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Abstract—We give a short argument that yields a new lower
bound on the number of subsampled rows from a bounded,
orthonormal matrix necessary to form a matrix with the re-
stricted isometry property. We show that a matrix formed by
uniformly subsampling rows of an N × N Hadamard matrix
contains a K-sparse vector in the kernel, unless the number of
subsampled rows is Ω(K logK log(N/K)) — our lower bound
applies whenever min(K,N/K) > logC N . Containing a sparse
vector in the kernel precludes not only the restricted isometry
property, but more generally the application of those matrices
for uniform sparse recovery.

Index Terms—compressed sensing, sparse recovery, restricted
isometry property

I. INTRODUCTION

In their seminal work on sparse recovery [1], Candés and

Tao were led to the notion of the restricted isometry property
(RIP). A q ×N matrix M has the restricted isometry property

of order K with constant δ > 0 if for all K-sparse vectors

x ∈ C
N (i.e. vectors with at most K nonzero entries) we have

(1− δ)‖x‖22 ≤ ‖Mx‖22 ≤ (1 + δ)‖x‖22.
The significance of this property is that it guarantees that

one can recover an approximately K-sparse vector x∗ from

Mx∗ via a convex program [1]. Specifically, they showed that

if a matrix M satisfies (2K,
√
2− 1)-RIP, then the minimizer

x̃ := argminx:Mx=Mx∗ ‖x‖1,
satisfies

‖x̃− x∗‖2 ≤ 1√
k
‖x∗ − x∗K‖1,

where x∗K is the best K-sparse approximation of x∗ — in

particular when x∗ is exactly K-sparse, it can be efficiently

recovered from Mx∗ without any error.

In applications, q is the number of measurements needed to

recover a sparse signal. Therefore, it is of interest to understand

the minimal number of rows needed in a matrix with the RIP

property.

It is known that for a properly normalized matrix with

independent gaussian entries, q = O(K log(N/K)) suffices to

generate a RIP matrix with high probability (e.g. [2]). Yet, it is

often beneficial to have more structure in the matrix M [3]. For

example, if the matrix M is a submatrix of the discrete Fourier

transform matrix, then the fast Fourier transform algorithm

allows fast matrix–vector multiplication, speeding up the run

time of the recovery algorithm [2, Chapter 12]. Additionally,

generating a random submatrix requires fewer random bits and

less storage space.

The first bound on the number of subsampled rows from

a Fourier matrix necessary for recovery appeared in the

groundbreaking work [1]. They showed that if one randomly

subsamples rows so that the expected number of rows is

O(K · log6 N), then concatenating these rows forms a RIP

matrix with high probability, after appropriate normaliza-

tion. Rudelson and Verhsynin later improved this bound to

O(K · log2 K · log(K logN) · logN) via a gaussian process

argument involving chaining techniques [4]. Their proof was

then streamlined and their probability bounds strengthened

[5], [3]. Cheraghchi, Guruswami, and Velingker then proved a

bound of O(K · log3 K · logN) [6], and Bourgain established

the bound O(K · logK · log2 N) [7]. The sharpest result in this

direction is due to Haviv and Regev, who showed the upper

bound O(K · log2 K · logN) through a delicate application of

the probabilistic method [8]. It is widely conjectured that for

the discrete Fourier transform q = O(K logN) suffices [4].

It turns out that all proofs in this line of work, including
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the strongest known upper bound [8], apply in a more general

setting where random matrix M is constructed by subsampling

rows of any bounded orthonormal matrix — that is an

orthonormal matrix with all entries bounded in magnitude by
B√
N

for some constant B. The matrix of the Discrete Fourier

Transform satisfy this property with B = 1.

This paper addresses the problem of determining a necessary
number of samples for reconstruction. Our contribution is that

— surprisingly — for general bounded orthonormal matrices,

and for a certain range of K, Ω(K log2 N) samples are needed.

In particular, only a gap of logK remains between our bound

and the best known upper bound. We improve the previous

best lower bound Ω(K · logN) due to Bandeira, Lewis, and

Mixon [9] which applied to the DFT matrix. Those in turn

improve upon more general lower bounds Ω(K · log(N/K))
on the number of rows for any matrix that satisfies the RIP

property [10], [11], [12], [13].

In the proof we consider an example of a bounded orthonor-

mal matrix, the Hadamard matrix (i.e. the matrix of the Fourier

transform on the additive group Z
n
2 ), and we show that for

this specific matrix at least Ω(K logK logN/K) samples is

required. More concretely, by a second moment argument,

we demonstrate that for fewer than O(K logK logN/K)
subsampled rows, with high probability there exists a K-sparse

vector in the kernel — ruling out both the RIP property, and

in general any hope for sparse recovery algorithm with those

matrices. The same proof can be applied more generally to

show that for any prime r one needs to subsample at least

Ω(K logK log(N/K)/ log(r)) rows of a matrix corresponding

to Fourier transform on the additive group Z
n
r — for the sake

of simplicity of the argument we do not elaborate on this.

