the bytecode
and the one observed is smaller: analysts only look at the
assembly code if the result of the bytecode analysis seems
incorrect with respect to the behavior of the application.

3.1. Removing the bytecode

The first variant of this BFO technique consists in re-
moving or “nopping” the bytecode. This means replacing
the bytecode by No-OPeration (NOP) instructions or, by
extension, by instructions that do not have any special
effect. Removing the bytecode is allowed by the OAT
file format in order to represent abstract methods.
The quick code, which is always executed regardless of
the bytecode, is not modified, in order to preserve the
application behavior.

This technique perfectly fools bytecode analysis tools
since the information on which they perform their analyses
is deleted. Instead, the reverse engineering of the appli-
cation needs to be done directly on the assembly code.
Additionally, this technique is easily automatable since
the modifications applied to the bytecode are the same
for all applications and do not depend on the bytecode.

However, using this technique is not stealthy since
bytecode analysis cannot give any result if there is no
bytecode provided at all. Moreover, the removal of the
bytecode can be automatically detected if an application
contains a method that has quick code but no bytecode.
Results of this simple detection algorithm is presented in
Section 5.1.1. For the “nop” version, the detection can
be achieved using statistical properties such as entropy.
Since nopping code consists in rewriting it using always
the same pattern, it lowers the entropy of the code. By
using an entropy threshold, the nopping can be detected.
Section 5.1.2 discusses the results obtained with this de-
tection technique.

3.2. Replacing the bytecode

As previously stated, removing or nopping the byte-
code is not stealthy. To counter this drawback, the byte-
code can be replaced instead of removed or nopped: the
bytecode of a sensitive method, e.g. a method that checks
the PIN code, can be replaced by a benign method, e.g.
a hello world. Thus, the robustness of the obfuscation
technique is kept while its stealthiness is improved: the
bytecode still does not give any information about the
real behavior of the application and analysis tools generate
wrong results since they have bytecode to work on.

The automation of this technique is technically pos-
sible, but not trivial. The bytecode cannot be replaced
by repetitive patterns of bytecode because this would be
easily detectable as previously stated in Section 3.1. The
automation can neither generate random patterns because
this would result in incorrect bytecode, which is also
easily detectable by a bytecode verifier. Thus, automating
this technique requires to generate random valid bytecode,
that is bytecode which respects, among other criteria, the
signature of the replaced method. While it is still doable,
it requires some engineering work, and is left as future
work.

616

If correctly implemented, detecting this techique con-
sists in detecting if a given assembly code is the result
of the compilation of a given bytecode. This can be
done by compiling the bytecode and then comparing
the result of this compilation to the given assembly.
Section 5.1.3 shows results obtained with this detection
technique. While detecting automatically this technique is
a challenging task, a manual investigation can easily detect
bytecode replacement. The executed assembly code com-
pletely differs from the analyzed bytecode, which makes
the results obtained by a bytecode analysis incoherent and
thus can quickly hold the analyst’s attention.

3.3. Modifying the bytecode

Finally, if the stealthiness of the code is considered
more important than the robustness, a third BFO tech-
nique can be used. This techniques consists in smoothly
modifying the bytecode. Instead of completely modifying
the bytecode behavior, only a few instructions that are
chosen very carefully are minutely modified.

For example, if someone wants to protect a code that
contains a CRC check of incoming network packets, ob-
fuscating the creation of the CRC table would be a typical
goal. The bytecode corresponding to such a method is
presented in Listing 1. This bytecode has been obtained
by compiling an application containing CRC computations
and inspecting the resulting DEX file. Line 8, the bytecode
initializes the polynomial that is used to compute the table.
If only this line is modified, as shown in Listing 2, the
bytecode analysis of the application does not raise any
alarm: the results is coherent with the behavior of the
application.

However, this technique presents two main drawbacks.
First, it is less robust. Even if the bytecode differs from
the assembly, it still gives a lot of insight about what is
the behavior of the application. Second, it is not automat-
able. Indeed, modifications that are made to the bytecode
require a very good knowledge about the obfuscated byte-
code.

3.4. BFO sub-techniques comparison

The three BFO sub-techniques previously described
are classified in Figure 3 according to their robustness,
their stealthiness and the possibility to automate them.
Removing the bytecode is the one that is the easiest
to automate. However it is the least stealthy. Replacing
the bytecode can be viewed as an improvement of sim-
ply removing, since it improves the stealthiness while
not reducing the robustness. Nevertheless, its process is
harder to automate. Finally, modifying the bytecode is
the stealthiest sub-technique but reduces robustness of the
obfuscation and requires manual editing.

