
CHERI Macaroons: Efficient, host-based access control for cyber-physical
systems

Michael Dodson
University of Cambridge, UK

md403@cl.cam.ac.uk

Alastair R. Beresford
University of Cambridge, UK

arb33@cl.cam.ac.uk

Alexander Richardson
University of Cambridge, UK

alexander.richardson@cl.cam.ac.uk

Jessica Clarke
University of Cambridge, UK
jessica.clarke@cl.cam.ac.uk

Robert N. M. Watson
University of Cambridge, UK
robert.watson@cl.cam.ac.uk

Abstract—Cyber-Physical Systems (CPS) often rely on net-
work boundary defence as a primary means of access
control; therefore, the compromise of one device threatens
the security of all devices within the boundary. Resource and
real-time constraints, tight hardware/software coupling, and
decades-long service lifetimes complicate efforts for more
robust, host-based access control mechanisms. Distributed
capability systems provide opportunities for restoring access
control to resource-owning devices; however, such a protec-
tion model requires a capability-based architecture for CPS
devices as well as task compartmentalisation to be effective.

This paper demonstrates hardware enforcement of net-
work bearer tokens using an efficient translation between
CHERI (Capability Hardware Enhanced RISC Instructions)
architectural capabilities and Macaroon network tokens.
While this method appears to generalise to any network-
based access control problem, we specifically consider CPS,
as our method is well-suited for controlling resources in
the physical domain. We demonstrate the method in a dis-
tributed robotics application and in a hierarchical industrial
control application, and discuss our plans to evaluate and
extend the method.

Index Terms—CHERI, Macaroons, cyber-physical, industrial
control, robotics, access control, security

1. Introduction

Cyber-Physical Systems (CPS) tightly couple hard-
ware and software with sensing and manipulation of
the physical environment. Examples include automobile
Electronic Control Units (ECUs), Industrial Control Sys-
tems (ICS), Internet of Things (IoT), and robotics. CPS
often have limited compute and memory resources, real-
time and high-availability constraints, and safety-critical
functions, requiring them to meet rigorous certifications.
Further, many CPS applications require decades of dura-
bility, raising (unsolved) questions about toolchain and
patch support [1]. Finally, CPS applications often con-
sist of distributed, heterogeneous devices integrated over
multiple networks and protocols. Together, these factors
create a challenging environment for applying common se-
curity paradigms (e.g., encryption, compartmentalisation,
network segmentation, and high patch cadence).

Most industrial solutions side-step these challenges by
emphasising boundary control at the Operational Technol-
ogy (OT) network. For example, ICS are often organised
in ‘automation cells’, aggregating ICS devices, sensors,
and actuators performing a common task (Figure 1) [2].
Within the cell, communication between devices is un-
encrypted and unauthenticated, often using decades-old
serial protocols modified for TCP or UDP transport.
Therefore, any compromise of one component in the
cell effectively results in a compromise of the whole
cell. Similar boundary control issues have been identified
for automotive applications [3]. Emphasis on boundary
control makes weak assumptions about the adversary and
results in a failure mode that is at odds with the philosophy
of graceful degradation underpinning many CPS designs.
This philosophy is especially prevalent in safety-critical
industries, in which systems employ hardware redundancy
and byzantine fault tolerance to protect against probabilis-
tic failure, ensuring the system as a whole can still perform
the required actions despite multiple component failures.

Figure 1. Example of an ICS ‘automation cell’ architecture, with un-
encrypted and unauthenticated communication between devices within
a given boundary. Remote access to a given device, often required by
the vendor, may occur through a modem that is within the boundary,
bypassing the firewall.

Inside the boundary, progress is being made on
behaviour-based anomaly detection, where network traffic,
including serial communication with sensors and actu-
ators, is aggregated and compared with physics-based
models of system behaviour to detect anomalies [4]. While

687

2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)

© 2020, Michael Dodson. Under license to IEEE.
DOI 10.1109/EuroS&PW51379.2020.00098



these systems make stronger assumptions about the adver-
sary, they are often as complex as the systems they are
designed to protect and add to existing integration and
long-term support challenges.