II. PRELIMINARIES

Throughout this note, we use log to denote the base 2
logarithm. For an integer n ≥ 1, we set N = 2n and fix

a bijection between [N ] and Z
n
2 ; this identification remains in

force for the rest of the paper.

We say a function χ : Zn
2 → {±1} is a character if it is a

group homomorphism. To an element a ∈ Z
n
2 , we associate

the character

χa(x) = (−1)〈a,x〉

for all x ∈ Z
n
2 . The Fourier transform of a function f : Zn

2 → C

is defined to be

f̂(a) =
1√
N

∑
x∈Zn

2

f(x)χa(x)

for all a ∈ Z
n
2 . Let H be the N ×N matrix representing the

Fourier transform on the group Z
n
2 . In other words,

Hij =
1√
N

(−1)
∑n

k=1 ikjk .

When normalized to have ±1 entries, the matrix H is also

known as a Hadamard matrix. We refer the reader to [14] for

a thorough discussion of Fourier analysis on finite groups.

The Grassmannian Gn,d = Gn,d(Z2) is defined as the

collection of vector subspaces of Z
n
2 of dimension d. Our

proof uses the following well-known result about the Fourier

transform.

Lemma II.1. For a subspace V ∈ Gn,d, we let �V ∈ R
N be

the vector corresponding to the indicator function for V with
the normalization ‖�V ‖2 = 1. Then

H�V = �V ⊥ .

where V ⊥ is the orthogonal complement of V .

In this way, H implements a bijection between Gn,d and

Gn,n−d. We also make use of the following bounds on the

size of Gn,d.

Lemma II.2. The size of Gn,d is bounded by

2d(n−d) < |Gn,d| < 2d(n−d+1). (II.1)

Proof. A standard counting argument gives the explicit formula

|Gn,d| =
d−1∏
k=0

2n − 2k

2d − 2k
. (II.2)

Using the inequalities

2n−d <
2n − 2k

2d − 2k
< 2n−d+1 (II.3)

on each factor individually gives the result.

We also make use of the following trivial counting lemma.

Lemma II.3. For U, V ∈ Gn,k,

max(n− 2k, 0) ≤ dim(U⊥ ∩ V ⊥) ≤ n− k.

III. MAIN RESULT

For a subset Q ⊂ [N ], we let HQ denote the matrix generated

from the rows of H indexed by Q. Let δ1, . . . , δN be a set of

independent Bernoulli random variables which take the value

1 with probability p̂. Random variables δi will indicate which

rows to include in our measurement matrix, HQ, meaning

Q = {j ∈ [N ] : δj = 1}.
Note that Q has average cardinality Np̂ and standard concen-

tration arguments can be used to obtain sharp bounds on its

size. We say that a vector v ∈ R
N is K-sparse if it has at

most K nonzero entries. The following theorem is our main

technical result.

Theorem III.1. For min(k, n−k) ≥ 12 log n, where N = 2n

and K = 2k, there exists a positive constant c > 0 such that
for p̂ ≤ cK

N logK log(N/K), there exists a K-sparse vector
in the kernel of HQ with probability 1− o(1).1

Proof. We will define p := − ln(1− p̂) for future convenience,

and note that p̂ ≤ p ≤ 2p̂, for small enough p̂.

We restrict our attention to the K-sparse vectors that

correspond to �V for V ∈ Gn,k, the indicator functions of

1o(1) indicates a quantity that tends to zero as N → ∞. All asymptotic
notation is applied under the assumption that N → ∞.
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subspaces of dimension k. For such V , set XV to be the

indicator function for the event that Q ∩ V ⊥ = ∅. Define

X =
∑

V ∈Gn,k

XV . (III.1)

Observe that by Lemma II.1, if X is non-zero then there exists

a K-sparse vector in the kernel of HQ. We proceed by the

second moment method to show that X is nonzero with high

probability. By the second moment method (e.g. [15]),

P(X = 0) ≤ VarX

(EX)2
. (III.2)

We can easily obtain an expression for the first moment:

EX = |Gn,k| · EXV

= |Gn,k| (1− p̂)
|V ⊥|

= |Gn,k| exp(−pN
K

)

≥ exp((ln 2− 2c)k(n− k)).

The second moment requires a more delicate calculation.

We partition the sum into pairs of orthogonal complements

with the same dimension of intersection. By Lemma II.3, and

letting d0 denote max(n− 2m, 0), we have

VarX

(EX)2
=

∑
U,V ∈Gn,k

Cov(XU , XV )

|Gn,k|2 (EXU )
2

=

∑n−k
d=d0

∑
U,V :dim(U⊥∩V ⊥)=d Cov(XUXV )

|Gn,k|2 (EXU )
2 .

(III.3)

We can explicitly compute each term in the sum above as

follows.

Claim III.2. For U, V ∈ Gn,k such that dim(U⊥ ∩ V ⊥) = d,
we have

Cov(XU , XV )

(EXU )
2 = exp(p2d)− 1.