4. Direct Heap Access

This section presents Direct Heap Access (DHA), a
new obfuscation technique that consists in using native
code to modify Java object fields directly on the heap
without relying on bytecode or runtime functionalities.
Indeed, as stated in Section 3.3, obfuscation techniques

1 1200 | const/4 v0, #int 0
2 1301 0800 | const/16 v1, #int 8
3 3510 1400 | if-ge v0, v1, 14
4 dd01 0401 | and-int/lit8 v1, v4, #int 1
5 1212 | const/4 v2, #int 1
6 3321 0a00 | if-ne v1, v2, 11
7 e201 0401 | ushr-int/lit8 v1, v4, #int 1
8 1402 2083 b8ed | const v2, #edb88320
9 9704 0102 | xor-int v4, v1, v2

10 2803 | goto 12
11 e204 0401 | ushr-int/lit8 v4, v4, #int 1
12 d800 0001 | add-int/lit8 v0, v0, #int 1
13 28eb | goto 02
14 1500 00ff | const/high16 v0, #int -16777216
15 b740 | xor-int/2addr v0, v4
16 0f00 | return v0

Listing (1) CRC32 bytecode

1 1200 | const/4 v0, #int 0
2 1301 0800 | const/16 v1, #int 8
3 3510 1400 | if-ge v0, v1, 14
4 dd01 0401 | and-int/lit8 v1, v4, #int 1
5 1212 | const/4 v2, #int 1
6 3321 0a00 | if-ne v1, v2, 11
7 e201 0401 | ushr-int/lit8 v1, v4, #int 1
8 1402 2ed8 31eb | const v2, #eb31d82e
9 9704 0102 | xor-int v4, v1, v2

10 2803 | goto 12
11 e204 0401 | ushr-int/lit8 v4, v4, #int 1
12 d800 0001 | add-int/lit8 v0, v0, #int 1
13 28eb | goto 02
14 1500 00ff | const/high16 v0, #int -16777216
15 b740 | xor-int/2addr v0, v4
16 0f00 | return v0

Listing (2) Modified CRC32 bytecode

Removing
bytecode

Replacing
bytecode

Modifying
bytecode

: automatable

: almost automatable

: non automatable

Robustness

S
te

al
th

in
es

s

Figure 3: Classification of BFO sub-techniques

can consist in stealthily modifying values of carefully
chosen fields. Modifying Java fields in native code is
classically made by relying on the Java Native Interface
(JNI). This interface contains methods that allow the na-
tive code to access the heap, where Java objects are stored.
However, this interface is well known: analysis tools are
able to setup hooks in this interface in order to retrieve
the behavior of the assembly part of an application and to
model how native code modifies the Java fields [1]–[3].

However, native code can modify Java fields without
JNI by directly modifying their value. This allows to
bypass state-of-the-art tools and is the purpose of DHA
which is represented in Figure 4. The Dalvik virtual
machine does not give any guarantee about how fields
are stored in the heap. Consequently, directly reading or
writing the heap without using JNI is not straightforward.
In the following section, we provide three ways to imple-
ment DHA.

617

HEAP

JNINative Code Java Code

DHA

Figure 4: Direct Heap Access (DHA) technique

1 extern "C" JNIEXPORT void JNICALL bytebuffer(JNIEnv
↪→ *env, jobject thisObj, jobject buf) {

2 void* addr = env->GetDirectBufferAddress(buf);
3 }

Listing 3: DHA using DirectByteBuffer

4.1. DHA implementation

The three DHA implementations given in this sec-
tion are ordered increasingly by the knowledge required
about Android runtime internals to implement them.
The first implementation provided, in Section 4.1.1,
describes a solution based on a legitimate use of
DirectByteBuffer, a specific class provided by An-
droid. Section 4.1.2 gives a naive way of doing a DHA
by scanning the whole heap. Finally, Section 4.1.3 gives
an advanced implementation which is able to navigate
through the internal structures of the Dalvik virtual ma-
chine. Each implementation is shown using the example
presented in Section 3.3. In this example, the obfuscation
aims at modifying the value of the polynomial used to
compute a CRC table.

4.1.1. Legitimate implementation: DirectByteBuffer.
Implementing a legitimate DHA is facilitated by the
Java class ByteBuffer which provides a way to al-
locate a buffer directly accessible by the native code.
This buffer, named DirectByteBuffer, has a field,
address, that localizes the bytes in the memory heap.
It is created using the allocateDirect method from
the ByteBuffer class. DirectByteBuffer has been
made for native optimization purposes.

However the address field is not visible. That is why
JNI provides GetDirectBufferAddress to directly
access it, as shown in Listing 3. To avoid using JNI,
which is the goal of DHA, this field can be retrieved
using reflection. This is done in Listing 4. Using the ob-
tained address, native code can directly access the content
of the DirectByteBuffer. In any case, the native
code needs to receive or retrieve the byte buffer address,
which can be detected by state-of-the-art tools [2]. Thus,
DirectByteBuffer does not fulfill the obfuscation
goal that is realizing a stealthy access.

