
Fast uniform generation of random graphs with
given degree sequences

Andrii Arman
School of Mathematics

Monash University

Melbourne, Australia

Email: andrii.arman@monash.edu

Pu Gao
Department of Combinatorics and

Optimization

University of Waterloo

Waterloo, Canada

Email: pu.gao@uwaterloo.ca

Nicholas Wormald
School of Mathematics

Monash University

Melbourne, Australia

Email: nick.wormald@monash.edu

Abstract—In this paper we provide an algorithm that
generates a graph with given degree sequence uniformly
at random. Provided that Δ4 = O(m), where Δ is
the maximal degree and m is the number of edges, the
algorithm runs in expected time O(m). Our algorithm
significantly improves the previously most efficient uniform
sampler, which runs in expected time O(m2Δ2) for the
same family of degree sequences. Our method uses a
novel ingredient which progressively relaxes restrictions
on an object being generated uniformly at random, and
we use this to give fast algorithms for uniform sampling of
graphs with other degree sequences as well. Using the same
method, we also obtain algorithms with expected run time
which is (i) linear for power-law degree sequences in cases
where the previous best was O(n4.081), and (ii) O(nd+d4)
for d-regular graphs when d = o(

√
n), where the previous

best was O(nd3).
Index Terms—Uniform generation, random graphs,

switchings

I. INTRODUCTION

Sampling discrete objects from a specified probability

distribution is a classical problem in computer science,

both in theory and for practical applications. Uniform

generation of random graphs with a specified degree

sequence is one such problem that has frequently been

studied. In this paper we consider only the task of

generating simple graphs, i.e. graphs with no loops

or multiple edges. An early algorithm was given by

Tinhofer [15], but with unknown run time. A simple

rejection-based uniform generation algorithm is usually

implicit for asymptotically enumerating graphs with a

specified degree sequence, for example in the papers of

Békéssy [3], Bender and Canfield [4] and Bollobás [5].

The run time of this algorithm is linear in n but expo-

nential in the square of the average degree. Hence it only

works in practice when degrees are small.

A big increase in the permitted degrees of the ver-

tices was achieved by McKay and Wormald [13], and

Second author was supported by ARC DP160100835 and NSERC.
Third author was supported by ARC DP160100835.

around the same time Jerrum and Sinclair [10] found

an approximately uniform sampler using Markov Chain

Monte Carlo (MCMC) methods. McKay and Wormald

used the configuration model introduced in [5] to gen-

erate a random (but not uniformly random) multigraph

with a given degree sequence. Instead of repeatedly

rejecting until finding a simple graph, McKay and

Wormald used a switching operation to switch away

multiple edges, reaching a simple graph in the end.

The algorithm is rather efficient when the degrees are

not too large. In particular, for d-regular graphs it runs

in expected time O(d3n) when d = O(n1/3). (Here

and in the following we assume n is the number of

vertices.) Jerrum and Sinclair’s Markov chain mixes in

time polynomial in n provided that the degree sequence

satisfies a condition phrased in terms of the numbers

of graphs of given degree sequences. In particular, the

mixing time is polynomial in the d-regular case for

any function d = d(n). These two benchmark research

papers led the study into two different research lines.

More switching-based algorithms for exactly uniform

generation were given which deal with new degree

sequences permitting vertices of higher degrees. The

regular case was treated by Gao and Wormald [7] for

d = o(
√
n) with time complexity again O(d3n), and

very non-regular but still quite sparse degree sequences

(such as power law) [8] were considered by the same

authors. Various MCMC-based algorithms have been

investigated for generating the graphs with distribution

that is only approximately uniform, e.g. algorithms by

Cooper, Dyer and Greenhill [9], Greenhill [9], Kannan,

Tetali and Vempala [11]. These algorithms can cope

with a much bigger family of degree sequences than the

switching-based algorithms. That these do not produce

the exactly uniform distribution might be irrelevant for

practical purposes, if it were not for the fact that the

theoretically provable mixing bounds are too big. For

instance, the mixing time was bounded by d24n9 log n
in [6] in the regular case. We note that there have also

1371

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00084

been switching-based approximate samplers that run fast

(in linear or sub-quadratic time), for instance see paper of

Bayati, Kim and Saberi [2], Kim and Vu [12], Steger and

Wormald [14] and Zhao [16]. For those algorithms, the

bounds on error in the output distribution are functions

of n which tend to 0 as n grows, but cannot be reduced

for any particular n by running the algorithm longer. In

this way they differ from the MCMC-based algorithms,

which are fully-polynomial almost uniform generators in

the sense of [10].

The goal of this paper is to introduce a new tech-

nique for exactly uniform generation. Using it to modify

switching-based algorithms, we can obtain vastly re-

duced run times. In particular, we obtain a linear-time,

i.e. O(M), algorithm that works for the same family of

degree sequences as the O(M2Δ2) algorithm in [13].

We first review the salient features of the latter.

The algorithm first generates an initial random multi-

graph in expected time that is linear in M . The initial

pairing contains no loops of multiplicity at least two,

no multiple edges of multiplicity at least three, and has

a sublinear number of loops and double edges. The

algorithm then uses an operation called d-switching to

sequentially “switch away” all the double edges (loops

are treated similarly so we ignore them at present).