Boundary control and intrusion detection may con-
tribute to a defence-in-depth strategy; however, without
host-based security solutions they both force CPS devices
to expand their trust boundary to encompass not just the
boundary control or intrusion detection device, but all
other devices under the same aegis. This has been ex-
ploited in the wild at both the network and device bound-
ary. At the network boundary, many automotive hacks are
initiated by remote access to an insecure ECU resulting in
full control of steering, acceleration, and braking [3]. Sim-
ilarly, OT network compromises leveraging BLACKEN-
ERGY 3 malware gave hackers arbitrary control over sec-
tions of the Ukrainian power grid in 2015 and again with
a more targeted attack in 2016 [5]. At the device level,
lack of compartmentalisation in the TCP stack resulted
in multiple remote code execution vulnerabilities in the
VxWorks Real-Time Operating System (RTOS) [6]. Lack
of compartmentalisation also enabled an attack against the
Schneider Triconex Safety Instrumentation System, where
malware masqueraded as a log reading application and
modified safety-critical programmable logic [7].

To address these concerns, we propose binding local
and distributed capabilities to restore access control au-
thority to resource owners, particularly for those resources
that have physical effects. In this paper we: (1) introduce
architectural capabilities as tokens to protect access to
physical resources; (2) propose a model for implementing
hardware-backed tokens in distributed systems; and (3)
demonstrate efficient translation between hardware and
network tokens in concrete prototypes.

2. Capability-based access control for CPS

Capabilities are unforgeable tokens that prove the
presenter is authorised to access a named resource [8].
Capabilities are an attractive option for access control in
the CPS domain where resource owners and users are
likely to be devices, rather than people, and have static
relationships known at design or install-time. These static,
pre-defined relationships mitigate known challenges in
capability systems associated with audit and revocation
and simplify the mechanisms necessary to assign capa-
bilities to authorised principals. Capabilities also align
well with principles of delegation, which are prevalent
in distributed and hierarchical CPS. Further, though many
relationships in CPS are device-to-device, capabilities also
map naturally to the way humans tend to authenticate
with CPS. For example, a car key is a capability held
by the driver, granting access to resources that are mostly
delegated through primary and secondary ECUs. Finally,
capabilities are abstractions that make it easy to reason
about and trace resource access, even when that capability
has been delegated or transferred between mediums.

Historically, capability-based access control systems
were developed for single-device, multi-user hardware,
such as mainframes [8]. More recently, network bearer
tokens (e.g., cookies) have been used to support access
control in single-device, multi-user, client-server interac-
tions [9]. In contrast, CPS are multi-user, multi-device

systems requiring heterogeneous devices to communicate
over networks in peer-to-peer and hierarchical relation-
ships. Therefore, a capability-based access control system
for CPS must locally bind capabilities to physical re-
sources controlled by the hardware and be able to delegate
authority by passing those capabilities across networks.

We implement this design pattern by tightly coupling
CHERI (Capability Hardware Enhanced RISC Instruc-
tions) architectural capabilities [10] with Macaroon net-
work tokens [9] to provide hardware-enforced access to
physical resources in distributed CPS.

3. CHERI: Local capabilities for CPS

CPS generally lack either hardware (e.g., MMU) or
software (e.g., virtualisation) solutions to enforce memory
segregation or task compartmentalisation; therefore, tasks
share flat, physical memory spaces, allowing a compro-
mise of one to affect all. This is a microcosm of the larger
boundary control problem described in Section 1 and is
an inadequate protection model on which to build a local
capability system. Specifically, if all tasks on a device
share the same physical memory and register files, there
is no way to prevent a compromised task from acquiring
and using a capability created by any co-located task.

CHERI capabilities provide both the abstract mecha-
nism for physical resource access control and the basis
for efficient task compartmentalisation in CPS. CHERI
enables fine-grained memory protection and scalable
software compartmentalisation via hardware-enforced,
bounded pointers. CHERI capabilities maintain address
boundaries and permissions (e.g., read, write, execute) to
control memory accesses. Tagged memory and CHERI-
aware instructions guarantee unforgeability, provenance
(ensuring a capability can only be constructed via other
valid capabilities), and monotonicity (ensuring that the
bounds and permissions of a new capability cannot exceed
the capability from which it is derived) [10].