4.1.2. Naive implementation: memory lookup. Native
code can avoid the need of receiving the address of a
field by looking into the memory for the field value.
Indeed, if the field has a specific unique value, such as
0xeb31d82e in the CRC example, the native code can
scan the memory to retrieve its location. Listing 5 shows
this process by reading the special /proc/self/maps

1 Field field;
2 field = Buffer.class.getDeclaredField("address");
3 field.setAccessible(true);
4 long addr = (long) field.get(directBytebuffer);

Listing 4: Retrieving DirectByteBuffer address
without JNI

1 #define SEARCHED_VALUE 0xeb31d82e
2 extern "C" JNIEXPORT void JNICALL memLookup(JNIEnv *

↪→ env, jobject thisObj) {
3 FILE *file = fopen("/proc/self/maps", "r");
4 if (file == NULL) return;
5 char *line = NULL;
6 size_t n = 0;
7 while (getline(&line, &n, file) > 0) {
8 char *path = strchr(line, ’/’);
9 if (!path) continue;

10 if (strcmp(path, "/dev/ashmem/dalvik-main space\
↪→ n")!=0 && strcmp(path, "/dev/ashmem/dalvik-
↪→ main space (deleted)\n")!=0) continue;

11 unsigned long vm_start, vm_end;
12 char r, w, x, s;
13 if (sscanf(line, "%lx-%lx %c%c%c%c", &vm_start,

↪→ &vm_end, &r, &w, &x, &s) < 6)
14 continue;

15 if (r != ’r’ || w == ’w’) continue;

16 for(unsigned long i=0; i < vm_end-vm_start-
↪→ sizeof(unsigned long) ; i++)

17 if(*(unsigned long*)((unsigned char*) start +
↪→ i) == SEARCHED_VALUE)

18 unsigned long* field_ptr = (unsigned long*)
↪→ ((unsigned char*) vm_start + i);

19 }
20 }

Listing 5: DHA using memory lookup

file. This file contains the memory mapping of the process
that reads it, including the memory area named “dalvik-
main space” which is the one that stores the fields. By
searching the obfuscated field value inside this area, its
address can be retrieved.

Even if this memory lookup fulfills the obfuscation
goals, which are modifying a Java field value without
using anything from the Java code, it still have two main
drawbacks. First, the lookup has a high time overhead: to
modify a single field, the native code has to scan the whole
heap, which can grow to tens or hundreds of megabytes [4]
(depending on the Android version). Second, the field has
to be initialized to a unique value. This can lead to errors
if the whole application code is not obfuscated at the same
time. For example, an application can be obfuscated after
adding a library that has been already obfuscated by its
owner. In this case, fields from both the application and
the library have been initialized to magic values that may
be equal because when obfuscating the application, the
potential library magic values are not known.

4.1.3. Advanced implementation: reflection. Native
code can avoid the need for scanning the heap memory
of a field by introspecting the obfuscated object itself.
This requires an understanding of how the runtime stores
objects and fields in memory and what native code has
access to. This layout is presented in Figure 5. Native
code has access to Java objects and fields through han-
dles, respectively jobject and jfieldID. These are
returned by JNI and no guarantees are given about their
implementation.

618

jfieldID

offset_

ArtField

+ 3

Instance

field_addr

field_value

obj addr

jobject

+ offset_

Input to native code

Field

Figure 5: Memory layout of Java objects in Android

However, by looking at the source code of the Android
runtime, we observe that they are pointers. A jfieldID
is a pointer to an instance of the ArtField class. This
class is used, inside the runtime, to store information
about the field such as its declaring class, its access
flags (private, public) or even the offset of the field
within an instance object (offset_). These pieces of
information are set up by the class linker. A jobject is
a pointer to an another pointer that refers to the effective
object5. This object stores the addresses of the different
fields of the object. For primitive fields, the field value is
directly stored inside the object (instead of its address).
Fields are sorted alphabetically, grouped by type. The
order is wanted “relatively stable [...] so that adding new
fields minimizes disruption of C++ version such as Class
and Method.”6.

Thus, in order to implement a DHA trough reflection-
like mechanism, the code has to first, retrieve the value
offset_, which is the offset of the field address inside
an object instance. This operation is realized in Listing 6.
The ArtField instance of the field is retrieved at Line 4
and Line 5 retrieves the offset_ value by accessing the
third long of the ArtField instance. This offset (3)
has been hardcoded at Line 1. Second, using the obtained
offset_, the code modifies directly the field value. This
is realized in Listing 7. The instance address of the object
is retrieved on Line 3 by dereferencing the calling object.
Then, at Line 4, the field address is obtained using the
offset_ value previously retrieved. It has to be noted
that the first operation, Listing 6, requires to use JNI. To
avoid being detected by JNI hooks, the value is computed
and hardcoded in the Listing 7, at Line 1. Finally, the field
value is set to 0xeb31d82e at Line 5. Both listings have
been successfully tested from Android 7.0 up to Android
10 without changing neither the value of offset_ (0x10)
nor the offset of offset_ in ArtField class (3).