Provided that a multigraph G was uniform in the class

of graphs with m2 double edges, the result of applying

a random d-switching to G is a random multigraph G′

that is slightly non-uniformly distributed in a class of

multigraphs with m2 − 1 double edges. The following

rejection scheme is used to equalise probabilities. Let

fd(G̃) be the the number of ways that a d-switching

can be performed on G̃ and bd(G̃) be the number of

d-switchings that can create G̃. Assume that fd(m)
and bd(m) are uniform upper and lower bounds for

fd(G̃) and bd(G̃) respectively over all multigraphs with

m double edges. If a switching that converts some

multigraph G to a multigraph G′ is selected by the

algorithm, then the switching is accepted with prob-

ability fd(G)bd(m2 − 1)/fd(m2)bd(G
′), and rejected

otherwise. If the switching is accepted, it is applied

to the multigraph, whereas rejection requires re-starting

the algorithm from scratch. Computing bd(G
′) takes

O(M2Δ2) time, which dominates the time complexity

of [13].

The algorithm presented in this paper is obtained from

the algorithm in [13] by modifying the time-consuming

rejection scheme. First, it was observed in [13] that the

rejection can be separated into two distinct steps, which

are given the explicit names f- and b-rejection in [7].

The f-rejection step rejects the selected switching with

probability 1− fd(G)/fd(m2), and the b-rejection step

rejects it with probability 1 − bd(m2 − 2)/bd(G
′). It is

easy to see that the overall probability of accepting the

switching is the same as specified originally above. By

a slick observation, there is essentially no computation

cost for computing the probability of f-rejection. (See

the explanations in [1]). The modification in the present

paper is to further separate b-rejections into a sequence

of sub-rejections by a scheme we will call incremental
relaxation. This scheme will still maintain uniformity of

the multigraphs created.

The basic idea of incremental relaxation, as used in

the present paper, can be described as follows. Let H be

a (small) graph with each edge designated as positive or

negative. We say that an H-anchoring of a graph G is an

injection Q : V (H) → V (G) that maps every positive

edge of H to an edge of G, and every negative edge to

a non-edge of G. (This is a generalisation of rooting at

a subgraph, which usually corresponds to the case that

H has positive edges only.)

Now assume that an H-anchored graph (G,Q) is

chosen u.a.r., i.e. each such ordered pair with G in some

given set O, and Q, an H-anchoring of G, is equally

likely. We can convert this to a random graph G ∈ O
by finding the number b(G) of H-anchorings of G, and

accepting G with probability b(O)/b(G) where b(O) is

a lower bound on the number of H-anchorings of any

element G′ ∈ O. However, computing b(G) corresponds

to computing bd(G
′) as described above and can be time-

consuming. The key idea of our new method is that we

incrementally relax the constraints imposed on G by Q,

so that rejection is split into a sequence of sub-rejections.

Set ∅ = V0 ⊆ V1 ⊆ · · · ⊆ Vk = V (H) and let Qi denote

the restriction of Q to Vi. With this definition, for each

i, Qi is an H[Vi]-anchoring of G. Thus Qi determines

some subset (increasing with i) of the constraints on G
corresponding to the edges of H , and given that (G,Qi)
is uniformly random, we can obtain a uniformly random

anchoring (G,Qi−1) by applying a similar rejection

strategy, but using only the number b(G,Qi−1) of ways

that Qi−1 can be extended to an H[Vi]-anchoring of G.

This procedure of incremental relaxation of constraints

can be highly advantageous if for each i, b(G,Qi−1)
can be computed much faster than b(G). In this way,

a sequence of uniformly random objects is obtained,

involving anchorings at ever-smaller subgraphs of H ,

until the empty subgraph is reached, corresponding to

obtaining G u.a.r.

To see that this idea applies to the problem at hand,

we observe that the existence of a d-switching (defined

in Section IV-B) from G to G′ forces G′ to include a

set A of edges (the positive edges, forming two paths of

length 2, in a copy of a certain graph H), and to exclude

a set B (the negative edges, forming a matching, in H).

So G′ comes accompanied by an H-anchoring.(Refer to

right side of Figure 2 for a drawing of H .) To apply

incremental relaxation we first compute the number of

1372

ways to complete such an anchoring given the first 2-path

and use that to obtain a random 2-path-anchored graph,

and then relax the 2-path anchoring in a similar manner.

The details of applying this scheme to d-switchings are

given in Section IV-B.

In Section III we present the incremental relaxation

technique in a more general setting, avoiding injections

but instead employing more arbitrary sets of constraints.

We apply the incremental relaxation scheme in detail

in the case Δ4 = O(M) (e.g. d = O(n1/3) in the

regular degree case) in Sections IV. The switchings we

use are exactly the same as those in [13]. When the

incremental relaxation scheme is combined with the new

techniques introduced in [7, 8], it allows us to obtain

fast uniform samplers of graphs for the family of degree

sequences permitted in [7, 8]. In particular, we obtain a

linear-time algorithm to generate graphs with power-law

degrees, and a sub-quadratic-time algorithm to generate

d-regular graphs when d = o(n1/2). See [1] for detailed

descriptions of these algorithms.

II. MAIN RESULTS

Let d = (d1, . . . , dn) be specified where M =
∑

di
is even. Let Δ = max{d1, . . . , dn} and for positive

integers j define Mj =
∑n

i=1 di(di− 1) . . . (di− j+1).
We say that d is graphical if there exists a simple graph

with degree sequence d. For the rest of this paper we

only consider graphical sequences d. Our first result

is that our algorithm INC-GEN uniformly generates

a random graph with degree sequence d and runs in

linear time provided that d is “moderately sparse”. The

description of INC-GEN is given in Section IV. The

proof of the uniformity will be presented in Section IV-C,

and the time complexity is bounded in Section IV-D.