Proof. Observe that

EXUXV = P(U⊥ ∩Q = ∅ ∧ V ⊥ ∩Q = ∅)
= exp(−p|U⊥ ∪ V ⊥|)
= exp(−2p|U⊥|+ p|U⊥ ∩ V ⊥|)
= (EXU )

2
exp(p2d).

We plug this expression back to the sum (III.3), in order to

arrive at

VarX

(EX)2
=

n−k∑
d=d0

∑
U,V :dim(U⊥∩V ⊥)=d

1

|Gn,k|2
(
exp(p2d)− 1

)
.

Let us use T (n, k, d) to denote number of pairs U, V ∈ Gn,k

such that dim(U⊥ ∩ V ⊥) = d. With this notation, the entire

sum simplifies to

n−k∑
d=d0

T (n, k, d)

|Gn,k|2
(
exp(p2d)− 1

)
.

We will split this sum into two parts and bound them

separately

n−k−3 logn∑
d=d0

T (n, k, d)

|Gn,k|2
(
exp(p2d)− 1

)

+

n−k∑
d=n−k−3 logn

T (n, k, d)

|Gn,k|2
(
exp(p2d)− 1

)

=: (I) + (II).

The first part of the summation is easy to control: for d <
n− k− 3 logn we have p2d ≤ 2c

n , which implies exp(p2d)−
1 ≤ 4c

n , and

(I) ≤
n−k−3 logn∑

d=d0

T (n, k, d)

|Gn,k|2
4c

n

≤ 4c

n

∑
d

T (n, k, d)

|Gn,k|2

=
4c

n
= o(1). (III.4)

We can now turn our attention to bounding (II).

Claim III.3. For d ≥ n− k − 3 logn, we have

T (n, k, d)

|Gn,k|2 ≤ exp

(
− ln(2)

2
k(n− k)

)
.

Proof. First, we have the bound

T (n, k, d) ≤ |Gn,d||Gn−d,n−k−d|2. Indeed, to choose two

subspaces U⊥, V ⊥ of dimension k with dim(U⊥ ∩ V ⊥) = d,

we can first choose T = U⊥ ∩ V ⊥ as a subspace of Fn
2 (there

are |Gn,d| ways of doing this), and then we can consider

the quotient space F
n
2/T and count the number of disjoint

subspaces U/T, V/T ⊂ F
n
2/T — the number of such choices

is upper bounded by |Gn−d,n−k−d|2 — the number of all

pairs of subspaces U/T, V/T ∈ F
n
2/T .

Applying Lemma II.2 to |Gn,d| and |Gn−d,n−k−d|, we

obtain

T (n, k, d) ≤ exp
(
ln(2)

[
d(n− d+ 1)

+ 2(n− k − d+ 1)(k + 1)
])
.

The quadratic in the exponent is maximized for d = n−2k−1
2 ,

hence in the range d ≥ n−k−3 logn, the maximum is attained

exactly at d = n− k − 3 logn. This yields

T (n, k, d) ≤ exp
(
ln(2)

[
(n− k − 3 logn)(k + 3 log n+ 1)

+ 2(3 log n+ 1)(k + 1)
])

≤ exp

(
ln(2)

[
(n− k)(

5

4
k) +

1

4
(n− k)k

])

≤ exp

(
ln(2)

[
3

2
(n− k)k

])
,

where the second inequality follows from the fact that

min(k, n− k) ≥ 12 log n.

On the other hand, using Lemma II.2 again, we have
1

|Gn,k|2 ≤ 2−2k(n−k) and the statement of the claim follows

by combining these two inequalities.
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Now we can introduce a simple upper bound of the sum

(II)

n−k∑
d=n−k−3 logn

T (n, k, d)

|Gn,k|2
(
exp(p2d)− 1

)
(III.5)

≤ 3(log n)2−
1
2k(n−k) exp

(
p2n−k

)
≤ 3(log n)2(

2c
ln(2)

− 1
2 )k(n−k)

≤ o(1),

where the first inequality follows from Claim III.3, the second

one follows from p2n−k < 2ck(n− k), and the third can one

be applied as soon as 2c
ln(2) <

1
2 . The statement of the Theorem

now follows by combining (III.2), (III.4) and (III.5).

We can now state our main result in terms of sparse recovery.

Theorem III.4. Let N and K be as in Theorem III.1. For
there to exist a method to recover every K-sparse vector
from HQ, for any K such that min(K,N/K) ≥ logC N , the
expected cardinality of the number of rows of HQ must be
Ω(K logK log(N/K)). Further, for any constant δ > 0, the ex-
pected number of rows of HQ must be Ω(K logK log(N/K))
for HQ to have the RIP property.

Proof. By Theorem III.1, there exists a 2K-sparse vector x
in the kernel of HQ with high probability if the expected

number of rows of HQ is o(K logK log(N/K)). Let us write

x = y − z where y and z are both K-sparse vectors. Then

HQy = HQz, which proves that HQ is not injective when

restricted to the set of all K-sparse vectors. The statement about

the RIP property follows directly from the definition.
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