A CHERI-aware kernel or bootloader achieves com-
partmentalisation of tasks by providing capabilities that
precisely define the memory regions to which the task
has access and the permissions it has for those memory re-
gions. For example, the task’s program counter capability
will be execute-only and have a base and length confined
to that task’s code in the binary file. Similar capabilities
can be provided to enable precise access to data regions
and memory-mapped I/O and services.

While CHERI capabilities nominally replace pointers
and naturally act as tokens granting access to regions
of memory, they can be used as tokens to access any
abstract resource, including allowing the bearer to read
a sensor or command an actuator (see Figure 2). Access
control for physical resources can be implemented similar
to memory-mapped I/O, reserving a region of address
space to represent continuous, discrete, or enumerated
physical abstractions. For example, a motor with speed
settings between 0 and 10 can map to a capability with
a length of 0x0a and a base selected from within the
reserved address space. Leveraging CHERI monotonicity
for delegation is intuitive, as the capability can be used
to derive a new capability with a reduced addressable
range, corresponding to a reduction in the set of speeds the
bearer can command. Similar mappings can be used for

688



enumerated quantities. For example, the motor commands
ON, +INCREMENT, -INCREMENT, STOP can map to a
capability with a length of 0x04. The capability can be
efficiently delegated by reducing the length field, with the
default or emergency capability (i.e., STOP) represented
by the least privileged derivative of the original capability
(i.e., a length of 0x01).

Together, task isolation and physical resource tokens
create a hardware-enforced, efficient access control mech-
anism for CPS, precluding any principal from reading
data or issuing a command without an explicitly granted
capability derived from a trusted source (e.g., the kernel or
bootloader). This not only prevents an adversary on or off
the device from leveraging memory safety vulnerabilities
to manipulate physical resources, but creates a chain of
provenance and intentionality that makes it easy to reason
about delegated authority between principals.

Figure 2. Example of a bootloader generating capabilities for the resource
owner and user. The bootloader uses a ‘root’ capability for the entire
memory space (1) to derive a capability for the resource owner covering
its entire memory space (2) and a capability for the resource user
specifically for the resource it is allowed to use (3). The resource user
provides this capability to the resource owner as a token when requesting
access to the resource (4).

4. Macaroons: Network capabilities for CPS

Guaranteeing CHERI capability properties of mono-
tonicity and provenance depends on hardware enforcement
of microarchitectural features such as tagged memory;
therefore, the access control mechanisms described above
only apply for processes with shared memory, and we
need a separate mechanism to carry access control tokens
between networked devices. Having considered various
distributed Public Key Infrastructures (PKIs) and bearer
tokens (e.g., JSON Web Tokens (JWTs)), we chose Mac-
aroons based on their semantic similarity to CHERI ca-
pabilities and the limited cryptographic and maintenance
burden placed on the resource owner [9], [11].

Macaroons are bearer credentials designed for decen-
tralised, network-based access control requiring efficient
delegation and attenuation of privilege. Macaroons are
constructed using a chain of keyed Hash-based Message
Authentication Codes (HMACs) to protect provenance
and integrity. The initial Macaroon, generated by the
resource owner, consists of a plaintext identifier and its
hash signature. The resource owner or any holder of the
token can add an arbitrary number of plaintext caveats to
extend the HMAC chain. For each caveat, the signature
of the existing Macaroon is removed and used as the key
input to the HMAC of the new Macaroon, preventing
any intermediary or user from removing caveats once
appended to the chain. A caveat can attenuate privilege

(e.g., limit the bearer to read-only access), restrict context
(e.g., require the token to be used within a limited time),
or link to a Macaroon generated by a third party (e.g.,
an authentication service). The provenance and integrity
of the resulting Macaroon, when returned to the resource
owner, can be easily verified using the secret key to
recompute the HMAC chain. The resource owner then
checks that each caveat is met and grants or denies access
to the user presenting the Macaroon [9].