Theorem 1. Let d be a graphical sequence. Algorithm
INC-GEN uniformly generates a random graph with
degree sequence d. If Δ4 = O(M) then the expected
run time of INC-GEN is O(M).

Our second algorithm INC-REG is an almost-linear-

time algorithm to generate random regular graphs. The

run time is O(dn+d4) when d = o(n1/2). This improves

the O(d3n) run time of the uniform sampler in [7].

Theorem 2. Algorithm INC-REG uniformly generates
a random d-regular graph. If d = o(n1/2) then the
expected run time of INC-REG is O(dn+ d4).

Our third algorithm INC-POWERLAW is a linear-time

algorithm to generate random graphs with a power-law

degree sequence. A degree sequence d is said to be

power-law distribution-bounded with parameter γ > 1,

if the minimum component in d is at least 1, and there is

a constant K > 0 independent of n such that the number

of components that are at least i is at most Kni1−γ for

all i ≥ 1. Note that the family of power-law distribution-

bounded degree sequences covers the family of degree

sequences arising from n i.i.d. copies of a power-law

random variable. Uniform generation of graphs with

power-law distribution-bounded degree sequences with

parameter γ > 21/10 +
√
61/10 ≈ 2.881024968 was

studied in [8], where a uniform sampler was described

with expected run time O(n4.081). This was the first

known uniform sampler for this family of degree se-

quences. With our new rejection scheme, we improve

the time complexity to linear.

Theorem 3. Let d be a power-law distribution-bounded
degree sequence with parameter γ > 21/10+

√
61/10 ≈

2.881024968. Algorithm INC-POWERLAW uniformly
generates a random graph with degree sequence d, and
the expected run time of INC-POWERLAW is O(n).

Algorithms INC-REG and INC-POWERLAW are

adapted from [7, 8], where the rejection scheme is re-

placed by the new incremental relaxation. The detailed

descriptions for the adaptations are presented in [1].

Algorithms INC-GEN and INC-REG can easily

be modified if d represents a bipartite graph’s de-

gree sequence. As an example, we present algorithm

INC-BIPARTITE in Section V as the bipartite version

of INC-GEN.

Theorem 4. Algorithm INC-BIPARTITE uniformly
generates a random graph with bipartite degree se-
quence d = (s, t). If Δ4 = O(M) then the expected
run time of INC-BIPARTITE is O(M).

III. UNIFORM GENERATION BY INCREMENTAL

RELAXATION

We provide here a general description of the relaxation

procedure, so it can be applied in different setups. Let

F and k be given, where F is a finite set and k is a

positive integer. We are also given Si, for 1 ≤ i ≤ k,

where each Si is a multiset consisting of subsets of

F . Let ⊗ denote the Cartesian product, and let Fk

be any subset of F × S1 × · · · × Sk such that each

(G,C1, . . . , Ck) ∈ Fk satisfies G ∈ Ck ⊆ · · · ⊆ C1.

Given F = (G,C1, . . . , Ck) ∈ Fk, define Pi(F) =
(G,C1, . . . , Ci) for each 1 ≤ i < k. For each i ∈ [k−1]
set Fi = {Pi(F) : F ∈ Fk} and set F0 = F .

For any i ∈ [k] and F := (G,C1, . . . , Ci) ∈ Fi,

define P (F) = (G,C1, . . . , Ci−1) ∈ Fi−1; i.e. P (F) is

the prefix of F .

Later in our applications of relaxation, we will let F
be a set of multigraphs. Each element F of Fi can be

identified with a multigraph that contains a specified

substructure (determined by the Ci-s) on a specified

set of vertices. In terms of the notation introduced in

Section I, elements of Fi will correspond to H[Vi]-
anchorings of multigraphs for some graph H and some

1373

sequence ∅ = V0 ⊆ V1 ⊆ · · · ⊆ Vk = V (H). Permitting

multiple copies of elements in Si is useful in the case

where two distinct constraints may correspond to the

same subset of F . This happens in our applications due

to the symmetry of the substructures in H .

Next we define a procedure Loosen, which takes

an F = (G,C1, . . . , Ci) ∈ Fi as input, and out-

puts an P (F) ∈ Fi−1 with a certain probability and

otherwise ‘rejects’ it and terminates. Our Relaxation

Lemma (Lemma 5 below) shows that if F is uniformly

distributed in Fi then the output of Loosen is uniformly

distributed in Fi−1.

For 0 ≤ i ≤ k − 1 and F ∈ Fi, let b(F) be the

number of F ′ ∈ Fi+1 such that P (F ′) = F . In other

words, b(F) is the number of ways to extend F to an

element of Fi+1. Let b(i) be a lower bound on b(F)
over all F ∈ Fi, and assume that for all i ∈ [k − 1],
b(i) > 0. For F ∈ Fi with i ≥ 1 we define the following

procedure.

procedure Loosen(F):
Output P (F) with probability b(i− 1)/b(P (F)),

and reject otherwise.

Procedure Relax is defined for F =
(G,C1, . . . , Ck) ∈ Fk. It repeatedly calls Loosen until

reaching a G ∈ F0. We say that procedure Relax
performs incremental relaxation on (G,C1, . . . , Ck).

procedure Relax(F):
i ← k;

while i ≥ 1 do
(G,C1, . . . , Ci−1) = Loosen(G,C1, . . . , Ci);
i ← i− 1.

end
Output G.

Lemma 5 (Relaxation Lemma). Assume that i ∈ [k] and
b(i− 1) > 0. Provided that F ∈ Fi is chosen uniformly
at random, the output of Loosen(F) is uniform in Fi−1

assuming no rejection.