5. This allows the garbage collector to move object around the mem-
ory without having to change all references to it but only one.

6. AOSP source code, class_linker.cc file.

1 #define OFFSET_OF_OFFSET_FIELD_IN_ARTFIELD_CLASS 3
2 extern "C" JNIEXPORT jlong JNICALL retrieve_offset(

↪→ JNIEnv *env, jobject thisObj) {
3 jclass cls = env->GetObjectClass(thisObj);
4 jfieldID fid = env->GetFieldID(cls, "polynomial",

↪→ "I");
5 unsigned long offset_ = *((unsigned long*)fid +

↪→ OFFSET_OF_OFFSET_FIELD_IN_ARTFIELD_CLASS);
6 return offset_;
7 }

Listing 6: Retrieving field offset

1 #define OFFSET 0x10
2 extern "C" JNIEXPORT void JNICALL reflection(JNIEnv

↪→ *env, jobject thisObj) {
3 unsigned long* obj_addr = *(unsigned long**)

↪→ thisObj;
4 unsigned long* field_value = &obj_addr[OFFSET/4];
5 *field_value = 0xeb31d82e;
6 }

Listing 7: DHA using reflection

4.2. DHA detection

In order to detect Direct Heap Access, the analysis
tools have to watch every read or write made to the
heap during at runtime. This is done by disallowing,
using mprotect, any access to the heap addresses when
running native code. Then, when native code tries to
access the heap, it generates a SEGV signal which can be
retrieved. By parsing the internal structures of the garbage
collector, the tool retrieves the type of the accessed value.
Finally, the access is authorized and the execution is
resumed. Section 5.2 presents the results obtained with
this detection technique.

5. Experiment

In this section, the detection techniques proposed in
Section 3 and 4 are used against real world applications
in order to assess their effectiveness and usability and to
find usages of the newly presented obfuscation techniques:
BFO and DHA.

BFO, which targets firmware applications, is evaluated
using a specially crafted dataset. This dataset is composed
of a set of 16 firmwares, which contains 3479 precompiled
applications (OATs) for Android Nougat (version 7.0 and
7.1.1)7. The complete list of firmwares is given in Ap-
pendix A.

DHA, which can be used on any application, is evalu-
ated using two datasets: a subset of 100,018 applications
from Androzoo [5] (which comprises around 9 million
APKs collected since 2016 from more than 17 sources
including the Google Play market), and the Android
Malware Dataset (AMD) [6] (which comprises 24,552
labeled and classified malicious APKs among families of
malware, dated from 2010 to 2016). Since AMD is com-
posed only of malicious applications, comparing results
for AMD and Androzoo allows to reveal characteristics
specific to malware.

7. Firmwares have been downloaded from https://androidmtk.com/

619

5.1. BFO Detection

5.1.1. Search for removed bytecode. In order to detect
if fully removed bytecode is already used in the wild (see
Section 3.1), we have searched for a method containing
quick code while not containing bytecode inside the pre-
compiled applications of the firwmare dataset. This would
have been the evidence of BFO usage. However, no such
method has been found. This shows that BFO based on
removing the bytecode is, at least for the firmwares we
studied, not actively used in the wild.

We have also implemented a naive technique to detect
partially removed bytecode. It consists in, first, computing,
for each method, the ratio of the length of the bytecode
over the length of the quick code and, then, checking if
it exceeds a given threshold. Indeed, one could say that
the number of assembly instructions used to represent a
bytecode is bounded. However, compilers optimizations
defeat this relation between bytecode and assembly. For
example, compilers can decide that a method should be
inlined when compiled or that a condition can be removed
because it is always true or false. Thus, this method
generates too much false positives to be usable.

5.1.2. Search for nopped bytecode. In order to evaluate
the detection technique proposed in Section 3.1, we have
implemented the following heuristic: for each method of
the tested application, we compute the entropy of the
bytecode. A small entropy reveals a nopped bytecode. To
determine the threshold that reveals a nopped method,
we have computed the entropy of the methods of all
applications from a vanilla Android 7.0 (Nougat). This
corresponds to 255,309 methods. These applications are
not obfuscated, so their entropy should be higher than the
threshold. The obtained entropy for each bytecode size
is shown in Figure 6. For methods whose bytecode size
is lower that 20, the entropy does not reveals anything
and is too fluctuating to be able to set a threshold. Three
thresholds are drawn on Figure 6: 0.1, 0.2 and 0.3. Results
show that 0.1 is too strict while 0.3 generates too many
false positives. Using a threshold of 0.2, only one method
is falsely reported which is completely acceptable. Thus,
by considering only bytecode of 20 bytes or more and
by setting a threshold of 0.2, we should be able to detect
nopped bytecode.