Unlike PKI and JWT schemes, the resource owner
only requires facilities for generating keys and performing
HMACs. These operations are at least one order of mag-
nitude faster than those required for even lightweight PKI
schemes [9], and hardware acceleration is widely avail-
able, even for low-cost microcontroller systems. Further,
the simplicity of the operation limits the Trusted Com-
puting Base (TCB) required for Macaroon generation and
verification, reducing the risk of frequent, future patches.

Because the semantics of Macaroons and CHERI
capabilities overlap, mapping a verified Macaroon to a
CHERI capability (or vice versa) is straightforward (see
Figure 3), allowing us to consider abstract tokens rep-
resented by CHERI capabilities on the hardware and by
Macaroons on the network. Further, as many CPS commu-
nication graphs are static and known at design-time, the
cost of executing such a mapping can be bounded, based
on the number of capabilities that need to be mapped and
the number of possible caveats added to the Macaroon.

Figure 3. Example of mapping between capabilities and Macaroons. The
resource owner creates a capability representing a physical resource and
maps to an initial Macaroon (1). The resource owner attenuates the
Macaroon by reducing the length field and passes it to the resource
user (2). The resource user attenuates the Macaroon by specifying the
requested action in the form of an offset (3). The resource user passes
the Macaroon back to the resource owner as a request for access. The
resource owner verifies the Macaroon and uses the verified Macaroon
and initial capability to derive a new capability to access the requested
resource (4).

5. Authentication and token distribution

For CHERI capabilities, we assume that the kernel or
bootloader provides processes with appropriately bounded
and permissive capabilities. Most CPS have limited, static,
well-defined behaviour, so it is reasonable to assume that
either the kernel or bootloader can be configured at design-
time or install-time to correctly assign capabilities.

For Macaroons, an explicit authentication step is re-
quired to ensure our method generalises to arbitrary prin-

689



cipals on an arbitrary network. The goal is to provide a
Macaroon from the resource owner to an authenticated
and authorised resource user and then ensure the user can
return the Macaroon to the owner as part of a service
request, all while maintaining the integrity of the Maca-
roon and preventing reuse by a Man-in-the-Middle (MitM)
attacker. Given our effort to limit both the implementation
complexity and patch pressure at the resource owner, we
selected Kerberos to facilitate this authentication step. In
its simplest form, the Kerberos protocol is initialised by
two principals (a server and client) sharing secret keys
with the Kerberos server. When the client is ready to
initiate a service request from the server, the client authen-
ticates with the Kerberos server and receives a session key
encrypted under its own key and a session key encrypted
under the server’s key, which it sends to the server. After a
freshness check, the server and client initiate an encrypted
session. Kerberos is attractive for the CPS use case, as it
removes almost the entire authentication burden from the
resource owner while still allowing it to locally enforce
access control to its resources.

6. Case studies

To explore the implementation and security implica-
tions of combining CHERI capabilities, Macaroons, and
a suitable authentication framework such as Kerberos, we
perform two case studies: a distributed Robot Operating
System (ROS)-based application and a hierarchical indus-
trial control application.

6.1. Distributed systems: ROS

ROS is a library framework for developing and in-
tegrating robotics applications, and our first case study
is based on its 2nd generation (ROS21). The core ROS
library is written in C, with a C++ API library for de-
veloping ROS clients. ROS encapsulates functionality in
‘nodes’ which communicate with one another as peers
using a message-passing, publish/subscribe protocol. For
this case study, we implement a two-node derivative
of TurtleBot (a canonical ROS example and demonstra-
tor).2 The resource owner is a motor control node,
which encapsulates independent control of the two wheels,
thereby controlling robot speed and direction (by differen-
tial movement of the wheels). The resource user is a user
input node, which encapsulates obtaining, validating,
and transmitting user input to control the robot. Commu-
nication between the two nodes is via local wifi. ROS does
not provide any facility for encrypting communication
between nodes. Figure 4 shows the architecture and the
interaction between principals.

In the unmodified TurtleBot, the user input node
sends a message with a linear and angular velocity to the
motor control node, which checks an md5 hash of
the message and executes the command. There is no direct
communication from the motor control node back to
the user input node. The user relies on either visual
or Simultaneous Localisation and Mapping (SLAM) input
to close the control loop.