Proof. Let p = 1
|Fi| . For any F ′ ∈ Fi−1, the probability

that Loosen outputs F ′ is equal to∑
F∈Fi : P (F)=F ′

P(AF)P(no rejection | AF),

where AF denotes the event that the input of Loosen
is F . The second probability above is the conditional

probability that no rejection occurs in Loosen, given

AF . By our assumption, the first probability above is

always equal to p. By the definition of Loosen, the

second probability above is equal to b(i− 1)/b(F ′). By

definition, b(F ′) is exactly the number of F ∈ Fi, such

that P (F) = F ′, so the sum has exactly b(F ′) terms,

each of which is equal to pb(i − 1)/b(F ′). Hence, the

probability for Loosen to output F ′ is equal to pb(i−1),
for every F ′ ∈ Fi−1.

Recalling that F0 = F , the Relaxation Lemma imme-

diately yields the following corollary for the uniformity

of Procedure Relax.

Corollary 6. Assume that for all i ∈ [k], b(i− 1) > 0,
and assume F ∈ Fk is chosen uniformly at random.
Then the output of Relax(F) is uniform in F , if there
is no rejection.

The description of Relax as repeated calls of

Loosen is useful for analysing the algorithm, but for

practical implementations we refer to the following

corollary.

Corollary 7. Procedure Relax, when applied to
(G,C1, . . . , Ck) ∈ Fk, outputs G with probability∏k−1

i=0 b(i)/b(G,C1, . . . , Ci), and ends in rejection oth-
erwise.

In practice, we predefine the numbers b(i). Once the

numbers b(G,C1, . . . , Ci) are computed, the b-rejection

can be performed in one step using Corollary 7, and

there is no need to perform Relax with its iterated

calls to Loosen. As mentioned in Section I, these

numbers can be much faster to compute than the number

of H-anchorings of G, which would be required using

the scheme in [13]. We also reiterate that, unlike the

scheme in [13], the rejection probability depends on the

anchoring imposed by Ck, as well as G.

IV. ALGORITHM INC-GEN

In this section we provide a description of INC-GEN.

Let d be given. We will use the configuration model [5]

to generate a random pairing, defined as follows. For

every 1 ≤ i ≤ n, represent vertex vi as a bin containing

exactly di points. Take a uniformly random perfect

matching over the set of points in the n bins. Call the

resulting matching P a pairing and call each edge in P
a pair. Finally identify the bins as vertices, and represent

each pair in P as an edge. This produces a multigraph

from P , denoted by G(P). If a set of pairs in P form

a multiple edge or loop in G(P) then this set of pairs

is called a multiple edge in P as well, with the same

multiplicity as it has in G(P). A loop is a pair with

both ends contained in the same bin/vertex. If there is a

set containing more than one pair with all ends contained

in the same vertex, then this set of pairs form a multiple

loop. We always use loop to refer to a single loop with

multiplicity equal to one. We call a multiple edge with

multiplicity 2 or 3 a double or triple edge respectively.

1374

Let Φ(d) denote the set of all pairings with degree

sequence d. Define

B1 =
M2

M
, B2 =

(
M2

M

)2

, (1)

if 22Δ3 < M2 and define B1 = B2 = 0 otherwise.

Let Φ0 denote the set of pairings in Φ(d) where there

are no multiple edges with multiplicity at least 3, and

no multiple loops with multiplicity at least 2, and the

number of loops and double edges are at most B1 and B2

respectively. The following result is essentially contained

in [13] so we only give a brief description of the proof.

Lemma 8. Let d be a graphical degree sequence with
Δ4 = O(M) and P be a uniformly random pairing in
Φ(d). Then there exists a constant 0 < c < 1 such that
P(P ∈ Φ0) > c for all sufficiently large M .

Proof. We first note that if 22Δ3 ≥ M2, then since M
is large enough and Δ4 = O(M), we have M2/M → 0.

So we only need to consider the case when B1 and B2

are defined by (1).

If Δ4 = o(M) then the claim follows by [13, Lemmas

2 and 3′]. If Δ4 = Θ(M) then P contains O(Δ4/M)
triple edges in expectation, whereas the expected number

of multiple edges of higher multiplicity in the pairing is

bounded by o(1). In the case that the expected number

of triple edges is asymptotically a positive constant, the

standard method of moments can be used to show that

the joint distribution of the numbers of triple edges,

double edges and loops are asymptotically independent

Poisson variables. This implies our assertion. See also

the discussion of this case in the proof of [13, Theorem

3].

The first step of our algorithm is to use the config-

uration model to generate a uniformly random pairing

P ∈ Φ(d). Proceed if P ∈ Φ0. Otherwise, reject

P and restart the algorithm. This type of rejection is

called initial rejection. By Lemma 8, this initial rejection

stage takes only O(1) rounds in expectation before

successfully producing a multigraph G = G(P) with at

most B2 double edges, at most B1 loops, and no multiple

loops or edges of multiplicity higher than two.

Then the algorithm calls two procedures,

NoLoops and NoDoubles. Each of these is composed

of a sequence of switching steps. In each switching

step, a loop (in NoLoops) or a double edge (in

NoDoubles) will be removed using the corresponding

switching operation in the procedure. Various types

of rejections may occur in procedures NoLoops and

NoDoubles. In all cases, if a rejection occurs then the

algorithm restarts from the first step.

Algorithm INC-GEN(n,d):
Generate a uniformly random pairing P ∈ Φ(d).
Reject P if P /∈ Φ0 (initial rejection) and

otherwise set G = G(P);
NoLoops(G);

NoDoubles(G).