We applied this detection technique to the firmware
dataset. As shown in Table 1, few methods have an entropy
less than 0.2. We manually checked these methods by
looking at their bytecode. We did not locate any usage
of BFO. Listing 8 shows examples for three methods that
are false positives. The code is not a nopped code since it
is the initialization of several arrays. This initialization is
composed of many times the same value, which lowers the
entropy. However, this could have been a nopping pattern
used to obfuscate applications. Thus, we believe that this
method is able to detect nopped patterns to be confirmed
by manual investigations.

5.1.3. Search for replaced bytecode. To evaluate if BFO
consisting in replacing the whole bytecode by another cor-
rect one is already used in the wild, we have implemented
the detection technique proposed in Section 3.2 and tested

Figure 6: Bytecode entropy for methods of AOSP Android
7.0 APKs

TABLE 1: Nopped methods in firmware datatset

Firmwares
Total

Entropy
< 0.1 < 0.2 < 0.3

Alcatel APKs 338
0

0.00%
13

3.85%
138

40.83%

2 firmwares Methods 2,716,821
0

0.00%
23

0.00%
614

0.02%

Archos APKs 110
0

0.00%
2

1.82%
28

25.45%

1 firmwares Methods 246,962
0

0.00%
2

0.00%
95

0.04%

Huawei APKs 271
0

0.00%
9

3.32%
87

32.10%

3 firmwares Methods 1,146,585
0

0.00%
9

0.00%
317

0.03%

Samsung APKs 795
0

0.00%
6

0.75%
97

12.20%

5 firmwares Methods 1,817,146
0

0.00%
12

0.00%
667

0.04%

Sony APKs 1,412
0

0.00%
23

1.63%
341

24.15%

4 firmwares Methods 5,463,229
0

0.00%
31

0.00%
1,547
0.03%

Wiko APKs 188
0

0.00%
12

6.38%
81

43.09%

1 firmwares Methods 1,709,624
0

0.00%
22

0.00%
365

0.02%

Total APKs 3,114
0

0.00%
65

2.09%
772

24.79%

16 firmwares Methods 13,100,367
0

0.00%
99

0.00%
3,605
0.03%

TABLE 2: Difference percentage for one firmware
(21,521 methods, 43 applications)

C
o

n
se

cu
ti

v
e

d
if

fe
re

n
ce

s:
1 Threshold 0.00 0.25 0.50 0.90

Number of
detected
methods

12715
(86.9%)

3606
(24.6%)

495
(3.4%)

445
(3.0%)

Number of
applications

19
(44.2%)

15
(34.9%)

10
(23.3%)

8
(18.6%)

C
o

n
se

cu
ti

v
e

d
if

fe
re

n
ce

s:
2 Threshold 0.00 0.05 0.20 0.30

Number of
detected
methods

4347
(29.7%)

501
(3.4%)

53
(0.4%)

27
(0.2%)

Number of
applications

10
(23.3%)

8
(18.6%)

5
(11.6%)

4
(9.3%)

C
o

n
se

cu
ti

v
e

d
if

fe
re

n
ce

s:
5 Threshold 0.00 0.01 0.05 0.10

Number of
detected
methods

748
(5.1%)

441
(3.0%)

55
(0.4%)

20
(0.1%)

Number of
applications

9
(20.9%)

8
(18.6%)

5
(11.6%)

3
(7.0%)

620

1 // Entropy: 0.197
2 public static final float[] horizontalFlipMatrix() {
3 return new float[] { -1.0F, 0.0F, 0.0F, 0.0F, 0.0F

↪→ , 1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0F, 0.0F,
↪→ 1.0F, 0.0F, 0.0F, 1.0F };

4 }
5 // Entropy: 0.180
6 public static final float[] identityMatrix() {
7 return new float[] { 1.0F, 0.0F, 0.0F, 0.0F, 0.0F,

↪→ 1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0F, 0.0F,
↪→ 0.0F, 0.0F, 0.0F, 1.0F };

8 }
9 // Entropy: 0.197

10 public static final float[] verticalFlipMatrix() {
11 return new float[] { 1.0F, 0.0F, 0.0F, 0.0F, 0.0F,

↪→ -1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0F, 0.0F,
↪→ 0.0F, 1.0F, 0.0F, 1.0F };

12 }

Listing 8: Example of false positive for nopped
bytecode search

it over the firmware dataset. For each precompiled applica-
tion (OAT file), we extracted the bytecode file (DEX) from
the OAT file. Then, we recompiled it using the emulator
provided by Google. We carefully chose the emulator to
reflect the Android version and the processor architecture
used by the real smartphone (ARM emulator for Nougat
version 7.0). Compiling using the same environment as
the firmware constructor is impossible since applications
are cross-compiled on vendor computers and no documen-
tation is available on their build systems.