1. https://index.ros.org/doc/ros2/

2. http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

Figure 4. Architecture of the ROS case study, with the motor
control node locally communicating with two motors and remotely
communicating with the user input node. As part of initialisation,
both nodes need to share a secret with Kerberos (1). The motor
control node generates CHERI capabilities and corresponding Mac-
aroons (2). The user input node authenticates with Kerberos (3)
and receives a session keys for initiating an encrypted session with the
motor control node (4). Once the encrypted session is initiated,
the motor control node passes requested Macaroons to the user
input node (5), caveated with the session identifier and sequence
number. The user input node caveats the Macaroon with an in-
cremented sequence number and the requested action and returns it
to the motor control node via the encrypted channel (6). Finally,
the motor control node validates the Macaroon, derives a restricted
CHERI capability, and executes the request (7).

The motors are the resource for which access is
required. To simplify comparison with the unmodified
implementation, we implement one token for linear speed
and one token for angular speed to control these resources,
rather than implementing one token for each motor. The
motor control node (the resource owner) derives a
CHERI capability and Macaroon for each resource.

The user input node authenticates with the Ker-
beros node and initiates an encrypted session with the
motor control node. Having received the Macaroons,
the user input node adds the desired linear or angular
velocity as a caveat to the appropriate Macaroon and
returns it to the motor control node. The motor
control node verifies the received Macaroon, uses it to
derive a new capability (with additional restrictions based
on Macaroon caveats), and executes the request. hardware
enforcement of CHERI properties ensures that any attempt
to expand the bounds or set an out-of-bounds offset will
throw a hardware exception and prevent derivation and/or
use of the new capability.

6.2. Hierarchical systems: ICS remote access

The second case study is based on a common ICS
architecture, where devices coordinating on a task are
organised within cells and are connected to the larger OT
network through a firewall or security appliance [2]. As
discussed in Section 1, any compromise of the boundary
compromises the entire cell. Similarly, lack of compart-
mentalisation within the Programmable Logic Controller
(PLC) allows any compromised task to manipulate the
resources owned by other tasks.

For our example, the ICS device is a PLC controlling
a motor-operated valve. The PLC provides commands

690



to open and shut the valve and senses the position of
the valve as either open, shut, or intermediate. The PLC
stores calibration constants for the motor speed and the
valve position sensors. A vendor may need to read state
information, change constants, or run a diagnostic test,
but should not be able to command valve motion. Valve
motion can only be commanded locally at the PLC.

The PLC is the resource owner and the remote
workstation is the resource user. We divide the PLC
into two, isolated compartments (local controller,
control loop), which is efficient with CHERI, even
on a PLC with a flat, physical memory address space and
limited computational power. Motor commands and valve
state are the physical resources for which access control
is required, each of which can be represented as a CHERI
capability by the PLC. The calibration constants and test-
ing semaphore (held by the PLC during normal operation
or by the workstation during testing), are memory
resources that can also be represented as CHERI capa-
bilities by the PLC. The local controller should
be the only avenue through which valve state can be
manipulated. Figure 5 shows the architecture and the
interaction between principals.

Figure 5. Architecture of the ICS case study, with a PLC communicating
with a remote workstation. As part of initialisation, the control
loop creates Macaroons for specific resources (1) and shares them
with Kerberos (2). Simultaneously, the workstation shares its secret
with Kerberos (2). The workstation authenticates with Kerberos
(3) and receives a delegated Macaroon for the requested resource,
caveated with an initial sequence number and an expiration time (4). The
workstation caveats the Macaroon with an incremented sequence
number and the requested action and returns it to the PLC via the par-
tially unencrypted communication channel (5). Finally, the PLC derives
a restricted CHERI capability and executes the request (6).