Let m = (m1,m2) and Gm be the set of multigraphs

with degree sequence d, m1 loops, m2 double edges and

no other types of multiple edges. The following lemma

guarantees uniformity of the multigraph obtained after

initial rejection.

Lemma 9. Let P be a uniformly random pairing in Φ0.
Let m = (m1,m2) where m1 ≤ B1 and m2 ≤ B2.
Conditional on the number of loops and double edges
in P being m1 and m2, G(P) is uniformly distributed
over Gm.

Proof. This follows from the simple observation that

every pairing in Φ0 appears with the same probability,

and every multigraph in Gm corresponds to exactly∏n
i=1 di!/2

m1+m2 distinct pairings.

Note that if 22Δ3 ≥ M2, then B1 = 0, B2 = 0 and

so INC-GEN never calls NoLoops or NoDoubles. By

Lemma 9, output of INC-GEN is a uniformly distributed

in G0,0. Also, by Lemma 8, INC-GEN restarts constant

number of times in expectation before outputting a

graph. Hence, in this case we proved Theorem 1. For

the rest of this section we assume 22Δ3 < M2.

In the next subsection we define the procedure

NoLoops. This procedure uses the same switchings as

in [13] (but applied to multigraphs rather than pairings)

to reduce the number of loops to 0.

A. NoLoops

Definition 10 (�-switching). For a graph G ∈ Gm1,m2
,

choose five distinct vertices v1, . . . , v5 such that

• there is a loop on v2.

• v1v4 and v3v5 are single edges;

• there are no edges between v1 and v2, v2 and v3,
v4 and v5.

An �-switching replaces loop on v2 and edges v1v4,
v3v5, by edges v1v2, v2v3 and v4v5.

See Figure 1 for an illustration of an �-switching. Note

that this switching is the same as the one used in [13],

except performed on graphs, not pairings.

1375

v2

v1 v3

v4 v5

v2

v1 v3

v4 v5

Fig. 1: �-switching.

Let f�(G) be the number of �-switchings that can be

performed on G. We will specify a parameter f �(m)
such that

f�(G) ≤ f �(m) for all G ∈ Gm.

In each switching step, a uniformly random switching S
converting G ∈ Gm1,m2 to some G′ ∈ Gm1−1,m2 is se-

lected. An f-rejection occurs with probability 1−f�(G)/
f �(m). We will next describe how to use incremental

relaxation to do b-rejection. If S is neither f-rejected nor

b-rejected, then S will be performed in this switching

step.

We first give some notation. In a multigraph, a (sim-
ple) ordered edge is an ordered pair of vertices (u, v)
such that uv is a (simple) edge in the multigraph.

Similarly, a (simple) ordered i-path is an ordered set

of vertices (u1, . . . , ui+1) such that u1u2 · · ·ui+1 forms

a (simple) i-path in the multigraph.

Define b�(G
′, ∅) to be the number of simple ordered

2-paths uvw in G′ such that there is no loop on v. For

a simple ordered 2-path uvw in G′ define b�(G
′, uvw)

to be the number of simple ordered edges u′w′ in G′

that are vertex disjoint from uvw and such that uu′

and ww′ are non-edges. For m = (m1 − 1,m2) let

b�(m; 0) and b�(m; 1) be lower bounds on b�(G
′, ∅) and

b�(G
′, uvw) respectively over all G′ ∈ Gm and all simple

ordered 2-paths uvw in G′. Positive constants b�(m; 0)
and b�(m; 1) will be defined in Section IV-A1. Any

switching S that can be used to create a fixed multigraph

G′ ∈ Gm1−1,m2 from multigraphs in Gm1,m2 can be

identified with the ordered set of vertices V 2(S) =
(v1, . . . , v5) whose adjacencies were changed by S. Set

V 0(S) = ∅ and V 1(S) = (v1, v2, v3).
Informally, each iteration of NoLoops starts with

a multigraph G ∈ Gm1,m2
and chooses a random �-

switching S that converts G to some G′ ∈ Gm1−1,m2
.

In terms of the notation defined in Section I, each such

switching S can be viewed as an H-anchoring of G′,
where H is a graph on the right side of Figure 1 (with

positive signs on solid edges, and negative signs on

dashed edges). NoLoops then performs f-rejection, after

which every pair (G′, V 2(S)) (denoting an H-anchoring

of G′), where G′ ∈ Gm1−1,m2
and S is an �-switching

that creates G′, arises with the same probability. After

that NoLoops sequentially relaxes constraints enforced

by H-anchoring of G′ by performing a b-rejection. The

following is the formal description of NoLoops.

procedure NoLoops(G):
while G has a loop do

let m = (m1,m2) be such that G ∈ Gm;

obtain (G′, V 2(S)) from G by performing a

random �-switching S on G;

f-rejection: restart with probability

1− f�(G)

f�(m)
;

m ← (m1 − 1,m2);
b-rejection: restart with probability

1− b�(m;0)b�(m;1)

b�(G,V 0(S))b�(G,V 1(S))
;

G ← G′;
end

In Section IV-C we show that if G is distributed uni-

formly at random in Gm1,m2
, the output of NoLoops(G)

is uniform in G0,m2
. We do this by showing that the

quantities b�(G, V 0(S)) and b�(G, V 1(S)) defined above

coincide with the quantities b(G,C1) and b(G,C1, C2)
in an application of Corollary 7.

1) Parameters in NoLoops: We now specify the

values of the parameters mentioned above, which will

be shown in the following lemma to satisfy the required

inequalities. Define

f �(m) = m1M
2,

b�(m; 1) = M

(
1− 6Δ2 − 4Δ

M

)
,

b�(m; 0) = M2

(
1− 8m2Δ+m1Δ

2

M2

)
.