Finally, we compared the obtained assembly code
with the one of the firmware. If no BFO techniques has
been used, they should be equal. However, in practice,
a compiler is very influenced by the configuration of a
particular system and many of them use non-deterministic
algorithms [7]. Thus, the obtained assembly code and
the firmware’s one are slightly different, for almost all
methods.

In order to investigate how much the codes are dif-
ferent, we first tried to use state-of-the-art binary diffing
tools [7], [8], such as bindiff8 or diaphora9. However, they
did not achieve to detect more accurately whether codes
are the same. Indeed, these tools rely heavily on the call-
graph of the analyzed codes which is almost nonexistent
for quick code: due to its object and framework oriented
compilation, all calls are indirect and cannot be resolved
statically.

Thus, we have built a custom comparison technique.
The code is disassembled and operands, which usually
correspond to offsets (immediate values) or registers that
are very likely to change between two compilations, are
removed. This results in an abstract version of the assem-
bly code. Then, we proceeded to a classical diff where
each assembly instruction constitutes a line. Finally, we
computed the following ratio: number of differences over
the number of lines. If, for a method, this ratio is over a
threshold, the method is considered obfuscated.

This ratio has been calculated for pre-compiled ap-
plications of one firmware. The results obtained with
this ratio are shown in the first three rows of Table 2
(“Consecutive differences: 1”). For 24.6 percent of the
methods, more that one instruction out of four differ. By

8. https://www.zynamics.com/bindiff/manual/

9. https://github.com/joxeankoret/diaphora/

1 push {r3,r4,r5,r6,r7} push {r3,r4,r5,r6,r7}
2 movs r4, r5 movs r4, r5
3 movs r2, r5 movs r2, r5
4 add r2, sp, #0x3c0 | pop r4,r5,r6,r7
5 bhs #0xffffff54 bhs #0xffffff54
6 ldrb r0, [r7, #3] ldrb r0, [r7, #3]
7 pop {r6, r7} pop {r6, r7}
8 lsrs r1, r6, #0xb lsrs r1, r6, #0xb
9 stm r0!, {r0,r1,r2,r3} stm r0!, {r0,r1,r2,r3}

10 adr r4, #0x3c8 <
11 hint #8 hint #8
12 ldrh r3, [r6, r7] ldrh r3, [r6, r7]
13 > ldr r0, [pc, #0x23c]
14 adds r2, #0xf6 | ldrh r2, [r6, #0x16]
15 stm r0!, {r0,r1,r2,r4,r6} stm r0!, {r0,r1,r2,r4}
16 lsls r2, r6, #0xb lsls r2, r6, #0xb
17 ldrb r7, [r0, #0x1c] ldrb r7, [r0, #0x1c]
18 lsls r4, r0, #0x1d lsls r4, r0, #0x1d

Listing 9: Example of differences

manually investigating the differences, we saw that they
are due to compilation, that is they are false positive.
When using high threshold (colored in red in Table 2)
the number of detected methods is reduced. In the same
time, this increases the number of false negatives and thus
is not suitable.

However, by looking at the generated diffs, such as
Listing 9, we saw that most of the differences are com-
posed of the addition of one instruction, or the replace-
ment of an equivalent. Thus, in order to improve the ratio,
we count differences only when several are consecutive.
Table 2 shows results when differences are taken into
account when 2 or 5 are consecutive (colored in blue in
Table 2). This reduces the number of detected methods
which allowed us to manually check all of them. Finally,
this manual investigation showed that none of them were
true positives.

5.1.4. Future work on searching for BFO usage.
Thus far, no BFO usage has been found in the wild for
BFO consisting in removing or nopping the bytecode.
For the replacement case, no suitable detection technique
is known. Thus, more specific techniques need to be
developped. State-of-the-art binary diffing tries to match
assembly functions between two code bases. When trying
to detect BFO usage, we need to verify that a specific byte-
code method corresponds to a specific assembly method.
The potential association is already known.

5.2. Statistics on DHA usage

To assess how much DHA is used in the wild, mali-
ciously or not, we used the detection technique described
in Section 4 on two datasets: Androzoo and AMD. Indeed,
we need to execute each application in order to detect
DHA usage. It would be very difficult to setup on firmware
dataset, as it requires a different smartphone model for
each firmware. The detection has been implemented for
ARMv8 and Android version 7.0. The datasets were
first filtered to keep only the compatible APKs, and we
checked that these applications can be launched correctly.
Column “ARMv8” of Table 3 reports the number of
applications obtained after applying this filter.