The PLC is a device with limited compute and memory
resources and real-time constraints; therefore, to limit the
cryptographic burden on the PLC, we eliminate the en-
crypted session between the resource owner and user and
rely on the Kerberos node to delegate Macaroons. Specif-
ically, the control loop creates CHERI capabilities
for each resource, delegates the capability for valve opera-
tion to the local controller, and shares Macaroons
for the remaining resources (e.g., valve state, calibration
constants, testing semaphore) with the Kerberos server.
When the workstation authenticates with Kerberos,
Kerberos provides a Macaroon for the requested service,
and attenuates permissions (e.g., read-only) as appropriate.
The workstation then adds the desired command or

request to the Macaroon as a caveat and sends it to the
PLC over the existing communication channel.

As above, the control loop receives and verifies
the Macaroon, uses it to derive a new capability, and
executes the request. As the capability to command the
valve was never mapped to a Macaroon, the hardware will
not allow any Macaroon to be mapped to a capability with
permission to change valve state.

While a fully encrypted session between the PLC and
the workstation would add confidentiality protection,
the modified Kerberos protocol provides similar guaran-
tees with respect to tampering by a MitM or abuse by the
resource user without adding any additional complexity to
the resource owner.

7. Prototyping and evaluation

We currently have a working prototype of ROS2
and Macaroons running on CheriBSD, a CHERI-aware
port of FreeBSD.3 Our CHERI CPU is emulated, but
Field Programmable Gate Array (soft) cores are available
for both high-end and low-resource, embedded designs.
Additionally, a high-end, superscalar prototype CHERI
CPU is expected to be available from Arm in 2021.4

Our Macaroons port is based on libmacaroons.5 Porting
ROS2 and libmacaroons to CHERI-aware libraries was
straightforward and consisted mostly of updating mem-
ory allocators and other code segments that hard-code
assumptions related to pointer size. Where our changes
were generalisable, we submitted pull requests to the ap-
plicable projects, which have all been merged. ROS2 and
its microcontroller derivative, micro-ROS6 both support
real-time operation, and we plan to evolve our prototype
to incorporate real-time constraints, assessing the impact
of capabilities on scheduling and execution of tasks with
hard, soft, or best-effort timing requirements. We also plan
to port OpenPLC7 for our ICS prototype. While OpenPLC
does not support real-time operation, it emulates PLC
network behaviour sufficiently well to be the basis for
many academic studies and several commercial products.

The prototypes will support evaluations of perfor-
mance, security, and porting effort. Prior work on a
CHERI-aware real-time system has already quantified the
worst-case context-switch and inter-process communica-
tion overhead introduced by CHERI capabilities in embed-
ded systems [12]. We plan to quantify how the number of
capabilities maintained by a resource owner, the number of
derived Macaroons, and the number of Macaroon caveats
affect start-up and run-time performance. These affect
the number of calls to CHERI-aware instructions, key
generation routines, and HMACs performed by the host,
respectively. We will also use our prototypes to compare
CHERI-aware and CHERI-unaware threat models.

Currently, CheriBSD’s default behaviour is to raise
a signal that terminates the current process when the
hardware identifies a capability violation. This is not
ideal behaviour in many CPS scenarios requiring graceful

3. https://github.com/CTSRD-CHERI/cheribsd

4. https://developer.arm.com/architectures/cpu-architecture/a-
profile/morello

5. https://github.com/rescrv/libmacaroons

6. https://micro-ros.github.io/

7. https://www.openplcproject.com/

691



degradation, and CheriBSD supports installing a custom
signal handler, allowing a system designer to catch and
handle these signals in different ways. For example, a
compartment implementing a TCP stack may simply drop
incoming packets attempting to overflow buffers, while
a compartment executing a control loop may revert to
a minimal, safe state or perform a reset. Our prototypes
will be the basis for exploring various operational models
for CHERI-related violations in CPS. Similarly, lessons
learned will provide feedback for future iterations of the
CHERI protection model to better support CPS use cases
and hardware-enforced tokens in distributed systems.

8. Conclusion

In this paper we present a method for fine-grained
access control in CPS using distributed capabilities. We
leverage the semantic similarity between CHERI archi-
tectural capabilities and Macaroons to create unforgeable
tokens for which both provenance and integrity can be
efficiently verified by resource-owning hardware prior to
granting access to a requested resource. Our method pro-
vides effective access control in the presence of strong
adversaries on the network and on the resource-owning
hardware. We demonstrate the method using two CPS case
studies, as the tight hardware/software coupling, limited
compute and memory resources, and real-time constraints
of many CPS systems provide a challenging environment
for implementing host-based access control mechanisms.
In future work, we intend to show how the method extends
to general resource access control scenarios.