Recall that we assumed 22Δ3 < M2 and so b�(m; 0) and

b�(m; 1) are positive constants. The following Lemma

establishes necessary bounds on b�(G, ∅), b�(G, uvw)
and f�(G).

Lemma 11. Let G ∈ Gm1,m2 with m1 ≤ M2/M and
m2 ≤ M2

2 /M
2. For any simple ordered 2-path v1v2v3

in G, we have

b�(m; 0) ≤ b�(G, ∅) ≤ M2,

b�(m; 1) ≤ b�(G, v1v2v3) ≤ M.

For forward �-switchings

m1M
2(1− 11Δ2 − 4Δ + 4

M
) ≤ f�(G) ≤ f �(m).

This completes the description of NoLoops.

1376

B. NoDoubles

After NoLoops is finished, we have a multigraph G ∈
G0,m2

. Next we describe how to reduce the number of

double edges in G.

Definition 12 (d-switching). For a graph G ∈ G0,m2 ,
choose six distinct vertices v1, . . . , v6 such that
• there is a double edge between v2 and v5.
• v1v4, v3v6, are single edges;
• the following are non-edges: v1v2, v2v3, v4v5, v5v6.

A d-switching replaces double edges between v2v5 and
edges v1v4, v3v6, by edges v1v2, v2v3, v4v5, v5v6.

See Figure 2 for an illustration.

v2

v1

v3

v4

v6

v5 v2

v1

v3

v4

v6

v5

Fig. 2: d-switching.

For a graph G ∈ Gm, we use notation fd(G) for the

number of ways to perform a d-switching on G. We will

specify fd(m) such that

fd(G) ≤ fd(m) for all G ∈ Gm.

In each switching step, a uniformly random switching S
converting G ∈ G0,m2

to some G′ ∈ G0,m2−1 is selected.

An f-rejection occurs with probability 1−fd(G)/fd(m).

The incremental relaxation scheme for b-rejection is

analogous to that in NoLoops. Define bd(G
′, ∅) to be

the number of simple ordered 2-paths uvw in G′. For a

simple ordered 2-path uvw in G′ define bd(G
′, uvw) to

be the number of simple ordered 2-paths u′v′w′ that are

vertex disjoint from uvw such that uu′, vv′ and ww′ are

non-edges.

For m = (0,m2 − 1) let bd(m; 0) and bd(m; 1) be

positive lower bounds (to be specified in Section IV-B1)

on bd(G
′, ∅) and bd(G

′, uvw) over all G′ ∈ Gm and

simple ordered 2-paths uvw in G′. For a d-switching

S let V 2(S) = (v1, . . . , v6) be the vertices whose

adjacencies were changed by S. Set V 0(S) = ∅ and

V 1(S) = (v1, v2, v3).

As in case of NoLoops, in Section IV-C we show the

desired uniformity property holds for NoDoubles .

procedure NoDoubles(G):
while G has a double edge do

let m = (0,m2) be such that G ∈ Gm;

obtain (G′, V 2(S)) from G by performing a

random d-switching S on G;

f-rejection: restart with probability

1− fd(G)

fd(m)
;

m ← (0,m2 − 1);
b-rejection: restart with probability

1− bd(m;0)bd(m;1)

bd(G,V 0(S))bd(G,V 1(S))
;

G ← G′;
end

1) Parameters for NoDoubles: Define

fd(m) = 2m2M
2,

bd(m; 0) = M2

(
1− 8m2Δ

M2

)
,

bd(m; 1) = M2

(
1− 4m2(2Δ− 3) + 3Δ3

M2

)
.

Note that bd(m; 0) and bd(m; 0) are positive constants,

as in Section IV-A1.

Lemma 13. Let G ∈ G0,m2 . Then for any simple ordered
2-path v1v2v3 in G we have

bd(m; 0) ≤ bd(G, ∅) ≤ M2,

bd(m; 1) ≤ bd(G, v1v2v3) ≤ M2,

2m2M
2

(
1− 12Δ2 − 4Δ + 8

M

)
≤ fd(G) ≤ fd(m).

C. Uniformity

Theorem 14. INC-GEN generates graphs with degree
sequence d uniformly at random.

Proof. We start the proof by showing that b-rejection in

both NoLoops and NoDoubles can be performed as

Relax for appropriate choice of F , S1, S2. We deal here

with NoDoubles only, as the issues with NoLoops are

identical.

Let S be the set of d-switchings that convert a

multigraph in G0,m2
to some multigraph in G0,m2−1.

Recall that switching S ∈ S can be identified with an

ordered set of vertices V 2(S) = (v1, . . . , v6) whose

adjacencies were changed by S, and V 0(S) = ∅,

V 1(S) = (v1, v2, v3).

Let F = G0,m2−1 and let v1, . . . , v6 be distinct

vertices. Using the notation {}∗ to denote a multiset, and

1377

E1(G) to denote the set of simple edges in G, define

C
(v1,v2,v3)
1 = {G̃ ∈ F : v1v2, v2v3 ∈ E1(G̃)},

C
(v1,...,v6)
2 = {G̃ ∈ C

(v1,v2,v3)
1 : v4v5, v5v6 ∈ E1(G̃)

and v1v4, v2v5, v3v6 /∈ E(G̃)},
S1 = {C(v1,v2,v3)

1 : v1, v2, v3 all distinct}∗,
S2 = {C(v1,...,v6)

2 : v1, . . . , v6 all distinct}∗,
F2 = {(G,C

(v1,v2,v3)
1 , C

(v1,...,v6)
2) :

v1, . . . , v6 all distinct, G ∈ C
(v1,...,v6)
2 },

F0 = F .