We analyzed these filtered datasets and logged all
DHA, i.e., each time the heap was accessed from the
native code. Note that each application was run from

621

TABLE 3: Number of DHAs detected

Dataset Total ARMv8 DHA
DHA without
system libs

Androzoo [5] 100,018 10,661 8,158 (76.5 %) 4,021 (37.7 %)

AMD [6] 24,552 349 194 (55.6 %) 103 (29.5 %)

Total 124,570 11,010 8,352 (75.9 %) 4,124 (37.5%)

TABLE 4: Classes and libraries detected to be using DHA

Dataset
System libraries WebView Other

samples classes samples classes samples classes

Androzoo [5] 74.7% 1,797 37.3% 1,424 0.4% 7

AMD [6] 54.7% 154 29.5% 221 0% 0

only the main activity and without any user interaction.
Consequently, the results presented in Table 3 are a lower
bound. For each DHA, we logged the class of the accessed
value and the name of the library performing the access,
from /proc/self/maps.

Globally, between 55% and 76% of the applications
performed DHAs. This lower bound shows that DHA can-
not be ignored when building an analysis tool. When in-
vestigating which libraries have performed DHAs, we no-
ticed that most accesses are done by systems libraries (e.g.
libc.so, boot.oat, libandroid_runtime.so).
However, we have still detected that 37% of applications
perform DHAs using custom libraries.

A comparison of the statistics retrieved for Androzoo
and AMD datasets showed that DHA usage does not
discriminate a malicious behavior from a benign one. In
fact, according to the name of the libraries performing
DHA, it seems to be used mostly to increase performance.

We investigated the name of the classes accessed
by DHA, the number of unique class names is reported
in Table 4. As expected, system libraries access a large
variety of object of different classes as these libraries are
part of the runtime internals. Additionally, we separated a
specific library, WebView, because it manipulates a lot of
internal objects of the browser. Finally, remaining libraries
modifies seven different classes. Almost every sample uses
[F, String, [B or ByteArrayInputStream which
confirms that developers mainly use DHA as Google
recommends without bypassing their guidelines [9].
We notably notice that one library, conscrypt10,
accesses the OpenSSLX509Certificate and
OpenSSLX509CertificateFactory classes using
DHA.

This is comforting in that DHA is not yet used as
a way to bypass analysis, even in the security commu-
nity [10]. However, due to the high number of benign
DHA, few malicious ones could be hidden and remain
undetected. This highlights the need for tools and methods
that take into account this kind of accesses.

6. Related work

There are mainly two types of obfuscation that use
assembly code to obfuscate Android applications: packing
and ahead-of-time compilation (AOTC)-based bytecode
hiding.

10. https://github.com/google/conscrypt

Packing consists in storing the Dalvik bytecode ci-
phered before dynamically deciphering and loading it at
runtime. This mechanism relies on native code that di-
rectly modifies Android’s internal structures to deploy new
bytecode. These modifications can occur at any time of the
bytecode loading process or before the execution. Packing
has been extensively studied [11]–[15], and packing DEX
bytecode using native code is a popular technique: Duan et
al. [16] reported that an average of 13.89% of malware in
the wild between 2010 and 2015 used packing techniques
to hide malicious behavior.

The ahead-of-time compilation (AOTC)-based byte-
code hiding scheme is a recently described obfuscation
technique [10] that aims at hiding the bytecode of sensitive
methods from both static and dynamic analyses. It is
composed of three main steps performed before releasing
the APK file. First, the bytecode of obfuscated methods is
removed from the DEX file. Then, the bytecode of these
methods is compiled using a custom compiler, produc-
ing native code. Finally, calls to obfuscated methods are
transformed into JNI calls. Unlike the packing method, the
bytecode is never deciphered and, thus, is never directly
available to analysis tools. The code is only present in its
compiled form.

Thus, as far as we know, no article has ever studied
obfuscation made specifically for pre-compiled applica-
tions. Indeed, AOTC-based bytecode hiding uses the com-
pilation mechanism to hide some specific methods while
BFO (see Section 3) uses it to remove potentially all the
bytecode. Also, it takes care of not being detected in order
to keep the real application purpose hidden. Moreover,
works about packing study the interface between bytecode
and assembly code at the execution level: how assembly
can interfere with the bytecode. To go further, this article
proposes to study how assembly code can interfere with
the data used by the bytecode (see DHA in Section 4).

7. Conclusion

This article presents two new obfuscation techniques
based on the use of native code and associated detection
techniques. Our experiments show the feasibility and the
stealthiness of hiding code inside assembly compiled from
bytecode. The study of applications in the wild also shows
that bypassing the JNI interface using DHA techniques is
already used by applications but not yet for malicious in-
tents. Experiments about BFO usage shows that no simple
form of BFO is used in the wild. Even if no malicious
uses of these new obfuscation techniques have been found,
their feasibility shows that analysis tools should now pay
attention to them in case they start being used by malware.

References

[1] F. Wei, X. Lin, X. Ou, T. Chen, and X. Zhang, “Jn-saf: Precise and
efficient ndk/jni-aware inter-language static analysis framework for
security vetting of android applications with native code,” in ACM
SIGSAC Conference on Computer and Communications Security,
no. 18. Toronto, Canada: ACM, oct 2018, pp. 1137–1150.