Acknowledgments

Michael Dodson is supported by a scholarship
from the Gates Cambridge Trust; Alastair R. Beres-
ford is partially supported by EPSRC [grant number
EP/M020320/1]; Jessica Clarke is partially supported by
EPSRC [grant number EP/R513180/1]. This work was
supported in part by the Defense Advanced Research
Projects Agency (DARPA) under contract HR0011-18-C-
0016 (“ECATS”). The views, opinions, and/or findings
contained in this report are those of the authors and should
not be interpreted as representing the official views or
policies of the funders, the Department of Defense, or the
U.S. Government. Approved for Public Release, Distri-
bution Unlimited. We are grateful to Martin Kleppmann
for suggesting the similarities between CHERI capabilities
and Macaroons.

References

[1] É. Leverett, R. Clayton, and R. Anderson, “Standardisation
and certification of the ‘Internet of Things’,” Workshop on
the Economics of Information Security (WEIS), 2017. [Online].
Available: https://perma.cc/5Y9R-9DD3

[2] Siemens, “Reliable and robust industrial networks for the
oil and gas industry,” Siemens, Tech. Rep., 2019. [Online].
Available: https://assets.new.siemens.com/siemens/assets/api/uuid:
b4588b31-5319-4404-a9e4-16736611932e/version:1570519475/
whitepaper-reliable-networks-for-oil-gas-en.pdf

[3] C. Miller and C. Valasek, “A survey of remote automotive attack
surfaces,” Black Hat USA, 2014.

[4] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths,
N. O. Tippenhauer, H. Sandberg, and R. Candell, “A survey of
physics-based attack detection in cyber-physical systems,” ACM
Computing Surveys, vol. 51, no. 4, pp. 1–36, Jul. 2018.

[5] “CRASHOVERRIDE: Analysis of the threat to electric grid
operations,” Dragos Inc., 2017. [Online]. Available: https:
//perma.cc/E7K5-9T8M

[6] B. Seri, G. Vishnepolsky, and D. Zusman, “URGENT/11
technical white paper,” Armis, 2019. [Online]. Available: https:
//go.armis.com/urgent11

[7] “TRISIS malware: Analysis of safety system targeted
malware,” Dragos Inc., 2017. [Online]. Available: https:
//perma.cc/K9EM-CABV

[8] J. H. Saltzer and M. D. Schroeder, “The protection of information
in computer systems,” Proceedings of the IEEE, vol. 63, no. 9,
1975.

[9] A. Birgisson, J. G. Politz, Ú. Erlingsson, A. Taly, M. Vrable, and
M. Lentczner, “Macaroons: Cookies with contextual caveats for
decentralized authorization in the cloud,” Network and Distributed
System Security (NDSS) Symposium, 2014.

[10] R. N. M. Watson, S. W. Moore, P. Sewell, and P. G. Neumann,
“An Introduction to CHERI,” University of Cambridge, Tech. Rep.
UCAM-CL-TR-941, 2019.

[11] S. Sciancalepore, M. Pilc, S. Schröder, G. Bianchi, G. Bog-
gia, M. Pawłowski, G. Piro, M. Płóciennik, and H. Weisgrab,
“Attribute-based access control scheme in federated IoT plat-
forms,” Interoperability and Open-Source Solutions for the Internet
of Things (InterOSS-IoT), 2017.

[12] H. Xia, J. Woodruff, H. Barral, L. Esswood, A. Joannou, R. Ko-
vacsics, D. Chisnall, M. Roe, B. Davis, E. Napierala, J. Baldwin,
K. Gudka, P. G. Neumann, A. Richardson, S. W. Moore, and
R. N. M. Watson, “CheriRTOS: A Capability Model for Embedded
Devices,” in 2018 IEEE 36th International Conference on Com-
puter Design (ICCD). Orlando, FL, USA: IEEE, Oct. 2018, pp.
92–99.

692