Recall that

F1 = {(G,C
(v1,v2,v3)
1) :

(G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
2) ∈ F2 for some v4, v5, v6}.

We now show that

F1 = {(G,C
(v1,v2,v3)
1) :v1, v2, v3 all distinct,

G ∈ C
(v1,v2,v3)
1 }.

Indeed, for a given simple ordered 2-path v1v2v3
in G, the number of simple ordered 2-paths v4v5v6
such that v1v4, v2v5 and v3v6 are non-edges is equal

to bd(G, v1v2v3) and is at least one according to

Lemma 13. So for every pair (G,C
(v1,v2,v3)
1) with

G ∈ C
(v1,v2,v3)
1 there exists a simple ordered 2-path

v4v5v6, such that (G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
1) ∈ F2,

which establishes the desired claim for F1.

Similarly we have

F0 = {G : (G,C
(v1,v2,v3)
1) ∈ F1 for some v1, v2, v3}.

If S is a switching from G to G′, we have that G′ ∈
C

V 1(S)
1 and G′ ∈ C

V 2(S)
2 so (G′, CV 1(S)

1 , C
V 2(S)
2) ∈

F2. So every pair (G′, V 2(S)), where switching S ∈
S creates G′, can be identified with an element

(G′, CV 1(S)
1 , C

V 2(S)
2) ∈ F2, hence we can apply Relax

to (G′, V 2(S)). In this setup, the quantities b(G′)
and b(G′, CV 1(S)

1) (as in Section III) are equal to

bd(G
′, V 0(S)) and bd(G

′, V 1(S)) respectively. (Recall

the definitions for bd(G
′, V 0(S)) and bd(G

′, V 1(S))
in Section IV-B.) It remains to note that we can set

b(i) = bd(m; i) for i ∈ {0, 1} where m = (0,m2 − 1).
According to Corollary 7,

Relax(G′, CV 1(S)
1 , C

V 2(S)
2) outputs G′ with probability

b(0)b(1)/b(G′, CV 1(S)
1)b(G′, CV 1(S)

1 , C
V 2(S)
2),

which is exactly equal to the probability that G′ is not

b-rejected in NoDoubles.

Hence b-rejection in NoDoubles is just an effective

implementation of Relax(G′, CV 1
1 , CV 2

2). As a result

of Corollary 6 we have the following

Claim 15. Let (G′, V 2(S)) be chosen u.a.r from the
class of all pairs (G̃, V 2(S̃)), where G̃ ∈ Gm1,m2

(G̃ ∈
G0,m2) and S̃ is an � (d)-switching that creates G′. If
G′ is not b-rejected by NoLoops (NoDoubles), then
G′ is uniform in Gm1−1,m2

(G0,m2−1).

Now we are ready to prove the theorem. Assume that

we initially generated a graph in G0 ∈ Gm1,m2
for some

m1 ≤ M2/M and m2 ≤ M2
2 /M

2.

We say that a graph G was reached in NoLoops if a

switching creating G was selected in a switching step,

and G was not rejected. Let Gt denote the multigraph

reached after t switching steps of NoLoops, if no re-

jection occurred (let Gt = ∅ if a rejection occurs during

the t-th step or earlier). We will prove by induction on

t, that conditional on Gt ∈ Gm1,m2
, Gt is uniformly

distributed in Gm1,m2
. The base case t = 0 holds by

Lemma 9. Assume t ≥ 0 and Gt is uniformly distributed

in Gm1,m2 . Then, there exists σm1,m2 such that the

probability that G is reached after t switching steps is

equal to σm1,m2
, for every G ∈ Gm1,m2

. Now, for every

G′ ∈ Gm1−1,m2
and every �-switching S that results in

G′, the probability that (G′, V 2(S)) was obtained during

the (t + 1)-st iteration of NoLoops and not f-rejected

is equal to

σm1,m2

1

f�(G)

f�(G)

f �(m1,m2)
=

σm1,m2

f �(m1,m2)
.

So, (Gt+1, V 2(S)) is uniform in class of all pairs

(G̃, V 2(S̃)), where G̃ ∈ Gm1−1,m2
and S̃ is an �-

switching that creates G̃. By Claim 15, if (Gt+1, V 2(S))
is not b-rejected then Gt+1 is uniform in Gm1−1,m2 .

Inductively, the output of NoLoops is uniform in

G0,m2
provided no rejection. This holds as well for

NoDoubles. Therefore, INC-GEN generates every

graph in G0,0 with the same probability.

D. Time complexity

The initial generation of the pairing takes O(M)
time, during which we can record the locations of loops

and multiple edges and these are updated after each

switching operation.

The leading contribution to the time complexity

in [13] is from the computation of b�(G
′) and bd(G

′),
whereas in INC-GEN the leading contribution is from

computing bα(G, ∅) and bα(G, v1v2v3), for α ∈ {�, d}.

With a simple inclusion-exclusion argument, and a brute-

force search, it is easy to see that each of these numbers

can be computed in O(Δ3) time, by exploring the third

neighbourhood of a specified vertex. We can improve

it to O(Δ2) by properly employed data structures. The

expected number of switching steps in INC-GEN is

O(Δ2), and therefore the total running time is bounded

by O(M + Δ4) = O(M). The detailed analysis is

presented in [1].