[2] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, “Malton: To-
wards on-device non-invasive mobile malware analysis for art,”
in USENIX Security Symposium, no. 26. Vancouver, Canada:
USENIX, aug 2017, pp. 289–306.

622

[3] C. Qian, X. Luo, Y. Shao, and A. T. Chan, “On tracking infor-
mation flows through jni in android applications,” in IEEE/IFIP
International Conference on Dependable Systems and Networks,
no. 44. Atlanta, USA: IEEE, sep 2014, pp. 180–191.

[4] “Android compatibility definition document,” https://source.
android.com/compatibility/cdd.html, 2020.

[5] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
International Conference on Mining Software Repositories, no. 13.
Austin, Texas: ACM, may 2016, pp. 468–471.

[6] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth
analysis of current android malware1,” in International Conference
on Detection of Intrusions and Malware, and Vulnerability Assess-
ment, no. 14. Bonn, Germany: Springer, jul 2017, pp. 252–276.

[7] T. Dullien, E. Carrera, S.-M. Eppler, and S. Porst, “Automated
attacker correlation for malicious code,” Tech. Rep., mar 2010.

[8] H. Flake, “Structural comparison of executable objects,” in Detec-
tion of Intrusions and Malware & Vulnerability Assessment, no. 1.
Dortmund, Germany: Gesellschaft für Informatik, jul 2004, pp.
161–173.

[9] JNI tips, Android, 2019, https://developer.android.com/training/
articles/perf-jni#primitive-arrays.

[10] J. Bao, Y. He, and W. Wen, “Droidpro: An aotc-based bytecode-
hiding scheme for packing the android applications,” in IEEE Inter-
national Conference On Trust, Security And Privacy In Computing
And Communications/ IEEE International Conference On Big Data
Science And Engineering. New York, USA: IEEE, aug 2018, pp.
624–632.

[11] Y. Zhang, X. Luo, and H. Yin, “Dexhunter: toward extracting
hidden code from packed android applications,” in European Sym-
posium on Research in Computer Security, no. 20. Vienna,
Austria: Springer, nov 2015, pp. 293–311.

[12] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, and D. Gu,
“Appspear: Bytecode decrypting and dex reassembling for packed
android malware,” in International Symposium on Recent Advances
in Intrusion Detection, no. 18. Kyoto, Japan: Springer, dec 2015,
pp. 359–381.

[13] Y. Liao, J. Li, B. Li, G. Zhu, Y. Yin, and R. Cai, “Automated
detection and classification for packed android applications,” in
International Conference on Mobile Services. San Francisco,
USA: IEEE, jun 2016, pp. 200–203.

[14] L. Xue, X. Luo, L. Yu, S. Wang, and D. Wu, “Adaptive unpacking
of android apps,” in International Conference on Software Engi-
neering, no. 39. Buenos Aires, Argentina: IEEE, may 2017, pp.
358–369.

[15] M. Y. Wong and D. Lie, “Tackling runtime-based obfuscation
in android with tiro,” in USENIX Security Symposium, no. 27.
Baltimore, USA: USENIX, aug 2018, pp. 1247–1262.

[16] Y. Duan, M. Zhang, A. V. Bhaskar, H. Yin, X. Pan, T. Li, X. Wang,
and X. Wang, “Things you may not know about android (un)
packers: A systematic study based on whole-system emulation,”
in Network and Distributed System Security Symposium, no. 25,
San Diego, USA, feb 2018.

[17] C. Collberg and J. Nagra, Surreptitious Software: Obfuscation, Wa-
termarking, and Tamperproofing for Software Protection, G. Mc-
Graw, Ed. Addison-Wesley Professional, jul 2009, no. 1.

[18] K. Pearson, “X. on the criterion that a given system of deviations
from the probable in the case of a correlated system of variables
is such that it can be reasonably supposed to have arisen from ran-
dom sampling,” The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, vol. 50, no. 302, pp. 157–175,
1900.

Appendix A.
List of tested firmwares

TABLE 5: List of tested firmwares

Brand Phone model Android version

Alcatel
1T 10 7.0

OneTouch A3 Plus 5011A 7.0

Archos 50f Neon 7.0

Huawei

Ascend Mate 9 MHA-AL00 7.0

Enjoy 7 Plus TRT-TL10A 7.0

P10 VRT-AL00 7.0

Samsung

Galaxy A3 SM-A310M 7.0

Galaxy C7 Pro SM-C710F 7.1.1

Galaxy Note 5 SM-N920A 7.0

Galaxy S6 Edge SM-G925S 7.0

Galaxy A5 SM-A510M 7.1.1

Sony Xperia

Touch G1109 7.0

L1 Dual G3312 7.1.1

M2 Aqua D2403 7.0

Z5 Premium E6853 7.0

Z5 501SO 7.1.1

Wiko Jerry 2 7.0

623