1378

V. BIPARTITE GRAPHS

With some minor modification our algorithm can be

adjusted for generation of bipartite graphs with one part

X having degrees s = (s1, . . . , sm) and the other part

Y having degrees t = (t1, . . . , tn). Define

M =
∑
i∈X

si =
∑
j∈Y

tj ;

S2 =
∑
i∈X

si(si − 1); T2 =
∑
j∈Y

tj(tj − 1).

The algorithm INC-BIPARTITE first uses the con-

figuration model to generate a uniformly random pairing

P with bipartite degree sequence (s, t). The configura-

tion model for a bipartite degree sequence is similar to

the one for a general degree sequence, except that points

in vertices of X are restricted to be matched to points

in vertices of Y . Let Φ(s, t) denote the set of pairings

with bipartite degree sequence (s, t), and Φ0 ⊆ Φ(s, t)
be those containing at most S2T2/M

2 double edges and

no other types of multiple edges. An initial rejection is

applied if P /∈ Φ0.

The following lemma, which is based on Lemmas 2B

and 3B′ from [13], guarantees that the probability of

an initial rejection is bounded away from 1, provided

Δ4 = O(M).

Lemma 16. Let P be a uniformly random pairing in
Φ(d). There exists a constant 0 < c < 1 such that P(P ∈
Φ0) > c for all sufficiently large n.

To remove the double edges, Algorithm

INC-BIPARTITE uses the bipartite version of

the d-switching operation in Section IV, in which

vertices v2, v4, v6 are in X and vertices v1, v3, v5 are in

Y .

We define bd(G
′, V (S)) as before and we redefine

bd(m; 0) = T2

(
1− 4m2Δ

T2

)
,

bd(m; 1) = S2

(
1− 4m2Δ+ 4Δ2 + 3Δ3

S2

)

Following a similar proof we have the following

bipartite version of Lemma 13.

Lemma 17. Let G′ ∈ G0,m2
with m2 ≤ S2T2/M

2. Then
for any simple ordered 2-path v1v2v3 in G′ we have

bd(m; 0) ≤ bd(G, ∅) ≤ T2

bd(m; 1) ≤ bd(G, v1v2v3) ≤ S2

m2M
4

(
1− 8m2 + 6Δ2 + 20Δ

M

)
≤ fd(G) ≤ fd(m).

Now we modify NoDoubles in Section IV by using

the bipartite version of the d-switching operation, and

the new definition of the parameters bd(m; i). Algorithm

INC-BIPARTITE is given as follows.

procedure INC-BIPARTITE(s, t):
Generate a uniformly random P ∈ Φ(s,d).

Initial reject if P /∈ Φ0;

Construct G = G(P);
NoDoubles(G);

Theorem 4 follows by a proof almost identical to that

of Theorem 1.

REFERENCES

[1] A. Arman, P. Gao, and N. Wormald, Fast uniform generation
of random graphs with given degree sequences, arXiv preprint
arXiv:1905.03446 (2019).

[2] M. Bayati, J. H. Kim, and A. Saberi, A sequential algorithm for
generating random graphs, Algorithmica 58 (2010), no. 4, 860–
910.

[3] A. Békéssy, Asymptotic enumeration of regular matrices, Stud.
Sci. Math. Hungar. 7 (1972), 343–353.

[4] E. A Bender and E R. Canfield, The asymptotic number of labeled
graphs with given degree sequences, Journal of Combinatorial
Theory, Series A 24 (1978), no. 3, 296–307.

[5] B. Bollobás, A probabilistic proof of an asymptotic formula for
the number of labelled regular graphs, European Journal of
Combinatorics 1 (1980), no. 4, 311–316.

[6] C. Cooper, M. Dyer, and C. Greenhill, Sampling regular graphs
and a peer-to-peer network, Combinatorics, Probability and Com-
puting 16 (2007), no. 4, 557–593.

[7] P. Gao and N. Wormald, Uniform generation of random regular
graphs, SIAM Journal on Computing 46 (2017), no. 4, 1395–
1427.

[8] , Uniform generation of random graphs with power-law
degree sequences, Proceedings of the twenty-ninth annual acm-
siam symposium on discrete algorithms, 2018, pp. 1741–1758.

[9] C. Greenhill, The switch markov chain for sampling irregular
graphs, Proceedings of the twenty-sixth annual acm-siam sym-
posium on discrete algorithms, 2014, pp. 1564–1572.

[10] M. Jerrum and A. Sinclair, Fast uniform generation of regular
graphs, Theoretical Computer Science 73 (1990), no. 1, 91–100.

[11] R. Kannan, P. Tetali, and S. Vempala, Simple markov-chain
algorithms for generating bipartite graphs and tournaments,
Random Structures & Algorithms 14 (1999), no. 4, 293–308.

[12] J. H. Kim and V. H Vu, Generating random regular graphs,
Proceedings of the thirty-fifth annual acm symposium on theory
of computing, 2003, pp. 213–222.

[13] B. D McKay and N. C Wormald, Uniform generation of random
regular graphs of moderate degree, Journal of Algorithms 11
(1990), no. 1, 52–67.

[14] A. Steger and N. C Wormald, Generating random regular graphs
quickly, Combinatorics, Probability and Computing 8 (1999),
no. 4, 377–396.

[15] G. Tinhofer, On the generation of random graphs with given
properties and known distribution, Appl. Comput. Sci., Ber. Prakt.
Inf 13 (1979), 265–297.

[16] J. Y Zhao, Expand and contract: Sampling graphs with
given degrees and other combinatorial families, arXiv preprint
arXiv:1308.6627 (2013).

1379

